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Abstract

Numerical integration of orbit trajectories for a large number of initial conditions and for long time spans is computationally expen-
sive. Semi-analytical methods were developed to reduce the computational burden. An elegant and widely used method of semi-
analytically integrating trajectories of objects subject to atmospheric drag was proposed by King-Hele (KH). However, the analytical
KH contraction method relies on the assumption that the atmosphere density decays strictly exponentially with altitude. If the actual
density profile does not satisfy the assumption of a fixed scale height, as is the case for Earth’s atmosphere, the KH method introduces
potentially large errors for non-circular orbit configurations.

In this work, the KH method is extended to account for such errors by using a newly introduced atmosphere model derivative. By
superimposing exponentially decaying partial atmospheres, the superimposed KH method can be applied accurately while considering
more complex density profiles. The KH method is further refined by deriving higher order terms during the series expansion. A variable
boundary condition to choose the appropriate eccentricity regime, based on the series truncation errors, is introduced. The accuracy of
the extended analytical contraction method is shown to be comparable to numerical Gauss-Legendre quadrature. Propagation using the
proposed method compares well against non-averaged integration of the dynamics, while the computational load remains very low.
� 2019 COSPAR. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

Keywords: Orbit decay; Atmospheric drag; Semi-analytical propagation; King-Hele
1. Introduction

Numerical integration of the full orbital dynamics,
including short-periodic variations, can be demanding
from a computational point of view. For this reason,
Semi-Analytical (SA)1 methods were developed to perform
this task in a less demanding manner (e.g. Liu, 1974). Such
methods remove the short-term periodic effects by averag-
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ing the variational equations, thereby reducing the stiffness
of the problem. This is especially desired when orbits are to
be propagated for many initial conditions and over long
lifetimes, e.g. for estimating the future space debris
environment.

The calculation of the orbit contraction – i.e. the reduc-
tion in semi-major axis and eccentricity – induced by atmo-
spheric drag requires the integration of the atmosphere
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density along the orbit. Half a century ago, King-Hele
(KH) derived analytical approximations to these integrals
(King-Hele, 1964). Depending on the eccentricity of the
orbit, e.g. circular, near-circular, low eccentric and highly
eccentric, different series expansions were derived. Recom-
mendations are given, found empirically, on when to use
which formulation. Vinh et al. (1979) improved the theory
by removing the ambiguity arising from the regions of
validity in eccentricity and by applying the more mathe-
matically rigorous Poincaré method for integration. The
classical theory was adapted to non-singular elements, mit-
igating the problems that theories formulated in Keplerian
elements have with vanishing eccentricities (Sharma, 1999;
Xavier James Raj and Sharma, 2006).

The advantage of these methods is that the averaged
contraction can be computed analytically using only a sin-
gle density evaluation at the perigee. However, the analyt-
ical methods assume exponential decay of the atmosphere
density above the perigee height. This fixed scale height
assumption potentially introduces large errors, especially
for highly eccentric orbits, if compared to propagation
using quadrature.

Averaging methods based on quadrature solve the inte-
gral numerically. No assumption on the shape of the den-
sity profile is required, however, the density needs to be
evaluated at many nodes along the orbit, slowing down
the integration of the trajectory.

This work proposes modelling the atmosphere density
by superimposing exponential functions, each with a fixed
scale height. The KH formulation is then used for the cal-
culation of the contraction of each individual component.
As the assumption of a fixed scale height is satisfied for
each component, the resulting decay rate is estimated with
great accuracy. Finally, each individual contribution is
summed up, resulting in the global contraction of the over-
all not strictly exponentially decaying atmosphere density.
This superimposed approach is not limited to the KH
method and can also be applied to the other analytical
methods described above.

The proposed method is applied during propagation of
different initial conditions from circular to highly elliptical
orbits and compared against propagations using numerical
quadrature of the contraction as well as against Non-
Averaged (NA) integration. The smooth atmosphere
derivative introduced here is independent of the underlying
atmosphere model and can be extended to include time-
variations, as shown here for the case of solar activity.
2. Background on atmospheric models

The atmosphere models discussed here can be divided
into reference models and the derivatives thereof. The
reference models commonly give the temperature, T,2

and – more importantly for calculating the drag force –
2 The nomenclature of all the variables can be found in Appendix A.
the density, q, of Earth’s atmosphere as a function of the
altitude, h, and other input parameters. Examples are, in
increasing degree of complexity, the COSPAR Interna-
tional Reference Atmosphere (CIRA), the Jacchia atmo-
sphere (Jacchia, 1977), the Drag Temperature Model
(DTM) (Bruinsma, 2015) and the Naval Research Labora-
tory Mass Spectrometer, Incoherent Scatter Radar
Extended (NRLMSISE) model (Picone et al., 2002), all
of which are (semi-) empirical models.

Of these reference models, derivatives can be obtained
through fitting for two purposes: appropriate simplification
of the mathematical formulation can lead to significant
speed increases for a density evaluation; and adequate
reformulation of the model improves the accuracy of ana-
lytical SA contraction methods as will become apparent in
Section 3.3.

Sections 2.1 and 2.2 briefly introduce the Jacchia-77
atmosphere model and a derived non-smooth exponential
atmosphere model.

2.1. Jacchia-77 reference atmosphere model

The Jacchia-77 reference atmosphere (Jacchia, 1977)
estimates the temperature and density profiles of the rele-
vant atmospheric constituents as a function of the exo-
spheric temperature, T1. The density profile, qJ , is based
on the barometric equation and an empirically derived
temperature profile in order to comply with observations
of satellite decay. The static model is valid for altitudes
90 < h < 2500 km and exospheric temperatures
500 < T1 < 2500 K.

The computation of qJ cannot be performed analytically
and requires numerical integration for each of the 4 con-
stituents, nitrogen, oxygen, argon and helium, plus integra-
tion of atomic nitrogen and oxygen. A fast, closed-form
approximation is available (De Lafontaine and Hughes,
1983), but it was not considered here, as its modelled atmo-
sphere does not purely decay exponentially.

The scale height, H, is defined as

H ¼ � q
dq=dh

ð1Þ

and numerically approximated for the Jacchia model scale
height, HJ , as

HJ hð Þ ¼ � q hð ÞDh
q hþ Dhð Þ � q hð Þ Dh ¼ 1m ð2Þ

Several thermospheric variations can be taken into
account, such as solar cycle, solar activity, seasonal or daily
variations. Generally, the objects of interest for SA propa-
gation dwell on-orbit for several months to hundreds of
years. Thus, only the variation with the 11-year solar cycle
is of interest here. The Jacchia reference uses the solar
radio flux at 10:7 cm, F, as an index for the solar activity
(see Fig. 1, source for data: Goddard Space Flight
Center, 2018). From F ; T1 can be inferred as (Jacchia,
1977)



Fig. 1. Daily 10.7 cm solar flux, and a Gaussian mean with r ¼ 81 days and a window of w ¼ 486 days, since beginning of 1970. The dashed lines
correspond to T1 ¼ 750; 1000 and 1250 K, respectively, assuming F ¼ F .
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T1 ¼ 5:48F
4
5 þ 101:8F

2
5 ð3Þ

where F is a smoothed F, commonly centred over an inter-
val of several solar rotations. Jacchia recommended to use
a smooth Gaussian mean based on weights which decay
exponentially with time. Fig. 1 shows the solar flux, F,
and the Gaussian mean with a standard deviation of
r ¼ 3 solar rotations, i.e. 81 days, considering a window
of �3r. More recent models such as NRLMSISE or

DTM require F to be a moving mean of 3 solar rotations
(ISO, 2013).
2.2. Non-smooth exponential atmosphere model

One very simple representation of the atmosphere den-
sity is using a piece-wise exponentially decaying model,
by dividing the altitude range into bins. Each bin is defined
by a lower altitude (base) and an upper altitude (base of the
next bin), hi and hiþ1, respectively, the base density, q̂i, at hi
and a scale height, Hi, chosen such that the density is con-
tinuous over the limits of each bin. Then, within each alti-
tude bin, the density, qNS , can be evaluated at each altitude
h as follows

qNS hð Þ ¼ q̂i exp
h� hi
H i

hi < h < hiþ1 ð4Þ

Such a model can be derived from any atmospheric model.
Herein, the values given in Vallado (2013, Chapter 8.6) –
fitting the CIRA-72 model at T1 ¼ 1000 K – are used
for a comparison of models.

