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Abstract. In this work we tackle the reconstruction of discontinuous coefficients in a semilinear

elliptic equation from the knowledge of the solution on the boundary of the planar bounded domain.

The problem motivated by an application in cardiac electrophysiology.

We formulate a constraint minimization problem involving a quadratic mismatch functional enhanced

with a regularization term which penalizes the perimeter of the inclusion to be identified. We introduce

a phase-field relaxation of the problem, employing a Ginzburg-Landau-type energy and assessing the

Γ-convergence of the relaxed functional to the original one. After computing the optimality conditions

of the phase-field optimization problem and introducing a discrete Finite Element formulation, we pro-

pose an iterative algorithm and prove convergence properties. Several numerical results are reported,

assessing the effectiveness and the robustness of the algorithm in identifying arbitrarily-shaped inclu-

sions.

Finally, we compare our approach to a shape derivative based technique, both from a theoretical point

of view (computing the sharp interface limit of the optimality conditions) and from a numerical one.
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1. Introduction We consider the following Neumann problem, defined over

Ω⊂R2: {
−div(k̃(x)∇y)+χΩ\ωy

3 =f in Ω

∂νy= 0 on ∂Ω,
(1.1)

where χΩ\ω is the indicator function of Ω\ω and

k̃(x) =

{
k if x∈ω

1 if x∈Ω\ω,

being 0<k�1 and f ∈L2(Ω).

The boundary value problem (1.1) consists of a semilinear diffusion-reaction equa-

tion with discontinuous coefficients across the interface of an inclusion ω⊂Ω, in which

the conducting properties are different from the background medium. Supposing the

value of k to be known, our goal is the determination of the inclusion from the know-

ledge of the value of y on the boundary ∂Ω. More precisely, given the measured data

ymeas on the boundary, we search for the inclusion ω⊂Ω that is associated to those

exact measurements, i.e. such that the corresponding solution y of (1.1) satisfies

y|∂Ω =ymeas. (1.2)
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Since, at our knowledge, few works deal with inverse boundary value problems for

nonlinear equations, the reconstruction problem analyzed in this paper is interesting

from both an analytic and a numerical standpoint.

The direct problem can be related to a meaningful application arising in cardiac

electrophysiology: in that context (see [39], [19]), the solution y represents the electric

transmembrane potential in the heart tissue, the coefficient k̃ is the tissue conductivity

and the nonlinear reaction term encodes a ionic transmembrane current. An inclusion

ω models the presence of an ischemia, which modifies substantially the conductivity

properties of the tissue. The objective of our work, in the long run, is the identification

of ischemic regions through a set of measurements of the electric potential acquired on

the surface of the myocardium. We remark that our model is a simplified version of the

more complex monodomain model (see e.g. [40], [39]). The monodomain is a continuum

model which describes the evolution of the transmembrane potential on the heart tissue

according to the conservation law for currents and to a satisfying description of the io-

nic current, which entails the coupling with a system of ordinary differential equations

for the concentration of chemical species. In this preliminary setting, we remove the

coupling with the ionic model, adopting instead a phenomenological description of the

ionic current, through the introduction of a cubic reaction term. Moreover, we consider

the stationary case in presence of a source term which plays the role of the electrical

stimulus. Despite the simplifications, the problem we consider in this paper is a mat-

hematical challenge itself. Indeed, here the difficulties include the nonlinearity of both

the direct and the inverse problem, as well as the lack of measurements at disposal.

The linear counterpart of the problem, obtained when the nonlinear reaction term

is removed, is strictly related to the inverse conductivity problem, also called Calderón

problem, which has been object of several studies in the last decades. The problem is

severly ill posed and highly nonlinear. Moreover, infinitely measurements are needed to

recover smooth inclusions (see [30] and references therein). A finite number of measu-

rements is sufficient to determine uniquely and in a stable (Lipschitz) way the inclusion

only introducing additional information either on the shape of the inclusion or on its

size.

Several reconstruction algorithms have been developed for the solution of the in-

verse conductivity problem, and it is beyond the purposes of this introduction to provide

an exhaustive overview on the topic. Under the assumption that the inclusion to be

reconstructed is of small size, an extended review of methods is presented in [4], many

of which heavily rely on the linearity of the direct problem. Some efficient and more

versatile algorithms can be derived by a variational approach, i.e., by the constraint

minimization of a quadratic misfit functional, as in [31], and [3]. When dealing with

the reconstruction of arbitrary inclusions in the linear case, several variational algo-

rithms are available. A shape-optimization approach, with suitable regularization, is

explored in [32] [28], [1] and [2]; in [29] this approach is coupled with topology optimi-

zation; whereas the level set technique has been applied in [38] and in [13]. Recently,
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several specific schemes have been employed to deal with the minimization of misfit

functional endowed with a Total-Variation regularization: along this line we mention

the Levenberg-Marquardt and Landweber algorithms in [5], the augmented Lagrangian

approach in [17] and the regularized level set technique in [15]. Finally, the phase field

approach has been explored for the linear inverse conductivity problem e.g in [37] and

recently in [20].

Concerning inverse problems related to nonlinear PDEs, only few theoretical results

and numerical strategies are available, expecially regarding the electrophysiological pro-

blem of interest. We remark that the level-set method has been implemented for the

reconstruction of extended inclusions in the nonlinear problem of cardiac electrophysio-

logy (see [34] and [16]), by evaluating the sensitivity of the cost functional with respect

to a selected set of parameters involved in the full discretization of the shape of the

inclusion. In [10] the authors, taking advantage from the results obtained in [8], pro-

posed a reconstruction algorithm for the nonlinear problem (1.1) based on topological

optimization, where a suitable quadratic functional is minimized to detect the position

of small inclusions separated from the boundary. In [7] the results obtained in [10] and

[8] have been extended to the time-dependent monodomain equation under the same

assumptions.

In this paper we propose a reconstruction algorithm of inclusions of arbitrary shape

and position by relying on the minimization of a suitable functional, enhanced with

a perimeter penalization term, and by following a relaxation strategy relying on the

phase field approach. The outline of the paper is as follows: in Section 2 we introduce

the optimization problem together with its phase-field regularization, discussing well-

posedness, Γ-convergence of the relaxed functional to the original one, and the derivation

of necessary optimality conditions associated to the phase-field minimization problem.

In Section 3 we propose an iterative reconstruction algorithm allowing for the numerical

approximation of the solution and prove its convergence properties. The power of this

approach is twofold: on the one hand it allows to consider conductivity inclusions of

arbitrary shape and position which is the case of interest for our application and on

the other it leads to good reconstructions as shown in the numerical experiments in

Section 4. Finally, in Section 5 we compare our technique to a shape optimization

based approach: after showing the optimality conditions derived for the relaxed problem

converge to the ones corresponding to the sharp interface one, we show numerical results

obtained by applying both the algorithms on the same benchmark cases.

2. Minimization problem In this section, we give a rigorous formulation both

of the direct and of the inverse problem under investigation. The analysis of the well-

posedness of the direct problem is reported in details, and consists in an extension of

the results previously obtained in [8]. The inverse problem is instead associated to a

constraint minimization problem for which we introduce a regularization and relaxation

strategy in order to overcome instability and to allow the implementation of a recon-

struction algorithm.
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We formulate the problems (1.1) and (1.2) in terms of the indicator function of the

inclusion, u=χω. We assume an a priori hypothesis on the inclusion, namely that it is

a subset of Ω of finite perimeter: u belongs to BV (Ω) ={v∈L1(Ω) : TV (v)<∞}, being

TV (v) = sup

{∫
Ω

vdiv(φ); φ∈C1
0 (Ω;R2), ‖φ‖L∞ ≤1

}
,

endowed with the norm ‖·‖BV =‖·‖L1 +TV (·). Moreover, we formulate particular re-

strictions on the inclusion and on the source f .

Assumption 2.1. Given a positive number d0 we assume that

u∈X0,1 ={v∈BV (Ω) :v(x)∈{0,1} a.e. in Ω ,u= 0 a.e. in Ωd0 }, (2.1)

where Ωd0 ={x s.t. dist(x,∂Ω)≤d0}. This also entails that the inclusion is well sepa-

rated from the boundary ∂Ω. Moreover,

Assumption 2.2. Given a positive constant m, we require

f ≥m a.e. in Ω. (2.2)

The weak formulation of the direct problem (1.1) in terms of u reads: find y in H1(Ω)

s.t., ∀ϕ∈H1(Ω), ∫
Ω

a(u)∇y∇ϕ+

∫
Ω

b(u)y3ϕ=

∫
Ω

fϕ, (2.3)

being a(u) = 1−(1−k)u and b(u) = 1−u. Define S :X0,1→H1(Ω) the solution map:

for all u∈X0,1, S(u) =y is the solution to problem (2.3) with indicator function u; the

inverse problem consists in:

find u∈X0,1 s.t. S(u)|∂Ω =ymeas. (2.4)

In the proof of various proposition we have make use of the following generalized

Poincaré inequality:

Lemma 2.1. ∃C>0,C=C(Ω,d0) s.t., ∀w∈H1(Ω),

‖w‖2H1(Ω)≤C
(
‖∇w‖2L2(Ω) +‖w‖2L2(Ωd0 )

)
. (2.5)

The proof of the Lemma 2.1 is given in the Appendix of [8] and easily follows by

Theorem 8.11 in [33].

Thanks to Lemma 2.1, we can prove the following well-posedness result for the

direct problem.

Proposition 2.1. Consider f ∈
(
H1(Ω)

)∗
and a function u∈X0,1. Then there exists

an unique solution S(u)∈H1(Ω) of∫
Ω

a(u)∇S(u) ·∇v+

∫
Ω

b(u)S(u)3v=

∫
Ω

fv ∀v∈H1(Ω),

where a(u) = 1−(1−k)u and b(u) = 1−u.
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Proof. The proof is analogous to the analysis performed in [8, Theorem 4.1], but

generalises that result to the case of inclusions of finite perimeter. The strategy consists

in applying the Minty-Browder theorem on the direct operator T :H1(Ω)→
(
H1(Ω)

)∗
s.t.

〈T (S),v〉∗=

∫
Ω

a(u)∇S ·∇v+

∫
Ω

b(u)S3v,

which shows to be continuous, coercive and strictly monotone. In particular

• Local Lipschitz continuity:

|〈T (S)−T (S0),v〉∗|=
∣∣∣∣∫

Ω

a(u)∇(S−S0) ·∇v+

∫
Ω

b(u)(S−S0)qv

∣∣∣∣
≤‖∇(S−S0)‖L2‖∇v‖L2 +‖S−S0‖L6‖q‖L3‖v‖L2 ,

(being q=S2 +SS0 +S2
0). If S and S0 belong to a bounded subset of H1(Ω),

then (thanks to the Sobolev Embedding of H1(Ω) in L6(Ω)) we can assess that

‖q‖L3 ≤M and moreover ∃K=K(u)>0 s.t.

|〈T (S)−T (S0),v〉∗|≤K‖S−S0‖H1‖v‖H1 ∀v∈H1(Ω).

• Coercivity: we show that 〈T (S),S〉∗→+∞ as ‖S‖H1(Ω)→+∞. Since u= 0 a.e.

in Ωd0 , b(u)≥χΩd0 , the indicator function of Ωd0 . Then,

〈T (S),S〉∗≥k
∫

Ω

|∇S|2 +

∫
Ωd0

S4≥k‖∇S‖2L2(Ω) +
1

|Ω|
‖S‖4L2(Ωd0 )

=k
(
‖∇S‖2L2(Ω) +‖S‖2L2(Ωd0 )

)
+R,

where R= 1
|Ω|‖S‖

4
L2(Ωd0 )−k‖S‖

2
L2(Ωd0 ) can be bounded by below independently

of S: R≥−k
2|Ω|
4 . Together with Poincaré inequality in Lemma 2.1, we conclude

that

〈T (S),S〉∗≥
k

C
‖S‖2H1(Ω)−

k2|Ω|
4

.

• (Strict) monotonicity: we claim that 〈T (S)−T (R),S−R〉∗≥0 and 〈T (S)−
T (R),S−R〉∗= 0⇔S=R. Indeed,

〈T (S)−T (R),S−R〉∗≥
∫

Ω

k|∇(S−R)|2 +

∫
Ωd0

(S2 +SR+R2)(S−R)2≥0.

Moreover, since S2 +SR+R2≥ 1
4 (S−R)2,

〈T (S)−T (R),S−R〉∗= 0⇒‖∇(S−R)‖L2(Ω) = 0 and

∫
Ωd0

(S−R)4 = 0,

and from the latter equality it follows that S=R a.e. in Ωd0 , hence also

‖S−R‖L2(Ωd0 ) = 0, and via Lemma 2.1 ‖S−R‖H1(Ω) = 0.
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It is possible to prove additional properties of the solution S(u) of the direct pro-

blem. In particular, we provide an uniform bound on ‖S(u)‖H1(Ω) independent of u.