A problem with the non-smooth atmosphere model is
that it is non-physical, with discontinuities in H. At each
change of altitude bin, H jumps from Hi to Hiþ1. This
non-smooth behaviour poses a problem to the (variable-
step size) integrator, as the step size needs to be reduced
to accurately describe the sudden change in contraction
rate of the orbit. Thus, the number of function evaluations
and the total time to propagate the orbit increases. An
example is given in Fig. 2b, comparing the number of steps
required for propagation of an object subject to the non-
smooth qNS to one using the smooth qJ as a function of alti-
tude. Evidently, each change of bin forces the integrator to
reduce the step size.

The equally simple parametric model introduced in Sec-
tion 4.1 does not suffer from these discontinuities.

3. Background on semi-analytical orbit contraction methods

During SA propagation of an object trajectory subject
to air-drag forces, the integrated change in the orbital ele-
ment space, i.e. the contraction of the orbit, over a full rev-
olution is of interest. This requires the integration of the
(weighted) density along the orbit, which can either be
done numerically using quadrature, or analytically.

Many quadrature rules exist (e.g. see Abramowitz et al.,
1972, p. 885–895) and they are independent of the underly-
ing function, making them versatile. However, they require
the evaluation of the density at multiple nodes along the
orbit, increasing the computational load of the function
evaluations during integration.

Analytical formulations, such as the one derived by D.
King-Hele more than half a century ago (King-Hele,
1964) require the density to be evaluated only once per iter-
ation in correspondence of the perigee altitude. Other
examples of analytical formulations are the ones derived
by Vinh et al. (1979), Sharma (1999) and Xavier James
Raj and Sharma (2006). While offering improvements to
the classical formulation of KH, such as being mathemat-
ically more rigorous and non-singular, they still suffer from
the same assumption of a fixed scale height. The method
proposed in Section 4 addresses this problem for any of
the analytical formulations. For the sake of brevity, it is
only applied to the KH method.

Section 3.1 introduces the system dynamics used
throughout this work and discusses its averaging. Sections
3.2 and 3.3 introduce two averaging methods; the numeri-
cal Gauss-Legendre (GL) quadrature and the analytical
KH method.

3.1. Dynamical system and averaging

The main focus of this work is on correcting the errors
arising from the fixed scale height assumption. Important



Fig. 2. Trajectories propagated for two different atmosphere models, qNS (orange) and qJ (blue), and two different contraction methods, KH (light) and
GL (dark). The initial state is hp � ha ¼ 750� 2000 km. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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effects of an oblate Earth, such as a non-spherical atmo-
sphere or gravitational coupling (e.g. see Brower and
Hori, 1961), are not considered here. The superimposed
approach does not replace the averaging method, rather
it transforms one of the inputs, i.e. the atmosphere density,
to fit its assumptions. Hence, it is also applicable to more
elaborate theories.

The dynamical system used here is based on Lagrange’s
planetary equations, given in Keplerian elements, stating
the changes in the elements as a function of the applied
forces from any small perturbations (see King-Hele, 1964,
for more information). Only the tangential force induced
by the aerodynamic drag is considered, i.e.

f T ¼ � 1

2
qv2d ð5Þ
with the density, q, the inertial velocity, v, and the effective
area-to-mass ratio (i.e. the inverse of the ballistic coeffi-
cient), d, defined as d ¼ cDA=m, where cD is the drag coef-
ficient, A is the surface normal to v, and m is the mass.
Atmospheric rotation is ignored here, but could be taken
into account by multiplying the right hand side of Eq. (5)
with the appropriate factor.

The variations of the semi-major axis, a, the eccentric-
ity, e, and the eccentric anomaly, E, with respect to time,
t, are

da
dt

¼ � a2qdv3

l
ð6aÞ

de
dt

¼ aqdv
r

1� e2
� �

cosE ð6bÞ

dE
dt

¼ 1

r
l
a

� �1
2 ð6cÞ
with Earth’s gravitational parameter, l, the radius, r, and v

given as

r ¼ a 1� e cosEð Þ ð7aÞ

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
l
r
� l

a

r
ð7bÞ

In order to reduce the stiffness of the problem, Eq. (6) is
averaged over a full orbit revolution, under the assumption
that a and e remain constant. The resulting contractions,
Da and De, for a and e respectively are

Da ¼ �a2d
Z 2p

0

q hð Þ 1þ e cosEð Þ32
1� e cosEð Þ12

dE ð8aÞ

De ¼ �ad
Z 2p

0

q hð Þ 1þ e cosE
1� e cosE

� �1
2

cosE 1� e2
� �

dE ð8bÞ

with the altitude, h ¼ r � R, given the mean Earth radius,
R.

For SA propagation of the orbit, the derivatives of the
variables with respect to time are approximated by the
change over one revolution divided by the time required
to cover the revolution

F x ¼ dx
dt

� Dx
P

x 2 a; e½ � ð9Þ

with the orbit period, P, defined as

P ¼ 2p

ffiffiffiffiffi
a3

l

s
ð10Þ
3.2. Numerical approximation

The integrals in Eq. (8) can be approximated numeri-
cally using quadrature, e.g. GL quadrature (Abramowitz
et al., 1972, p. 887)



Table 1
Non-exhaustive list of existing and newly proposed atmospheric models
and contraction methods.
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Z 2p

0

f Eð ÞdE � p
X
i

wif Eið Þ; Ei ¼ xi þ 1ð Þp ð11Þ

where the node xi is the ith root of the Legendre Polynomial
Pn xð Þ. The weights wi are given as

wi ¼ 2

1� x2ið Þ P 0
n xið Þ	 
2 ð12Þ

and P 0
n is the derivative of Pn xð Þ with respect to x. The

nodes and weights remain constant during the propaga-
tion, so they are calculated (or read from a table) only once
upon initialisation. Routines to calculate (xi;wi) are avail-
able for various scientific programming tools, such as
MATLAB (MathWorks, 2018) and NUMPY (Oliphant, 2006).

Advantages of a numerical approximation of the inte-
grals in Eq. (8) is that it can be found for any atmospheric
model and that no series expansions are required. Disadvan-
tages are the need of multiple density evaluations and the
loss of an analytic formulation. E.g. the Jacobian cannot
be inferred analytically, but requires another quadrature.

3.3. Classical King-Hele approximation

Here, only a brief summary of the formulation is given.
The treatment of the full theory behind the KH formula-
tion can be found in King-Hele (1964). The integrals in
Eq. (8) can be approximated analytically by expanding
the integrands as a power series in e for low eccentric
orbits, and in the inverted auxiliary variable, z

1

z
¼ H

ae
ð13Þ

for highly eccentric orbits, and cutting off at the appropri-
ate degree.

With the assumption that the density, q, decreases
strictly exponentially with altitude, i.e. with a fixed H, each
expanded integrand can be represented by the modified
Bessel function of the first kind, In, which for n 2 N0 is
given as (Abramowitz et al., 1972, p. 376)

In xð Þ ¼ 1

p

Z p

0

exp x cos hð Þ cos nhð Þdh ð14Þ

In Appendix B, the resulting equations are given up
to 5th order, higher than the 2nd order given originally
by KH.

The KH formulation is fast as it can be evaluated ana-
lytically and requires only a single density evaluation for
each computation of the contraction. The main problem
with the fixed H assumption is the underestimation of q
at altitudes above the perigee altitude, hp, which for eccen-
tric orbits can induce large errors. Fig. 2a shows the trajec-
tories of an object in an initially eccentric orbit with perigee
and apogee height of hp � ha ¼ 750� 2000 km. They were
propagated with two different atmosphere models, qNS and
qJ , and using two different contraction methods, GL
quadrature and the KH formulation. For both atmosphere
models, the KH method overestimates the density decay
above perigee along the orbit, leading to an overestimation
of the lifetime of up to 40%, compared to the propagation
with the GL method. This is true – albeit sometimes less
pronounced – for any object in a non-circular orbit subject
to a non-strictly exponentially decaying atmosphere.

It has to be noted here that KH was aware of this prob-
lem and suggested a way to calculate the contraction of an
orbit with a varying scale height (see King-Hele, 1964,
Chapter 6). To keep the equations analytically integrable,
he approximates the varying H linearly, with a constant
slope parameter. Linear approximation of the true H is
valid only locally. For low eccentric orbit configurations
this might be sufficient, but high eccentricities will re-
introduce the errors. Using a constant slope parameter will
thus lead to a new over- or underestimation of the drag
depending on e.

Another issue of the KH formulation is that it relies on
series expansion. As the eccentricity grows, the formulation
to calculate the contraction needs to switch from low to
high eccentric orbits. This introduces discontinuities, at a
classically fixed boundary eccentricity, eb.
4. Proposed new model for the semi-analytical computation

of the orbit contraction due to atmospheric drag

The proposed method of taking into account atmo-
spheric drag for SA integration of trajectories consists of
two parts: an atmosphere model based on constant scale
heights, introduced in Section 4.1; and the extension of
the KH formulation to reduce the errors induced by an
atmosphere which in its sum does not decay exponentially,
described in Section 4.2.

Table 1 shows an overview of how the proposed exten-
sion fits into the existing scheme of atmosphere models and
SA orbit contraction methods. As mentioned earlier, the
technique presented here is not limited to the KH method,
but could be applied to any averaging method which is
based on the fixed scale height assumption.
4.1. Smooth exponential atmosphere model

The smooth atmosphere model proposed here does not
in any way attempt to replace existing atmosphere density
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models. Instead, it is a derivation of those models. Nor is
the idea of modelling the atmosphere as a sum of exponen-
tials new: the Jacchia-77 reference model reduces – for each
atmospheric constituent – to such a mathematical formula-
tion if the vertical flux terms are neglected (Bass, 1980).
The novelty of this work is the combination of the atmo-
sphere model with the extended, superimposed KH formu-
lation. Sections 4.1.1 and 4.1.2 introduce the static and
variable atmosphere model, respectively.
Fig. 3. Cost function depending on number of partial atmospheres.
4.1.1. Static model

The smooth exponential atmosphere model, qS , is mod-
elled by superimposing exponentials functions as

qS hð Þ ¼
Xnp
p¼1

qp hð Þ ¼
Xnp
p¼1

q̂pe�h=Hp ð15Þ

where the number of partial atmospheres, np, the partial
base densities, q̂p, and the partial scale heights, Hp, are fit-
ting parameters. Note that the subscript p does not stand
for altitude bins, but for one of the partial atmospheres,
each of which is valid for the whole altitude range. While
it potentially could stand for a single atmosphere con-
stituent, it is not restricted as such. The superimposed scale
height, HS, is

HS hð Þ ¼ � qS hð Þ
dqS=dh

¼
Pnp

p¼1qp hð ÞPnp
p¼1qp hð Þ=Hp

ð16Þ

The derivative of HS with respect to h is monotonically
increasing, as Hp is enforced to be larger than 0 for all p.
Hence, the smooth atmosphere model can only be fitted
to atmosphere models in altitude ranges where dH

dh > 0.

Above h ¼ 100 km, this is the case for qJ for a wide range
of T1. Even if the underlying model shows slightly negative
Table 2
Relative density fitting errors 8h 2 100; 2500½ � km.

gq T1 ¼ 750 K

< 0:1% 8h > 239 km
< 0:5% 8h > 134 km
< 1% 8h > 119 km
gq;max 1:6% (h ¼ 115 km)

Table 3
Smooth atmosphere model parameters resulting from a fit to the Jacchia-77 m

T1 ¼ 750 K

p Hp q̂p Hp

[km] [kg/m3] [km]

1 4:9948 2:4955eþ 02 4:9363
2 10:471 8:4647e� 04 11:046
3 21:613 9:1882e� 07 24:850
4 37:805 1:2530e� 08 46:462
5 49:967 1:3746e� 09 64:435
6 174:23 1:5930e� 13 147:46
7 315:15 1:1290e� 14 314:53
8 1318:1 3:8065e� 16 1214:6
H at the lower boundary h0, a partial atmosphere with a
small positive Hp can still be fitted accurately.

To find the parameters, Hp and q̂p, the model in Eq. (15)
is fitted to qJ for three different T1: in accordance to a low
solar activity, T1 ¼ 750 K; mean solar activity, T1 ¼ 1000
K; and high solar activity, T1 ¼ 1250 K (see Fig. 1). The fit
is performed in the logarithmic space as not to neglect
lower densities at higher altitudes, using least squares min-
imisation at heights between h0 ¼ 100 km and the upper
boundary, h1 ¼ 2500 km. To put more weights on the edges
of the fit interval, the densities are evaluated at N ¼ 100
heights, hi, distributed as Chebyshev nodes (Abramowitz
et al., 1972, p. 889)

hi ¼ h0 þ h1
2

þ h1 � h0
2

cos
2i� 1

2N
p

� �
i ¼ 1; . . . ;N ð17Þ

The number of partial atmospheres, np, is chosen to be 8, as
the cost function
T1 ¼ 1000 K T1 ¼ 1250 K

8h > 308 km 8h > 306 km
8h > 153 km 8h > 154 km
8h > 119 km 8h > 130 km

1:8% (h ¼ 115 km) 1:9% (h ¼ 115 km)

odel, valid for altitudes h 2 100; 2500½ � km.

T1 ¼ 1000 K T1 ¼ 1250 K

q̂p Hp q̂p
[kg/m3] [km] [kg/m3]

3:1632eþ 02 4:9027 3:6396eþ 02
5:2697e� 04 11:437 3:8184e� 04
3:7354e� 07 25:567 2:8928e� 07
1:0839e� 08 44:916 1:2459e� 08
1:0880e� 09 76:080 9:2530e� 10
3:8122e� 13 111:09 1:6667e� 11
4:8431e� 14 354:23 5:9225e� 14
4:2334e� 16 892:19 1:7378e� 15
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C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ln

qS hið Þ
qJ hið Þ

� �2
s

ð18Þ

which is the root mean square of the logarithmic density fit
residuals, stops improving (see Fig. 3). For
T1 2 750; 1000; 1250½ � K, the relative error, gq, calculated
as

gq hð Þ ¼ jqS hð Þ � qJ hð Þj
qJ hð Þ ð19Þ

always remains below 0:1% and 1% for all h > 308 km and
h > 130 km, respectively, and the maximum relative error,
gq;max, does not exceed 2%, as can be seen in Table 2.