Proposition 2.2. There exists a constant C=C(Ω,d0,k) s.t., ∀u∈X0,1,

‖S(u)‖H1(Ω)≤C
(
‖f‖L2(Ω) +‖f‖3L2(Ω)

)
. (2.6)

This can be proved as in [8, Proposition 4.1], where we take advantage of the bound

‖S(u)‖4L2(Ωd0 )≤|Ω
d0 |
∫

Ωd0
S(u)4≤|Ω|

∫
Ω

b(u)S(u)4,

and hence the constant appearing in (2.6) only depends on Ω, d0, k.

Moreover, we prove a Hölder regularity result on S(u):

Proposition 2.3. Let S(u) be the solution of (2.3) associated to u∈X0,1 and let

f ∈L2(Ω). Then, S(u)∈Cα(Ω̄) and

‖S(u)‖Cα(Ω̄)≤C(Ω,k,‖f‖L2(Ω),d0).

Proof. The proof is analogous to the one in [8]. An application of [26, Theorem

8.24] ensures that

∀Ω′⊂⊂Ω, ‖S(u)‖Cα(Ω′)≤C
(
‖S(u)‖L2(Ω) +‖S(u)‖3L6(Ω) +‖f‖L2(Ω)

)
≤C,

where C=C(Ω′,k,‖f‖L2(Ω)). By taking Ω′⊃Ωd0 , since the conductivity is constant in

Ωd0 and the normal derivative on the boundary is zero, we can apply standard regularity

results up to the boundary, obtaining:

‖S(u)‖Cα(Ω)≤C=C(Ω,d0,k,‖f‖L2(Ω)).

Finally, we prove an estimate which occurs many times in the proof of various

results.

Proposition 2.4. Suppose that f ∈L2(Ω) s.t. f ≥m>0 a.e. in Ω. Consider S(u) the

solution of problem (2.3) associated to u∈X0,1. Then, S(u)≥m1/3.

The proof is an immediate consequence of the following Lemma:

Lemma 2.2. Let S1 and S2 be a sub- and supersolution of (2.3) with u∈X0,1, namely

S1,S2∈H1(Ω) s.t., ∀ϕ∈H1(Ω), ϕ≥0 a.e., it holds:∫
Ω

a(u)∇S1 ·∇ϕ+

∫
Ω

b(u)S3
1ϕ−

∫
Ω

fϕ≤0, (2.7)∫
Ω

a(u)∇S2 ·∇ϕ+

∫
Ω

b(u)S3
2ϕ−

∫
Ω

fϕ≥0. (2.8)

Then, S1≤S2 a.e. in Ω.
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Proof. Subtract the equations (2.8) - (2.7) and define W =S2−S1: it holds, ∀ϕ∈
H1(Ω), ϕ≥0 a.e., ∫

Ω

a(u)∇W ·∇ϕ+

∫
Ω

b(u)QWϕ≥0,

where Q= (S2
1 +S1S2 +S2

2)≥0. Take ϕ=W−, the negative part of W . We remark that

W+ =max{0,W}, W−=max{0,−W}, W =W+−W−; moreover W+,W−∈H1(Ω),

W+W−= 0, and in view of [24, Theorem 4.4] we refer to ∇W− as the gradient of the

negative part W− or equivalently as the vector of the negative parts of the components

of ∇W . Thus, it holds∫
Ω

a(u)∇W− ·∇W−+

∫
Ω

b(u)Q(W−)2≤0,

which implies that S2≥S1 a.e. Indeed, k‖∇W−‖L2(Ω)≤0 implies ∇W−= 0 a.e. in Ω;

moreover, both S1 and S2 are continuous, and hence also W and W−, which entails

W−= c, c≥0 by definition. In order to guarantee that W−=max{0,−W}= c is con-

tinuous, either c= 0 or W =−c<0 in Ω. The latter case, though, would imply that

S2 =S1−c and, by simple computation, Q= 3S2
1−3cS1 +c2≥ c2

4 , which is incompatible

with
∫

Ω
b(u)Q(W−)2≤0. Hence W−= 0, and so W =W+≥0.

Proof. [Proof of Proposition 2.4] Taking S2 =S(u) and S1 =m1/3 (which is a sub-

solution since b(u)m−f ≤0), we obtain the uniform bound S(u)≥m1/3.

Remark 2.1. We could extend all the previous results to a class of more general

functions f , namely f not vanishing in Ωd0 , but that would entail that the lower bound

in Proposition 2.4 might depend on u. On the other hand, when applying the previous

estimates in the proofs of following results (in particular, Proposition 2.5, 2.10, 5.1 and

Lemma 3.1), we always invoke Proposition 2.4 on a fixed indicator function u.

The crucial property satisfied by the solution map is the continuity with respect to

the L1 norm, which requires an accurate treatment due to the nonlinearity of the direct

problem.

Proposition 2.5. Let f ∈L2(Ω) satisfy assumption (2.2). If {un}⊂X0,1 s.t. un
L1

−−→

u∈X0,1, then S(un)|∂Ω
L2(∂Ω)−−−−−→S(u)|∂Ω.

Proof. Define wn=S(un)−S(u); then, subtracting (2.3) evaluated at un and the

same one evaluated at u, wn is the solution of:∫
Ω

a(un)∇wn∇ϕ+

∫
Ω

b(un)qnwnϕ=

∫
Ω

(1−k)(un−u)∇S(u)∇ϕ−
∫

Ω

(un−u)S(u)3ϕ,

(2.9)

where qn=S(un)2 +S(un)S(u)+S(u)2. Considering ϕ=wn and taking advantage of

the fact that a(un)≥k and (by simple computation) qn≥ 3
4S(u)2, we can show, via
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Cauchy-Schwarz inequality, that

k‖∇wn‖2L2(Ω) +
3

4

∫
Ω

b(un)S(u)2w2
n≤(1−k)‖(un−u)∇S(u)‖L2(Ω)‖∇wn‖L2(Ω)

+
∥∥(un−u)S(u)3

∥∥
L2(Ω)

‖wn‖L2(Ω).