Hence, the density fit accurately represents the underlying
model. The model parameters can be found in Table 3.
Fig. 4 shows a comparison between the underlying and fit-
ted model, for T1 ¼ 1000 K.

A speed test for 2401 density and scale height evalua-
tions over the range 100 6h 6 2500 km shows a near 60-
fold decrease in evaluation time for qS compared to qJ .
The implementation of the Jacchia-77 model used herein
is written in the coding language C (taken from Instituto
Nacional De Pesquisas Espaciais, 2018), and called from
within MATLAB, while the routine to calculate qS is imple-
mented and called directly in MATLAB. Thus, a further
decrease of computational time could be expected if also
the latter was implemented in C. The speed tests were per-
formed using the same processor architecture.
Fig. 4. Fit of qS to qJ for T1 ¼ 1000 K. Additionally, the different
contributions of each partial atmosphere are shown (dotted) from p ¼ 1
(dark) to p ¼ 8 (light).
4.1.2. Variable model

Possible extensions to the smooth exponential atmo-
sphere model are the inclusion of a temporal dependence,
such as the solar cycle, annual or daily variations. Here,
the model is extended to incorporate the variability in the
atmosphere density due to a variable T1. To conserve
the mathematical formulation of the static model, the tem-
perature dependence is introduced in the fitting parameters,
q̂p ¼ q̂p T1ð Þ and Hp ¼ Hp T1ð Þ.

T1 is a function of the solar proxy F (see Eq. (3)), so the
fitting range is defined by F. Generally, the long-term pre-
dictions for F – based on various numbers of previous solar
cycles – remain between F 2 60; 230½ � sfu (Vallado and
Finkleman, 2014; Dolado-Perez et al., 2015; Radtke and

Stoll, 2016). This translates into T1 2 669; 1321½ � K, as F
per definition remains in the same range as F. The param-
eters for the variable smooth exponential atmosphere
model derived below, and listed in Appendix D, are valid
for any T1 2 T 0 ¼ 650; T 1 ¼ 1350½ � K. They should not
be used for T1 outside this range, as polynomial fits tend
to oscillate strongly outside the fitting interval.

The dependence on T1 is incorporated using a polyno-
mial least squares fit. Each partial atmosphere is fitted sep-
arately. The static parameters, fitted to the i ¼ 1; 2; . . . ;M
static atmospheres with different T1, are converted
aip ¼ �1=Hi
p ð20aÞ

bip ¼ ln q̂i
p

� �
ð20bÞ

and each time-variable partial atmosphere is fitted to two
independent polynomials of order l and m respectively

ap eT 1
� �

¼
Xl

k¼0

apk eT k
1 ð21aÞ

bp eT 1
� �

¼
Xm
k¼0

bpk eT k
1 ð21bÞ
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using a normalised and unit-less eT 1, defined as

eT 1 ¼ T1 � T 0

T 1 � T 0

ð22Þ

In vector notation, Eq. (21) can be written as

a ¼
a1

..

.

anp

2664
3775 ¼

a10 . . . a1l

..

. . .
.

anp0 . . . anpl

2664
3775

eT 0
1

..

.

eT l
1

2664
3775 ð23aÞ

b ¼
b1

..

.

bnp

2664
3775 ¼

b10 . . . b1m

..

. . .
.

bnp0 . . . bnpm

2664
3775

eT 0
1

..

.

eT m
1

2664
3775 ð23bÞ

To prevent over-fitting, the order of the polynomials
should remain well below the number of fitted static atmo-
spheres. Here, the model in Eq. (21) is fitted toM ¼ 50 stat-
ically fitted models, distributed again as Chebyshev nodes
between T 0 and T 1

T i ¼ T 0 þ T 1

2
þ T 1 � T 0

2
cos

2i� 1

2N
p

� �
i ¼ 1; . . . ;N

ð24Þ

The orders are chosen to be l ¼ m ¼ 8 such that the error
remains below 0:5% for all h > 155 km and
T1 2 650; 1350½ � K. If more accuracy is needed, the poly-
nomial order can be increased and/or spline polynomial
interpolation applied. Finally, the time-dependent atmo-
sphere is recovered by inverting Eq. (20)

Hp T1ð Þ ¼ �1=ap eT 1
� �

ð25aÞ

q̂p T1ð Þ ¼ exp bp eT 1
� �� �

ð25bÞ
Fig. 5. Quality of temperature dependent fit. Left: comparison for different T1.
show the parameters of the static fits, which were used to fit the variable mod
Fig. 5 compares the accuracy of the T1-variable smooth
exponential atmosphere model against the original Jacchia-
77 model. It shows the ratio between qS T1ð Þ=qJ T1ð Þ for
T1 in the range from 650 K to 1350 K (left), and the cor-
responding parameters, q̂p and Hp as a function of T1,
including the underlying parameters of the static fits
(right). Towards the lower edge of the temperature range
(i.e. T1 ! 650 K), the polynomial fits for components
p ¼ 5� 7 do not well represent the underlying data. This
leads to increased but still tolerable errors in the altitude
range between 500 and 1500 km.

The advantage of this approach is, that the original
structure of the model is maintained, so it can be used with
the contraction model introduced in the next section.
4.2. Superimposed King-Hele approximation

The extension of the KH contraction formulation into
the SuperImposed King-Hele (SI-KH) formulation with a
superimposed atmosphere is straightforward. Replacing q
from Eq. (8) with the one defined in Eq. (15) leads to

Da ¼
Xnp
p¼1

Dap ¼ �a2d
Xnp
p¼1

Z 2p

0

qp
1þ e cosEð Þ32
1� e cosEð Þ12

dE ð26aÞ

De¼
Xnp
p¼1

Dep ¼�ad
Xnp
p¼1

Z 2p

0

qp
1þ ecosE
1� ecosE

� �1
2

cosE 1� e2
� �

dE

ð26bÞ

i.e. each partial contraction reduces to the classical KH for-
mulation with the partial exponential atmosphere qp. The

important difference is that now Hp is constant over the
whole altitude range. The classical KH approximations –
extended up to 5th order – can be found in Appendix B
(dropping the subscript p). Finally, the rate of change is
Right: evolution of Hp (top) and q̂p (bottom) as a function of T1. The dots
el.
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F x ¼ dx
dt

¼
Xnp
p¼1

F xð Þp �
1

P

Xnp
p¼1

Dxp x 2 a; e½ � ð27Þ

KH introduced the simple fixed boundary condition
eb ¼ 0:2 to select between the approximation method for
low eccentric and high eccentric orbits, given in Appen-
dices B.2 and B.3, respectively. However, as Hp can be
large, this condition is not always sufficient. Recall from
Eq. (13) that

z ¼ ae
H

ð28Þ

For low a and high H ; z can approach unity at e ¼ 0:2,
making the series expansion in 1=z inaccurate. Instead, it
is proposed to define eb based on the truncation errors
found in the formulations for the low and high eccentric
orbits. The series truncation errors for the low eccentric
orbit approximation (Eq. (B.4)), using the order notation,
O, are of the order of

Olow
a e6

� � ¼ a2q exp �zð ÞI0e6 ð29aÞ
Olow

e e6
� � ¼ aq exp �zð ÞI1e6 ð29bÞ

If z is large (see justification below), I0=1 zð Þ ! exp zð Þ= ffiffiffiffiffiffiffi
2pz

p
and Eq. (29) becomes

Olow
a e6

� � ¼ a2q
e6ffiffi
z

p ð30aÞ

Olow
e e6

� � ¼ aq
e6ffiffi
z

p ð30bÞ

For the high eccentric orbit approximation (Eq. (B.6)), the
truncation errors are in the order of

Ohigh
a

1

z6

� �
¼ a2q

1ffiffi
z

p 1þ eð Þ32
1� eð Þ12

1

z6 1� e2ð Þ6 ð31aÞ

Ohigh
e

1

z6

� �
¼ aq

1ffiffi
z

p 1þ e
1� e

� �1
2 1

z6 1� e2ð Þ5 ð31bÞ

Assuming that the terms 1þeð Þ32
1�eð Þ12

1

1�e2ð Þ6 and 1þe
1�e

� �1
2 1

1�e2ð Þ5 are

dominated by 1=z6 (see again below for a justification),
Eq. (31) simplifies to

Ohigh
a

1

z6

� �
¼ a2q

1ffiffi
z

p 1

z6
ð32aÞ

Ohigh
e

1

z6

� �
¼ aq

1ffiffi
z

p 1

z6
ð32bÞ

Equating the truncation errors from Eqs. (30) and (32),
using Eq. (13) and solving for e results in the following
condition

eb ¼
ffiffiffiffi
H
a

r
ð33Þ

Note that this boundary is most exact if the series expan-
sions in both the low and high eccentric regimes are of
the same order.
The derivation of the boundary condition required the
assumptions of z to be large, such that

I0=1 zð Þ ! exp zð Þ= ffiffiffiffiffiffiffi
2pz

p
and such that 1=z6 dominates the

other e terms in Eq. (31). To validate the assumptions,

replace a in Eq. (33) with a ¼ hp þ RE

� �
= 1� ebð Þ and solve

for eb, neglecting the negative solution

eb ¼ 1

2
�y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4y

ph i
where y ¼ H

hp þ RE
ð34Þ

Given Hmin=max ¼ 4:9=1320 km (see Table 3) and the valid
range for hp 2 h 2 100; 2500½ � km, the extrema in eb and
zb ¼ 1=eb, are found to be

eb;min=max ¼ 0:023=0:361

zb;min=max ¼ 2:77=43

For any z > zb;min; I0=1 remains close to exp zð Þ= ffiffiffiffiffiffiffi
2pz

p
, being

off only þ6% and �16%, respectively, at zb;min. At the same

time, 1=z6 dominates the terms dependent on e in Eq. (31)
by two to three orders of magnitude 8e < eb;max. Thus, the
assumptions made to derive eb are valid.

An advantage of an analytical expression of the dynam-
ics is that the Jacobian of the dynamics can be derived ana-
lytically too, which can be used for uncertainty
propagation. For a comprehensive discussion of the SI-
KH method, the partial derivatives of the dynamics as
derived by KH, with respect to a and e, are given in Appen-
dix C (again dropping the subscript p). As the SI-KH
method is simply a summation of the individual contribu-
tions of the partial atmosphere, the derivatives can equally
be summed up as

@F x

@y
¼

Xnp
p¼1

@F x

@y

� �
p

x; yð Þ 2 a; e½ � ð35Þ
5. Validation

The validation section is split into two parts: Section 5.1
validates the smooth exponential atmosphere, qS, by com-
paring it to the Jacchia-77 model, qJ , during SA propaga-
tion using the GL contraction method; Section 5.2
validates the proposed SI-KH approach by comparing
the contraction approximation along a single orbit, i.e.
Da and De, to numerical quadrature. For completeness,
propagations of a grid of initial conditions are performed
using the GL and SI-KH methods and NA integration.
The latter does not resort to any averaging technique, inte-
grating the full dynamics of Eq. (6), including E.

5.1. Validation of the smooth exponential atmosphere model

To validate qS against qJ for T1 ¼ 750; 1000 and
1250 K and at the same time distinguish it from the effects
introduced by the SI-KH method on the resulting lifetime,
tL, the following orbits are propagated using the GL
method only for the computation of the orbit contraction.
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All physically feasible initial orbit configurations on a
46� 46 grid from 250 6 hp 6 2500 km and
250 6 ha < 2500 km are propagated, using d ¼ 1 m2/kg.
The lower limit, 250 km, is selected as an object with such
a large d on a circular orbit at this altitude survives for a
fraction of a day only at which point SA propagation
becomes inaccurate. The upper limit, 2500 km, is being
imposed by definition of qJ , but can be overcome by fitting
to another model. The chosen d is large, but does not limit
the validity of this validation, as inaccuracies from the SA
Fig. 6. Lifetimes and comparison of accuracy for lifetim
approach affect the propagation equally for both atmo-
sphere models.

The SA propagation is performed using MATLAB’s

ODE113 – a variable-step, variable-order Adams-Bashforth-
Moulton integrator (Shampine and Reichelt, 1997) – and

a relative error tolerance, crel ¼ 10�6, which is shown to
be sufficient for different orbital scenarios in Section 5.2.
Fig. 6 shows tL for the initial orbit grid, for propagation
subject to qS, and the relative error, gtL , defined as
e estimation for objects being subject to qJ and qS .
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gtL ¼
tL qSð Þ � tL qJð Þ

tL qJð Þ ð36Þ

comparing the propagations for each grid point using qS

and qJ , respectively. Table 4 contains information about
the maximum error and the workload. Over the whole
specified domain and for all T1 2 750; 1000; 1250½ � K, gtL
remains within �0:1%; 0:1%½ �, which considering the uncer-
tainties in atmospheric density modelling is more than
accurate enough (Sagnieres and Sharf, 2017). Towards
low perigees (hp < 500 km), the fitted qS starts to wobble
Table 4
Comparison of 1081 propagations being subject to qJ or qS , in total
number of function evaluations, Ntot

f , total integration evaluation time,
ttotCPU , and the minimum and maximum lifetime estimation error, gtL ;min=max.

T1 [K] q Ntot
f [–] ttotCPU [s] gtL ;min=max [%]

750 qJ 593,255 1086:9
qS 592,124 169:5 �0:060=0:051

1000 qJ 568,140 986:3
qS 568,140 153:6 �0:077=0:056

1250 qJ 550,021 789:9
qS 549,063 149:3 �0:074=0:048

Fig. 7. Comparison for accuracy in Da (left) and De (right) for different approx
Note that the colour bar range of the lower figure is 3 orders of magnitudes s
around the underlying model (see Fig. 4a), which is also
apparent for the propagated orbits. A 6-fold speed
improvement can be observed, as no numerical integration
is required when calculating the density with qS.

The reduction in function evaluations and computa-
tional time observable with an increasing T1 is a conse-
quence of the different density profiles. Increasing T1
leads to an increased q, which increases the drag force
and thus decreases the lifetime. However, the variable-
step size integration method can compensate this by
increasing the step size. Two possible explanations are: as
the integrator is initialised with the same properties for
all three cases, the initially set (small) step size favours
shorter lifetimes; and the shape of the density profiles with
high T1 are more smooth, decreasing the number of failed
function evaluation attempts.
5.2. Validation of the superimposed King-Hele method

The SA propagation relies on an accurate approxima-
tion of Da and De. Fig. 7 shows – for different orbital
imation methods. The underlying atmosphere model is qS at T1 ¼ 1000 K.
maller than the one of the upper figure.
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configurations – the relative integral approximation error,
gDx, defined as

gDx ¼
Dx C2ð Þ � Dx C1ð Þ

Dx C1ð Þ x 2 a; e½ � ð37Þ
where C is the selected contraction method: C1 is the
numerical GL method computed using 65 nodes; and C2

describes the analytical formulation, KH or SI-KH, using
series expansion up to 5th order.