We remark that (un−u)S(u)3∈L2(Ω) since S(u)∈H1(Ω)⊂⊂L6(Ω). Moreover, as

b(un)≥χΩd0 and using Proposition 2.4,

k‖∇wn‖2L2(Ω) +
3

4

∫
Ωd0

m2/3w2
n≤(1−k)‖(un−u)∇S(u)‖L2(Ω)‖∇wn‖L2(Ω)

+
∥∥(un−u)S(u)3

∥∥
L2(Ω)

‖wn‖L2(Ω),

from which we deduce

k‖∇wn‖2L2(Ω) +
3

4
m2/3‖wn‖2L2(Ωd0 )≤ (q1 +q2)‖wn‖H1(Ω),

where q1 =‖(un−u)∇S(u)‖L2(Ω) and q2 =
∥∥(un−u)S(u)3

∥∥
L2(Ω)

, which implies, thanks

to the Poincaré inequality in Lemma 2.1,

‖wn‖H1(Ω)≤C(q1 +q2),

being C=C(d0,Ω,m,k). Consider

q1 =

(∫
Ω

(un−u)2|∇S(u)|2
) 1

2

;

since un
L1

−−→u, then (up to a subsequence) un→u pointwise almost everywhere. Thus

also the integrand (un−u)2|∇S(u)|2 converges to 0. Moreover, |un−u|≤1, hence ∀n
(un−u)2|∇S(u)|2≤|∇S(u)|2∈L1(Ω), and thanks to Lebesgue convergence theorem, we

conclude that q1→0. Analogously, q2→0 and eventually ‖wn‖H1(Ω)→0, i.e. S(un)
H1

−−→

S(u) and by the trace inequality also S(un)|∂Ω
L2(∂Ω)−−−−−→S(u)|∂Ω.

Remark 2.2. Being X0,1 a closed subspace of the Banach space BV (Ω), it is compact

with respect to its weak topology; moreover, the weak BV convergence implies the strong

L1 convergence, and in view of Proposition 2.5 we can assess that the map F = τ ◦S,

τ being the trace operator in H1(Ω), is compact from X0,1 to L2(∂Ω). It is immediate

to conclude that, if the inverse F−1 exists, it cannot be continuous: hence, the inverse

problem (2.4) is ill-posed.

We now introduce the following constraint optimization problem:

argmin
u∈X0,1

J(u); J(u) =
1

2
‖S(u)−ymeas‖2L2(∂Ω), (2.10)

which shares the same property of non-stability and (possibly) non-uniqueness as pro-

blem (2.4). Nevertheless, a well-known strategy to recover well-posedness for problem
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(2.10) is to introduce a Tikhonov regularization term in the functional to minimize, e.g.

a penalization term for the perimeter of the inclusion. The regularized problem reads:

argmin
u∈X0,1

Jreg(u); Jreg(u) =
1

2
‖S(u)−ymeas‖2L2(∂Ω) +αTV (u), (2.11)

For the regularized problem (2.11), it is possible to prove several desirable properties:

• for every α>0 there exists at least one solution to (2.11) (existence);

• small perturbations on the data ymeas in L2(∂Ω)-norm imply small perturbation

on the solutions of (2.11) in BV -intermediate convergence (stability);

• the sequence of solutions of problem (2.11) associated to the regularization

parameters {αk} (s.t. αk→0) converges in the BV -intermediate convergence

to a minimum-variation solution of problem (2.10).

We point out that a sequence {un}⊂BV (Ω) converges to u∈BV (Ω) in the sense of the

intermediate convergence iff un
L1

−−→u and TV (un)→TV (u). The proof of the previous

properties follows from a careful application of the results in [23, Chapter 10], taking

into account that BV (Ω) is a non-reflexive Banach space.

According to the stated results, a good approximation of a minimum-variation so-

lution of the inverse problem (2.4) can be achieved by solving the regularized constraint

minimization problem (2.11) with a sufficiently small parameter α>0. Although the

stability of the problem is guaranteed, its numerical solution may raise difficulties, na-

mely the non-convexity both of the functional Jreg and of the space X0,1, as well as

the non-differentiability of the functional. To overcome these difficulties, in this work

we propose a phase-field relaxation of the optimization problem (2.11) inspired by [20],

with the additional difficulty of the nonlinearity of the direct problem. The relaxa-

tion strategy consists in defining a minimization problem in a space of more regular

functions, associated to a differentiable cost functional (which in our case is achieved

by replacing the Total Variation term with a Modica-Mortola functional, representing

a Ginzburg-Landau energy).

Consider u∈K={v∈H1(Ω) : 0≤v≤1 a.e. in Ω, v= 0 a.e. in Ωd0} and, for every

ε>0, introduce the optimization problem:

argmin
u∈K

Jε(u); Jε(u) =
1

2
‖S(u)−ymeas‖2L2(∂Ω) +α

∫
Ω

(
ε|∇u|2 +

1

ε
u(1−u)

)
. (2.12)

The well-posedness result for the direct problem in Proposition 2.1, together with the

additional stability and regularity results can be easily extended to the case u∈K. In

the next two propositions, we prove existence and stability of the solutions of the relaxed

minimization problem (2.12) for fixed ε.

Proposition 2.6. For every fixed ε>0, the minimization problem (2.12) has a solution

uε∈K.

Proof. Fix ε>0 and consider a minimizing sequence for the functional Jε, {uk}⊂K
(we omit the dependence of uk on ε). By definition of minimizing sequence, Jε(uk)≤M
independently of k, which implies that also ‖∇uk‖2L2(Ω) is bounded. Moreover, being
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uk ∈K, 0≤uk≤1 a.e., thus ‖uk‖L2(Ω) and ‖uk‖H1(Ω) are bounded independently of k.

Thanks to weak compactness of H1, there exist uε∈H1(Ω) and a subsequence {ukn} s.t.

ukn
H1

−−⇀uε, hence ukn
L2

−−→uε. The strong L2 convergence implies (up to a subsequence)

pointwise convergence a.e., which allows to conclude (together with the Lebesgue’s

dominated convergence theorem, since ukn(1−ukn)≤1/2) that∫
Ω

ukn(1−ukn)→
∫

Ω

uε(1−uε).

Moreover, by the lower semicontinuity of the H1 norm with respect to the weak con-

vergence, and by the compact embedding in L2,

‖uε‖2H1(Ω)≤ liminf
n
‖ukn‖

2
H1(Ω)

‖uε‖2L2(Ω) +‖∇uε‖2L2(Ω)≤ lim
n
‖ukn‖

2
L2(Ω) +liminf

n
‖∇ukn‖

2
L2(Ω)

‖∇uε‖2L2(Ω)≤ liminf
n
‖∇ukn‖

2
L2(Ω).

Moreover, using the continuity of the solution map S with respect to the L1 convergence,

we can conclude that

Jε(uε)≤ liminf
n

Jε(ukn).