Fig. 7a reveals why orbits are predicted to re-enter much
later using the classical KH contraction method: the den-
sity is underestimated at altitudes above hp. The largest
errors occur around hp ¼ 125 km and 800 km, where the
rate of change in H with respect to h is large. Around these
two altitudes, the contraction rate in a is underestimated by
more than 10% and 20%, respectively, if e > 0:03. Using
the SI-KH the relative error remains well below 0:1%
8hp 2 100; 2500½ � km and 8ha 2 100; 100; 000½ � km (see
Fig. 7b), a range that includes the vast majority of all Earth
orbiting objects. Discontinuities can be found whenever e

passes through eb ¼ eb Hp

� �
. The biggest step occurs for

the largest Hp. Those discontinuities slightly increase the
number of steps required during the integration. However,
given the averaged dynamics, crel can be chosen large
enough during integration mitigating the effects of the
discontinuities.

To see how the SI-KH compares against GL in SA
propagation and against NA propagation in terms of accu-
racy and computational power, the results from different
initial orbit conditions are compared, for two scenarios:

(a) Short-term re-entry duration: tL ¼ 30 days
(b) Mid-term re-entry duration: tL ¼ 360 days

The reasons why long-term re-entry cases are not dis-
cussed here are twofold: First, for long time spans, the
NA integration requires small relative tolerances. If they
are not met, the result cannot be trusted; Secondly, the
Fig. 8. The minimum effective area-to-mass ratio is dmin ¼ 1:5� 10�4 in order
The maximum, in order to re-enter in 30 days from hp=ha ¼ 250=100; 000 km,
longer the time spans, i.e. the smaller d, the more accurate
the assumptions made for the SA propagation.

The initial conditions are spaced in hp 2 250; 2500½ � km
and ha 2 250; 100; 000½ � km and consist of all the 1558 fea-
sible solutions on a 46� 46 grid, where the grid spacing in
ha is chosen to be logarithmic, as opposed to the equidis-
tant grid in hp. Two preliminary runs were performed using
the SI-KH method to calculate the lifetimes. This way, the
d required to re-enter within the given time-span can be
estimated. Fig. 8 shows the grids of the resulting d for both
scenarios. Note that d varies by almost 13 orders of
magnitude.

The accuracy is described again as the relative lifetime,
gtL , this time defined as

gijtL M1;M2; hp;i; ha;j
� � ¼ tL M1; hp;i; ha;j

� �� tL M2; hp;i; ha;j
� �

tL M2; hp;i; ha;j
� �

ð38Þ

where M is the selected contraction and integration
method, combined with a given relative integrator toler-
ance, crel, during integration. To give a feeling for the accu-
racy across all the different initial conditions, the 50%- and
100%-quantiles, i.e. the median and maximum denoted as

gtL ;50% and gtL;100%, respectively, over all the jgijtL j are given.

The computation effort is compared via the total number
of function calls, Ntot

f , and time required for the integration

itself, ttotCPU

�Nf M1;M2ð Þ ¼ Ntot
f M1ð Þ

Ntot
f M2ð Þ ð39aÞ

�tCPU M1;M2ð Þ ¼ ttotCPU M1ð Þ
ttotCPU M2ð Þ ð39bÞ

Table 5 contains these figures comparing the different
integration methods against each other. For both SI-KH
and GL, the absolute maximum error over the whole grid
and over both scenarios remains below 0:01%, when

decreasing crel from 10�6 to 10�12. Given this force model,
to remain in orbit for 360 days from a circular orbit at hp ¼ ha ¼ 250 km.
is dmax ¼ 3:0� 106.



Fig. 9. Relative error gtL when comparing SA propagation using SI-KH with crel ¼ 10�6 against NA integration with crel ¼ 10�12.

Table 5
Performance of the different propagation and contraction methods, for (a) tL ¼ 30 days and (b) tL ¼ 360 days and various relative integration tolerances,
crel. All figures are unit less.

M1 M2 gtL ;50% gtL ;100% �Nf �tCPU

(a) SI-KH/10�6 SI-KH/10�12 3:2e� 6 8:4e� 5 3:0e� 1 2:9e� 1
GL/10�6 GL/10�12 3:3e� 6 7:0e� 5 3:7e� 1 3:7e� 1
NA/10�6 NA/10�12 1:3e� 3 2:5e� 2 3:4e� 1 3:4e� 1
NA/10�9 NA/10�12 1:6e� 6 3:1e� 5 6:0e� 1 6:2e� 1
SI-KH/10�6 NA/10�12 8:7e� 4 1:8e� 3 1:1e� 2 2:2e� 2
GL/10�6 NA/10�12 8:7e� 4 1:7e� 3 1:0e� 2 3:6e� 2

(b) SI-KH/10�6 SI-KH/10�12 3:2e� 6 6:9e� 5 3:1e� 1 3:2e� 1
GL/10�6 GL/10�12 3:7e� 6 6:9e� 5 3:9e� 1 4:0e� 1
NA/10�6 NA/10�12 1:6e� 2 2:6e� 1 3:4e� 1 3:7e� 1
NA/10�9 NA/10�12 1:9e� 5 4:1e� 4 6:1e� 1 6:4e� 1
SI-KH/10�6 NA/10�12 7:0e� 5 3:2e� 4 5:8e� 4 1:1e� 3
GL/10�6 NA/10�12 7:2e� 5 4:9e� 4 5:8e� 4 2:1e� 3
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it is therefore sufficient to use crel ¼ 10�6. For NA integra-
tion, this is not the case. While the maximum error remains
modest (0:18%) in the short-term case, it becomes large
when the re-entry span is increased to one year (26%),

when decreasing crel. Decreasing crel ¼ 10�9 and comparing

to integration with crel ¼ 10�12, reduces the maximum error
for the NA propagation in the mid-term case to 0:032%.

For the comparison of the SA techniques against NA
propagation, the tolerance of the latter is set to

crel ¼ 10�12. Again, SI-KH and GL fare very similar. For
the short-term case, the boundaries of the SA propagation
can be recognised for very high d, leading to still small
maximum errors of 0:18% and 0:17%, respectively.
Fig. 9a shows the resulting lifetime comparison for SI-

KH and tL ¼ 30 days. As d increases to values above 104

m2/kg, the assumption of constant a and e over one orbit
starts to break down and small errors are introduced. This
might be an issue for small debris such as multi-layer insu-
lation fragments and paint flakes. For the mid-term scenar-
io, the maximum error reduces by one order of magnitude
for both SA methods tested. For high ha > 10; 000 km, the
series expansion applied in the SI-KH method introduces
small errors (see Fig. 9b).
6. Conclusion

The classical KH orbit contraction method allows to
analytically calculate the effects of drag on the orbit evolu-
tion averaged over an orbital period. However, it inaccu-
rately estimates the orbital decay for eccentric orbits
subject to a non-exponentially decaying atmosphere model.
To improve the accuracy, a smooth exponential atmo-
sphere model was proposed to be used in tandem with
the new SI-KH orbit contraction method.

The classical KH method was extended to the SI-KH
contraction method, making use of a superimposed atmo-
sphere model to satisfy the assumption of a strictly decay-
ing density for each component of the model. This greatly
reduces the errors in the estimated decay rates of objects in
eccentric orbits and subject to atmospheric density profiles
with variable scale height. The analytical method was val-
idated against an averaging technique based on numerical
quadrature. Further, the semi-analytical propagation of
orbits using the SI-KH method was validated against full
numerical integration of the dynamics. The approach is
applicable to any averaging techniques considering drag
and based on the fixed scale height assumption above peri-
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gee. Finally, the Jacobian of the dynamics governed by the
SI-KH method is given to be used for future applications
such as uncertainty propagation.
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Appendix A. Nomenclature

E Eccentric anomaly [rad or deg]
F 10.7 cm solar flux [sfu]
F Smoothed 10.7 cm solar flux [sfu]
H Atmosphere density scale height [m or km]
In Modified Bessel function of the first kind of order

n [–]
P Orbit period [s]
R Mean Earth radius [m or km]
T Temperature [K]
T1 Exospheric temperature [K]
Da Contraction over a full orbit period in a [m or km]
De Contraction over a full orbit period in e [–]
a Semi-major axis [m or km]
e Eccentricity [–]
eb Boundary in e for selection of integral approxima-

tion method [–]
h Height above Earth surface [m or km]
ha Apogee altitude [m or km]
hp Perigee altitude [m or km]
np Number of partial atmospheres [–]
r Radial distance from Earth’s center [m or km]
t Time [seconds, days or years]
tL Lifetime [seconds, days or years]
v Intertial velocity [m/s or km/s]
z Auxilary variable for integration of the decay rate

of highly eccentric orbits [–]
d Inverse ballistic coefficient [m2/kg]
gq Relative atmospheric density error [– or %]
gDx Relative integral approximation error [– or %]
gtL Relative lifetime error [– or %]
crel Relative integration tolerance [– or %]
l Earth gravitational parameter [m3/s2 or km3/s2]
q Atmosphere density [kg/m3 or kg/km3]
q̂ Atmosphere base density [kg/m3 or kg/km3]
C Contraction method
M Contraction and integration method with given

crel
O Order of series truncation error

J Index corresponding to the Jacchia-77 atmosphere
model

NS Index corresponding to the non-smooth atmo-
sphere model

S Index corresponding to the smooth atmosphere
model

p Index corresponding to the partial smooth atmo-
sphere model

Appendix B. King-Hele Formulation

All the formulas presented here are explained and
derived in the work of King-Hele (1964). The analytical
formulas describe, for different eccentricities, the change
in the semi-major axis, a, and the eccentricity, e, over one
orbit as an approximation of Eq. (8). Please note that
one of the four cases was dropped, as it was introduced
only due to the Bessel functions becoming inaccurate for
small arguments. Today, the relevant mathematical soft-
ware packages are accurate and fast enough to overcome
this limitation.

Adaptations to the original formulation were made to

� find the change directly in a and e, rather than a and
x ¼ ae, to calculate the change in the variables of
interest;

� find a more appropriate boundary condition, eb, for the
selection of the phase (see Section 4.2);

� increase the accuracy within each phase by taking into
account more terms after the series expansion.

The two functions, ka and ke, are introduced here for
later use when describing the rate of change in all the eccen-
tricity regimes described below, as

ka ¼ d
ffiffiffiffiffiffi
la

p
q hp
� � ðB:1aÞ

ke ¼ ka=a ðB:1bÞ
with the effective area-to-mass ratio, d, the gravitational
parameter, l, the atmospheric density, q, evaluated at the
perigee altitude, hp.

B.1. Circular orbit

For circular orbits, no integration needs to be approxi-
mated, as the integral can be solved analytically as

Da ¼ �2pda2q hp
� � ðB:2aÞ

De ¼ 0 ðB:2bÞ
where hp reduces to the circular altitude. Dividing by the
orbital period, P, according to Eq. (9) and using the func-
tions defined in Eq. (B.1), the rate of change for circular
orbits is

http://www.compass.polimi.it/publications
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F a ¼ da
dt

¼ �ka ðB:3aÞ

F e ¼ de
dt

¼ 0 ðB:3bÞ
B.2. Low eccentric orbit

For small e < eb a;Hð Þ, a series expansion in e is per-
formed and then integrated using the modified Bessel func-
tion of the first kind, In(z), as

eT ¼ 1 e e2 e3 e4 e5
� �

IT ¼ I0 I1 I2 I3 I4 I5 I6ð Þ
Da¼�2pdq hp

� �
exp �zð Þa2 eTK l

aIþO e6ð Þ	 
 ðB:4aÞ
De¼�2pdq hp

� �
exp �zð Þa eTK l

eIþO e6ð Þ	 
 ðB:4bÞ
with the auxiliary variable z ¼ ae=H , the scale height, H, a
single evaluation of the density at the perigee height, hp,
and the order of the series truncation error, O, of e6. The
constant matrices are given as

K l
a ¼

1 0 0 0 0 0 0

0 2 0 0 0 0 0

3
4

0 3
4

0 0 0 0

0 3
4

0 1
4

0 0 0

21
64

0 28
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0 7
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0 3
64

0

266666666664

377777777775

K l
e ¼

0 1 0 0 0 0 0

1
2

0 1
2

0 0 0 0

0 � 5
8

0 1
8

0 0 0

� 5
16

0 � 4
16

0 1
16

0 0

0 � 18
128

0 � 1
128

0 3
128

0

� 18
256

0 � 19
256

0 2
256

0 3
256

266666666664
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Dividing by P according to Eq. (9) and using the functions
defined in Eq. (B.1), the rate of change for low eccentric
orbits is

F a ¼ da
dt

¼ �ka exp �zð Þ eTK l
aI þO e6

� �	 
 ðB:5aÞ

F e ¼ de
dt

¼ �ke exp �zð Þ eTK l
eI þO e6

� �	 
 ðB:5bÞ
B.3. High eccentric orbit

Instead of performing the series expansion in e, which is
infeasible for large values of e > eb a;Hð Þ, the expansion is

performed for the substitute variable, k2=z ¼ 1� cosE.
KH truncated the series already after two powers. Here,
instead, as H can be large and as the formulation should
be readily available for any hp < 2500 km, it is extended
up to 5th power. The contractions over one orbit period
are
rT ¼ 1 1
z 1�e2ð Þ

1

z2 1�e2ð Þ2
1

z3 1�e2ð Þ3
1

z4 1�e2ð Þ4
1

z5 1�e2ð Þ5
� �

eT ¼ 1 e e2 e3 e4 e5 e6 e7 e8 e9 e10
� �

Da ¼ �2d
ffiffiffiffi
2p
z

q
q hp
� �

a2 1þeð Þ32
1�eð Þ12

rTKh
aeþO 1

z6
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ðB:6aÞ

De ¼ �2d
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2p
z

r
q hp
� �

a
1þ e
1� e

� �1
2

1� e2
� �

rTKh
eeþO

1

z6

� �� �
ðB:6bÞ

with the constant matrices

Kh
a ¼

1
2

1
16

9
256

75
2048

3675
65;536

59;535
524;288

0 � 1
2

� 3
16

� 45
256
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� 33;075
65;536

0 3
16
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0 0 3
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2048

110;985
16;384

� 7;687;575
262;144

0 0 0 0 525
2048

� 836;325
16;384

0 0 0 0 � 4725
65;536

� 16;288;965
524;288

0 0 0 0 0 � 33;075
65;536

0 0 0 0 0 72;765
524;288

2666666666666666666666666664
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Kh
e ¼

1
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16

39
128

� 405
2048

525
16;384

152;145
524;288

0 0 3
32

� 375
256

735
4096

� 31;185
32;768

0 0 � 15
256

� 1515
2048

123;585
32;768

� 530;145
262;144

0 0 0 � 45
512

31;605
4096

� 1;165;185
65;536

0 0 0 105
2048

40;845
16;384

� 10;235;295
262;144

0 0 0 0 525
4096

� 1;505;385
32;768

0 0 0 0 � 4725
65;536

� 5;716;305
524;288

0 0 0 0 0 � 33;075
131;072

0 0 0 0 0 72;765
524;288

2666666666666666666666666664

3777777777777777777777777775
Plugging Eq. (B.6) into Eq. (9), using the functions defined
in Eq. (B.1), and introducing the new functions

ca ¼
ffiffiffiffiffi
2

pz

r
1þ eð Þ32
1� eð Þ12

ðB:7aÞ

ce ¼
ffiffiffiffiffi
2

pz

r
1þ e
1� e

� �1
2

1� e2
� � ðB:7bÞ

the rate of change for highly eccentric orbits is
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F a ¼ da
dt