Finally, by pointwise convergence, 0≤uε≤1 a.e. and uε= 0 a.e. in Ωd0 , hence uε is a

minimum of Jε in K.

Proposition 2.7. Fix α,ε>0 and consider a sequence {yk}⊂L2(∂Ω) such that

yk
L2(∂Ω)−−−−−→ymeas. For each k, let ukε be a solution of (2.12), where ymeas is replaced

by yk. Then, up to a subsequence, ukε
H1

−−→uε, where uε is a solution of (2.12).

Proof. Consider a solution u∗ of (2.12): by definition of ukε , it holds

1

2

∥∥S(ukε)−yk
∥∥2

L2(∂Ω)
+αε

∥∥∇ukε∥∥2

L2(Ω)
+
α

ε

∫
Ω

ukε(1−ukε)

≤ 1

2

∥∥S(u∗)−yk
∥∥2

L2(∂Ω)
+αε‖∇u∗‖2L2(Ω) +

α

ε

∫
Ω

u∗(1−u∗)

≤ 1

2

∥∥ymeas−yk∥∥2

L2(∂Ω)
+

1

2
Jε(u

∗).

Hence
∥∥∇ukε∥∥L2(Ω)

is bounded independently of k, and so is
∥∥ukε∥∥L2(Ω)

(since ukε ∈K).

This implies that, up to a subsequence, ukε
H1

−−⇀uε∈H1(Ω), from which it follows that

ukε
L2

−−→uε and in particular S(ukε)
H1

−−→S(uε) (thanks to Proposition 2.5) and ukε→uε

almost everywhere in Ω, and by Lebesgue’s convergence theorem also
∫

Ω
ukε(1−ukε)→∫

Ω
uε(1−uε). Finally, by lower semi-continuity of the H1 norm with respect to the weak

convergence, we conclude that

Jε(uε)≤ liminf
k

(
1

2

∥∥S(ukε)−yk
∥∥2

L2(∂Ω)
+αε

∥∥∇ukε∥∥2

L2(Ω)
+
α

ε

∫
Ω

ukε(1−ukε)

)
≤Jε(u∗)+

1

2
lim
k

∥∥ymeas−yk∥∥2

L2(∂Ω)
,
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hence Jε(uε) =Jε(u
∗) and uε is a solution of (2.12). Moreover, this implies that

‖∇uε‖L2(Ω) = limk

∥∥∇ukε∥∥L2(Ω)
; and since H1 is an Hilbert space, together with the

weak convergence, this implies that ukε
H1

−−→uε.

The asymptotic behaviour of the phase-field relaxation when ε→0 is reported in

the next two propositions and is related to the notion of Γ-convergence.

Proposition 2.8. Consider the space X of the Lebesgue-measurable functions over Ω

endowed with the L1(Ω) norm and the following extension of the cost functionals on X

J̃ =

{
Jreg(u) if u∈X0,1

∞ otherwise,
J̃ε=

{
Jε(u) if u∈K

∞ otherwise.

Then, the functionals J̃εk associated to {εk} s.t. εk→0 converge to J̃ in X in the sense

of the Γ−convergence.

The proof can be obtained by adapting the one of [20, Theorem 6.1]. Moreover, from

the compactness result in [6, Proposition 4.1] and by the definition of Γ-convergence, it

is easy to prove the following convergence result for the solutions of (2.12).

Proposition 2.9. Consider a sequence {εk} s.t. εk→0 and let {uεk} be the sequence

of the respective minimizers of the functionals {Jεk}. Then, there exists a subsequence,

still denoted as {εk} and a function u∈X0,1 such that uεk→u in L1 and u is a solution

of (2.11).

2.1. Optimality conditions We can now provide an expression for the optima-

lity condition associated with the minimization problem (2.12), which is formulated as

a variational inequality involving the Fréchet derivative of Jε.

Proposition 2.10. Consider the solution map S :K→H1(Ω) and let f ∈L2(Ω) satisfy

assumption (2.2): for every ε>0, the operators S and Jε are Fréchet-differentiable on

K⊂L∞(Ω)∩H1(Ω) and a minimizer uε of Jε satisfies the variational inequality:

J ′ε(uε)[v−uε]≥0 ∀v∈K, (2.13)

being

J ′ε(u)[ϑ] =

∫
Ω

(1−k)ϑ∇S(u) ·∇p+

∫
Ω

ϑS(u)3p+2αε

∫
Ω

∇u ·∇ϑ+
α

ε

∫
Ω

(1−2u)ϑ; (2.14)

where ϑ∈K−u={v s.t. u+v∈K} and p is the solution of the adjoint problem:∫
Ω

a(u)∇p ·∇ψ+

∫
Ω

3b(u)S(u)2pψ=

∫
∂Ω

(S(u)−ymeas)ψ ∀ψ∈H1(Ω). (2.15)

Proof. First of all we need to prove that S is Fréchet differentiable in L∞(Ω): in

particular, we claim that for ϑ∈L∞(Ω)∩(K−u) it holds that S′(u)[ϑ] =S∗, where S∗

is the solution in H1(Ω) of∫
Ω

a(u)∇S∗∇ϕ+

∫
Ω

b(u)3S(u)2S∗ϕ=

∫
Ω

(1−k)ϑ∇S∇ϕ+

∫
Ω

ϑS(u)3ϕ ∀ϕ∈H1(Ω),

(2.16)
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namely, that

‖S(u+ϑ)−S(u)−S∗‖H1(Ω) =o(‖ϑ‖L∞(Ω)). (2.17)

First we show that if ϑ∈L∞(Ω)∩(K−u), then ‖S(u+ϑ)−S(u)‖H1(Ω)≤C‖ϑ‖L∞(Ω).

Indeed, the difference w=S(u+ϑ)−S(u) satisfies∫
Ω

a(u+ϑ)∇w∇ϕ+

∫
Ω

b(u+ϑ)qwϕ=−
∫

Ω

(a(u+ϑ)−a(u))∇S(u)∇ϕ

−
∫

Ω

(b(u+ϑ)−b(u))S(u)3ϕ ∀ϕ∈H1(Ω),

(2.18)

with q=S(u+ϑ)2 +S(u)S(u+ϑ)+S(u)2. Substituting a(u+ϑ)−a(u) =−(1−k)ϑ and

b(u+ϑ)−b(u) =−ϑ, and taking ϕ=w in (2.18), as in the proof of Proposition 2.5, we

obtain

k‖∇w‖2L2 +
3

4

∫
Ω

b(u+ϑ)S(u)2w2≤‖ϑ‖L∞‖∇S(u)‖L2‖∇w‖L2 +
∥∥S(u)3

∥∥
L2‖w‖L2‖ϑ‖L∞

and again by Proposition 2.4

k‖∇w‖2L2 +
3

4
m2/3‖w‖2L2(Ωd0 )≤‖ϑ‖L∞‖∇S(u)‖L2‖∇w‖L2 +‖ϑ‖L∞

∥∥S(u)3
∥∥
L2‖w‖L2 .

By (2.5) and the Sobolev inequality, eventually

‖w‖2H1(Ω)≤C‖S(u)‖H1(Ω)‖w‖H1(Ω)‖ϑ‖L∞ ,

hence ‖S(u+ϑ)−S(u)‖H1(Ω) =O(‖ϑ‖L∞(Ω)).

Take now (2.18) and subtract (2.16). Define r=S(u+ϑ)−S(u)−S∗: it holds that∫
Ω

a(u)∇r∇ϕ+

∫
Ω

b(u)3S(u)2rϕ=

∫
Ω

(a(u+ϑ)−a(u))∇w ·∇ϕ

+

∫
Ω

(b(u+ϑ)q−3b(u)S(u)2)wϕ ∀ϕ∈H1(Ω).

The second integral in the latter sum can be split as follows:∫
Ω

(b(u+ϑ)q−3b(u)S(u)2)wϕ=

∫
Ω

(b(u+ϑ)−b(u))qwϕ+

∫
Ω

(q−3S(u)2)b(u)wϕ,

and in particular q−3S(u)2 =S(u+ϑ)2 +S(u+ϑ)S(u)−2S(u)2 =hw, where h=S(u+

ϑ)+2S(u)∈H1(Ω). Hence, chosen ϕ= r and exploiting again Proposition 2.4, the Poi-

ncaré inequality in Lemma 2.1 and the Hölder inequality:

1

C
‖r‖2H1 ≤k‖∇r‖2L2 +m2/3‖r‖L2(Ωd0 )≤ (1−k)‖ϑ‖L∞‖∇w‖L2‖∇r‖L2

+‖ϑ‖L∞‖q‖L4‖w‖L2‖r‖L4 +‖h‖L4‖w‖2L4‖r‖L4

≤
(

(1−k)‖ϑ‖L∞‖w‖H1 +‖q‖H1‖ϑ‖L∞‖w‖H1 +‖h‖H1‖w‖2H1

)
‖r‖H1 .
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It follows eventually that ‖r‖H1(Ω)≤C‖ϑ‖
2
L∞ =o(‖ϑ‖L∞), which guarantees that S∗=

S′(u)[ϑ].

The last step is to provide an expression of the Fréchet derivative of Jε. Exploiting

the fact that S is differentiable, we can compute the expression of J ′ε(u) through the

chain rule:

J ′ε(u)[ϑ] =

∫
∂Ω

(S(u)−y0)S′(u)[ϑ]+α

∫
Ω

(
2ε∇u∇ϑ+

1

ε
(1−2u)ϑ

)
. (2.19)

Finally, thanks to the expression of the adjoint problem,∫
∂Ω

(S(u)−y0)S′(u)[ϑ] =

∫
∂Ω

(S(u)−y0)S∗=

∫
Ω

a(u)∇p ·∇S∗+

∫
Ω

3S(u)2pS∗=

(by definition of S∗) =

∫
Ω

(1−k)ϑ∇S(u) ·∇p+

∫
Ω

ϑS(u)3p,

and hence:

J ′ε(u)[ϑ] =

∫
Ω

(1−k)ϑ∇S(u) ·∇p+

∫
Ω

ϑS(u)3p+α

∫
Ω

(
2ε∇u ·∇ϑ+

1

ε
(1−2u)ϑ

)
.

Finally, it is a standard argument that, being Jε a continuous and Frechét differentiable

functional on a convex subset K of the Banach space H1(Ω), the optimality conditions

for the optimization problem (2.12) are expressed by the variational inequality (2.13).

3. Discretization and reconstruction algorithm For a fixed ε>0, we now

introduce a Finite Element formulation of problem (2.12) in order to define a numerical

reconstruction algorithm and compute an approximated solution of the inverse problem.

In what follows, we consider Ω to be polygonal, in order to avoid a discretization

error involving the geometry of the domain. Let Th be a shape regular triangulation of

Ω and define Vh⊂H1(Ω):

Vh={vh∈C(Ω̄),vh|K ∈P1(K) ∀K ∈Th}; Kh=Vh∩K.

For every fixed h>0, we define the solution map Sh :K→Vh, where Sh(u) solves∫
Ω

a(u)∇Sh(u)∇vh+

∫
Ω

b(u)Sh(u)3vh=

∫
Ω

fvh ∀vh∈Vh.

3.1. Convergence analysis as h→0 The present section is devoted to the

numerical analysis of the discretized problem: the convergence of the approximated

solution of the direct problem is studied, taking into account the difficulties implied

by the nonlinear term. Moreover, the existence and convergence of minimizers of the

discrete cost functional is analysed. The following result, which is preliminary for the

proof of the convergence of the approximated solutions to the exact one, can be proved

by resorting to the techniques of [18, Theorem 2.1].

Lemma 3.1. Let f ∈L2(Ω) satisfy assumption (2.2); then, for every u∈K, Sh(u)→S(u)

strongly in H1(Ω).
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Proof. As in the proof of Proposition 2.1, for a fixed u∈K we define the operator

T :H1(Ω)→ (H1(Ω))∗ such that

〈T (y),ϕ〉=
∫

Ω

a(u)∇y∇ϕ+

∫
Ω

b(u)y3ϕ;

then yh=Sh(u) and y=S(u) are respectively the solutions of the equations

〈T (yh),ϕh〉=
∫

Ω

fϕh ∀ϕh∈Vh; 〈T (y),ϕ〉=
∫

Ω

fϕ ∀ϕ∈H1(Ω). (3.1)

The ellipticity of the operator T follows by Lemma 2.1 and Proposition 2.4, indeed:

〈T (yh)−T (y),yh−y〉=
∫

Ω

a(u)|∇(yh−y)|2 +

∫
Ω

b(u)(yh−y)2(y2
h+yhy+y2)

≥k‖∇(yh−y)‖2L2(Ω) +
3

4
m2/3‖yh−y‖2L2(Ωd0 )≥C‖yh−y‖

2
H1(Ω),

where C=C(k,m,Ω,d0) is independent of h. Consider now an arbitrary wh∈Vh and

exploit the orthogonality 〈T (yh)−T (y),ϕh〉= 0 ∀ϕh∈Vh, which follows by (3.1).