¼ �kaca rTKh
aeþO

1

z6

� �� �
ðB:8aÞ

F e ¼ de
dt

¼ �kece rTKh
eeþO

1

z6

� �� �
ðB:8bÞ
Appendix C. Jacobian of Dynamics in a and e

The partial derivatives of the dynamics with respect to a

and e are given here for the three different regimes dis-
cussed in Appendix B. The partial derivatives of a partial
atmosphere defined in Eq. (15) (dropping the subscript
p), and given hp ¼ a 1� eð Þ � R, can be found as

@q hp
� �
@a

¼� 1� e
H

q hp
� � ðC:1aÞ

@q hp
� �
@e

¼ a
H
q hp
� � ðC:1bÞ

Thus, the partial derivatives of ka and ke (see Eq. (B.1))
with respect to a and e are
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C.1. Circular orbit

For circular orbits, the rate and derivative in e vanishes
and the partial derivative of F a with respect to a, combin-
ing Eqs. (B.3) and (C.2), is

@F a

@a
¼ 1

2a
� 1

H

� �
F a ðC:3Þ
C.2. Low eccentric orbit

For low eccentric orbits, with e 6 eb, the partial deriva-
tive of F a and F e with respect to a and e, combining Eqs.
(B.5) and (C.2) and using the product rule, are

@F a

@a
¼ 1

2a
� 1

H

� �
F a � ka exp �zð ÞeTK l

a

e
H

@I

@z
ðC:4aÞ

@F a

@e
¼� ka exp �zð Þ @eT

@e
K l

aI þ eTK l
a

a
H

@I

@z

� �
ðC:4bÞ

@F e

@a
¼ � 1

2a
� 1

H

� �
F e � ke exp �zð ÞeTK l

e

e
H

@I

@z
ðC:4cÞ

@F e

@e
¼� ke exp �zð Þ @eT

@e
K l

eI þ eTK l
e

a
H

@I

@z

� �
ðC:4dÞ
where
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2
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C.3. High eccentric orbit

Using the partial derivatives of ca and ce from Eq. (B.7)
with respect to a and e
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it follows that
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and the partial derivatives of F a and F e for high eccentric
orbits (see Eq. (B.8)), with e P eb, with respect to a and
e become

@F a

@a
¼ �1�e

H

� �
F a�kaca

@rT

@a
Kh

ae ðC:9aÞ

@F a

@e
¼ a

H
�1�4eþe2

2e 1�e2ð Þ
� �

F a�kaca
@rT

@e
Kh

aeþrTKh
a

@e

@e

� �
ðC:9bÞ

@F e

@a
¼ �1

a
�1�e

H

� �
F e�kece

@rT

@a
Kh

ee ðC:9cÞ

@F e

@e
¼ a

H
�1�2eþ3e2

2e 1�e2ð Þ
� �

F e�kece
@rT

@e
Kh

eeþrTKh
e

@e

@e

� �
ðC:9dÞ

where
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Table D.8
Parameters to calculate b as a function of eT1. The factors are of unit [ln
(kg/m3)].

p bp0 bp1 bp2

1 5:35674eþ 0 1:36142eþ 0 �1:71993eþ 0
2 �6:96022eþ 0 �1:71534e� 1 �6:26282eþ 0
3 �1:33334eþ 1 �4:29240eþ 0 1:12545eþ 0
4 �1:78792eþ 1 �2:89047eþ 0 3:93500eþ 0
5 �2:09320eþ 1 8:52674eþ 0 �5:08863eþ 1
6 �2:93700eþ 1 5:68339e� 2 �2:61029eþ 1
7 �3:29807eþ 1 4:90080eþ 0 1:78391eþ 1
8 �3:51561eþ 1 �2:66659eþ 0 1:73783eþ 0

p bp3 bp4 bp5
1 1:48408eþ 0 �2:43815eþ 0 9:19988eþ 0
2 1:70218eþ 1 �3:66333eþ 1 7:26606eþ 1
3 1:41418eþ 1 �6:27283eþ 1 1:53398eþ 2
4 1:67754eþ 1 �1:15289eþ 2 3:24667eþ 2
5 1:56893eþ 2 �3:21951eþ 2 4:61948eþ 2
6 2:90804eþ 2 �1:47321eþ 3 3:87334eþ 3
7 �9:35850eþ 1 2:24591eþ 2 �3:60868eþ 2
8 �4:98942eþ 0 2:71676eþ 1 4:15537eþ 1

p bp6 bp7 bp8
1 �1:64492eþ 1 1:28147eþ 1 �3:67526eþ 0
2 �9:47544eþ 1 6:43396eþ 1 �1:72245eþ 1
3 �2:00134eþ 2 1:29740eþ 2 �3:30267eþ 1
4 �4:59063eþ 2 3:15704eþ 2 �8:42405eþ 1
5 �4:34126eþ 2 2:32404eþ 2 �5:27733eþ 1
6 �5:21125eþ 3 3:43718eþ 3 �8:85649eþ 2
7 3:73065eþ 2 �2:15221eþ 2 5:18052eþ 1
8 �1:88208eþ 2 1:86631eþ 2 �5:96266eþ 1

Table D.7
Parameters to calculate a as a function of eT1. The factors are of unit
[km�1].

p ap0 ap1 ap2

1 �1:98541e� 1 �1:40701e� 2 1:87647e� 2
2 �9:71648e� 2 7:16062e� 3 4:77822e� 2
3 �5:05069e� 2 3:33725e� 2 �1:85987e� 2
4 �2:83356e� 2 1:64584e� 2 �3:32683e� 2
5 �2:18893e� 2 8:84693e� 3 5:46460e� 2
6 �6:24488e� 3 4:90041e� 3 �6:03999e� 3
7 �2:82771e� 3 �3:17505e� 3 1:93697e� 3
8 �8:53512e� 4 7:92640e� 4 �1:24063e� 3

p ap3 ap4 ap5
1 �1:72925e� 2 2:77798e� 2 �9:95750e� 2
2 �1:51184e� 1 3:51432e� 1 �7:02642e� 1
3 �1:03728e� 1 5:51289e� 1 �1:41638eþ 0
4 8:69501e� 2 �6:20406e� 2 �3:36952e� 1
5 �2:34999e� 1 5:47095e� 1 �8:27779e� 1
6 �7:24190e� 2 5:32824e� 1 �1:79828eþ 0
7 4:29619e� 2 �1:78919e� 1 3:53528e� 1
8 4:65874e� 3 �1:87465e� 2 8:70408e� 3

p ap6 ap7 ap8
1 1:76679e� 1 �1:37542e� 1 3:94618e� 2
2 9:01640e� 1 �6:03103e� 1 1:59691e� 1
3 1:87770eþ 0 �1:22379eþ 0 3:11852e� 1
4 8:28293e� 1 �6:99209e� 1 2:06734e� 1
5 7:76841e� 1 �4:02671e� 1 8:74533e� 2
6 2:85818eþ 0 �2:11311eþ 0 5:91400e� 1
7 �3:82857e� 1 2:16923e� 1 �5:02721e� 2
8 3:62357e� 2 �4:73838e� 2 1:66805e� 2
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Appendix D. Variable atmosphere model parameters

Tables D.7 and D.8 list the parameters to calculate a
and b according to Eq. (23) as a function of the normalisedeT 1. The two vectors are needed to recover q̂p and Hp 8p,
according to Eq. (25). Note that the model should only
be used for T1 2 T 0 ¼ 650; T 1 ¼ 1350½ � K.
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