C‖yh−y‖2H1 ≤〈T (yh)−T (y),yh−y〉= 〈T (yh)−T (y),wh−y〉

≤K‖wh−y‖H1‖yh−y‖H1 ,

where K is the Lipschitz constant of T (see Proposition 2.1). We point out that, in

view of Proposition 2.2, the constant K does not depend on u nor on h, but only on

‖f‖L2(Ω),Ω,d0,k. Hence:

‖yh−y‖H1 ≤
K

C
‖wh−y‖H1 ,

and since the latter inequality holds for each wh∈H1(Ω), it holds:

‖yh−y‖H1(Ω)≤
K

C
inf

wh∈Vh
‖wh−y‖H1(Ω),

and the thesis follows by the interpolation estimates of H1(Ω) functions in Vh.

The convergence of the solution of the discrete direct problem to the continuous

one is an immediate consequence of Lemma 3.1 and of the continuity of the map Sh in

the space Vh, which can be assessed analogously to the proof of Proposition 2.5.

Proposition 3.1. Let {hk},{uk} be two sequences such that hk→0, uk ∈Khk and

uk
L1

−−→u∈K. Then Shk(uk)
H1

−−→S(u).

Define the discrete cost functional, Jε,h :Kh→R

Jε,h(uh) =
1

2
‖Sh(uh)−ymeas,h‖2L2(∂Ω) +α

∫
Ω

(
ε|∇uh|2 +

1

ε
uh(1−uh)

)
, (3.2)

being ymeas,h the L2(Ω)-projection of the boundary datum ymeas in the space of the

traces of Vh functions. The existence of minimizers of the discrete functionals Jε,h

is stated in the following proposition, together with an asymptotic analysis as h→0.
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Taking advantage of Proposition 3.1, the proof is analogous to the one of [20, Theorem

3.2].

Proposition 3.2. For each h>0, there exists uh∈Kh such that Jε,h(uh) =

minvh∈KhJε,h(vh). Every sequence {uhk} s.t. limk→∞hk = 0 admits a subsequence that

converges in H1(Ω) to a minimum of the cost functional Jε.

The strategy we adopt in order to minimize the discrete cost functional Jε,h is to

search for a function uh satisfying discrete optimality conditions, which can be obtained

as in section 2.1:

J ′ε,h(uh)[vh−uh]≥0 ∀vh∈Kh (3.3)

where for each θh∈Kh−uh :={θh=vh−uh; vh∈Kh} it holds

J ′ε,h(uh)[ϑh] =

∫
Ω

(1−k)ϑh∇Sh(uh) ·∇ph+

∫
Ω

ϑhSh(uh)3ph+2αε

∫
Ω

∇uh ·∇ϑh

+
α

ε

∫
Ω

(1−2uh)ϑh,

(3.4)

where ph is the solution in Vh of the adjoint problem (2.15) associated to uh.

It is finally possible to demonstrate the convergence of critical points of the discrete

functionals Jε,h (i.e., functions in Kh satisfying (3.3)) to a critical point of the continuous

one, Jε. The proof can be adapted from the one of [20, Theorem 3.2].

Proposition 3.3. Consider a sequence {hk} s.t. hk→0 and for every k denote as uk

a solution of the discrete variational inequality (3.3). Then there exists a subsequence

of {uk} that converges a.e and in H1(Ω) to a solution u of the continuous variational

inequality (2.14)

3.2. Reconstruction algorithm: a Parabolic Obstacle Problem approach

The necessary optimality conditions that have been stated in Proposition 2.10, together

with the expression of the Fréchet derivative of the cost functional reported in (2.14)

allow to define a Parabolic Obstacle problem, which consists in a very common strategy

in order to search for a solution of optimization problems in a phase-field approach. In

this section we give a continuous formulation of the problem, and provide a formal proof

of its desired properties. We then introduce a numerical discretization of the problem

and rigorously prove the main convergence results.

The core of the proposed approach is to rely on a parabolic problem whose solution

u(·,t) converges, as the fictitious time variable tends to +∞, to an asymptotic state u∞

satisfying the continuous optimality conidtions (2.14). The problem can be formulated

as follows, for a fixed ε>0: let u be the solution of
∫

Ω

∂tu(v−u)+J ′ε(u)[v−u]≥0 ∀v∈K, t∈ (0,+∞)

u(·,0) =u0∈K.
(3.5)

The theoretical analysis of the latter problem is beyond the purposes of this work, and

would require to deal with the severe nonlinearity of the expression of J ′ε(u); conse-

quently, we provide a complete discretization of the Parabolic Obstacle Problem and
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assess its convergence properties. This is performed by setting (3.5) in the discrete

spaces Kh and Vh, and by considering a semi-implicit one-step scheme for the time up-

dating, as in [20]: i.e., by treating explicitly the nonlinear terms and implicitly the linear

ones. We obtain that the approximate solution {unh}n∈N⊂Vh, unh≈u(·,tn) is computed

as:

u0
h=u0∈Kh (a prescribed initial datum)

un+1
h ∈Kh :

∫
Ω

(un+1
h −unh)(vh−un+1

h )+τn

∫
Ω

(1−k)∇Sh(unh) ·∇pnh(vh−un+1
h )

+τn

∫
Ω

Sh(unh)3pnh(vh−un+1
h )+2τnαε

∫
Ω

∇un+1
h ·∇(vh−un+1

h )

+τnα
1

ε

∫
Ω

(1−2unh)(vh−un+1
h )≥0 ∀vh∈Kh, n= 0,1,. ..

(3.6)

The following preliminary result is necessary for the proof of the convergence of the

algorithm:

Lemma 3.2. For each n>0, there exists a positive constant Bn=

Bn(Ω,h,k,‖pnh‖H1 ,‖ynh‖H1 ,
∥∥yn+1
h

∥∥
H1) such that, provided that τn≤Bn it holds

that: ∥∥un+1
h −unh

∥∥2

L2 +Jε,h(un+1
h )≤Jε,h(unh) n>0. (3.7)

Proof. In the expression of the discrete parabolic obstacle problem (3.6), consider

vh=unh: via simple computation, we can point out that

1

τn

∥∥un+1
h −unh

∥∥2

L2 +J(un+1
h )−J(unh)+αε

∥∥∇(un+1
h −unh)

∥∥2

L2 +
α

ε

∥∥un+1
h −unh

∥∥2

L2

≤
∫

Ω

(
a(un+1

h )−a(unh)
)
∇ynh∇pnh+

∫
Ω

(
b(un+1

h )−b(unh)
)
(ynh)3pnh

+
1

2

∥∥yn+1
h −ynh

∥∥2

L2(∂Ω)
+

∫
∂Ω

(yn+1
h −ynh)(yn+1

h −ymeas,h),

where ynh =Sh(unh) and yn+1
h =Sh(un+1

h ). Moreover, by the expression of the adjoint

problem,

RHS=
1

2

∥∥yn+1
h −ynh

∥∥2

L2(∂Ω)
+ I + II ,

where

I =

∫
Ω

(
a(un+1

h )−a(unh)
)
∇ynh ·∇pnh+

∫
Ω

a(unh)∇pnh ·∇(yn+1
h −ynh)

=

∫
Ω

(
a(unh)−a(un+1

h )
)
∇(yn+1

h −ynh) ·∇pnh+

∫
Ω

a(un+1
h )∇yn+1

h ·∇pnh

−
∫

Ω

a(unh)∇ynh ·∇pnh;

16



II =

∫
Ω

(
b(un+1

h )−b(unh)
)
(ynh)3pnh+3

∫
Ω

b(unh)(ynh)2pnh(yn+1
h −ynh) =

=

∫
Ω

b(un+1
h )

(
(ynh)3−(yn+1

h )3
)
pnh+3

∫
Ω

b(unh)(ynh)2pnh(yn+1
h −ynh)

+

∫
Ω

b(un+1
h )(yn+1

h )3pnh−
∫

Ω

b(unh)(ynh)3pnh =

(by the expansion (yn+1
h )3 =

(
ynh +(yn+1

h −ynh)
)3

)

= 3

∫
Ω

(
b(unh)−b(un+1

h )
)
(ynh)2pnh(yn+1

h −ynh)−3

∫
Ω

b(un+1
h )(ynh)pnh(yn+1

h −ynh)2

−
∫

Ω

b(un+1
h )pnh(yn+1

h −ynh)3 +

∫
Ω

b(un+1
h )(yn+1

h )3pnh−
∫

Ω

b(unh)(ynh)3pnh.

Collecting the terms and taking advantage of the expression of the direct problem, we

conclude that

RHS=
1

2

∥∥yn+1
h −ynh

∥∥2

L2(∂Ω)
+

∫
Ω

(
a(unh)−a(un+1

h )
)
∇(yn+1

h −ynh) ·∇pnh

+3

∫
Ω

(
b(unh)−b(un+1

h )
)
(ynh)2pnh(yn+1

h −ynh)

−3

∫
Ω

b(un+1
h )(ynh)pnh(yn+1

h −ynh)2−
∫

Ω

b(un+1
h )pnh(yn+1

h −ynh)3.

We now employ the Cauchy-Schwarz inequality and the regularity of the solutions of

the discrete direct and adjoint problems (in particular the equivalence of the W 1,∞ and

H1 norm in Vh: ‖uh‖W 1,∞ ≤C1‖uh‖H1 , C1 =C1(Ω,h)):

RHS≤C2

∥∥un+1
h −unh

∥∥
L2

∥∥yn+1
h −ynh

∥∥
H1 +C3

∥∥yn+1
h −ynh

∥∥2

H1

with C2 = (1−k)C1‖pnh‖H1 +C1‖ynh‖H1‖pnh‖H1 and C3 = 3C2
1‖ynh‖H1

‖pnh‖H1
+

C3
1‖pnh‖H1

(‖ynh‖H1
+
∥∥yn+1
h

∥∥
H1

)+ 1
2C

2
tr, being Ctr the constant of the trace ine-

quality in H1(Ω). Eventually, similarly to the computation included in the proof of

Proposition 2.10, one can assess that∥∥yn+1
h −ynh

∥∥
H1 ≤C4

∥∥un+1
h −unh

∥∥
L2 ,

with C4 =C4(k,C1,‖ynh‖H1 ,Ω). Hence, we can conclude that there exists a positive

constant Cn=C2C4 +C3C
2
4 such that

1

τn

∥∥un+1
h −unh

∥∥2

L2 +J(un+1
h )−J(unh)≤Cn

∥∥un+1
h −unh

∥∥2

L2 ,

and choosing τn<Bn := 1
1+Cn we can conclude the thesis.

We are finally able to prove the following convergence result for the fully discretized

Parabolic Obstacle Problem:

Proposition 3.4. Consider a starting point u0
h∈Kh. Then, there exists a collection

of timesteps {τn} s.t. 0<γ≤ τn≤Bn ∀n>0. Corresponding to {τn}, the sequence {unh}
generated by (3.6) has a converging subsequence (which we still denote with unh) such

that unh
W 1,∞

−−−−→uh∈Vh, which satisfies the discrete optimality conditions (3.3).
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Proof. Consider a generic collection of timesteps τ̃n satisfying τ̃n≤Bn ∀n>0. Hence,

by Lemma 3.2,

∞∑
n=0

∥∥un+1
h −unh

∥∥2

L2 ≤Jε,h(u0
h) and sup

n
Jε,h(unh)≤Jε,h(u0

h)

which implies that
∥∥un+1

h −unh
∥∥
L2→0 and hence unh is bounded in H1(Ω), and this

implies that also {ynh} and {pnh} are bounded in H1(Ω). According to the definition

of the constants Cn and Bn reported in the proof of Lemma 3.2, this entails that there

exists a constant M>0 such that Cn≤M ∀n>0, and equivalently there exists a positive

constant γ s.t. γ≤Bn. Hence, it is possible to choose, for each n>0, γ≤ τn≤Bn.

Eventually, we conclude that there exists uh∈Kh such that, up to a subsequence, unh→
uh a.e. and in W 1,∞(Ω) (and ynh→yh :=Sh(uh), pnh→ph in H1 and in W 1,∞ as well,

as in the discrete space Vh the L∞ norm is equivalent to the L2(Ω)). We exploit the

expression of the discrete Parabolic Obstacle Problem (3.6) to show that∫
Ω

(1−k)∇ynh ·∇pnh(vh−un+1
h )+

∫
Ω

(ynh)3pnh(vh−un+1
h )+2αε

∫
Ω

∇un+1
h ·∇(vh−un+1

h )

+α
1

ε

∫
Ω

(1−2unh)(vh−un+1
h )≥− 1

τn

∫
Ω

(un+1
h −unh)(vh−un+1

h ) ∀vh∈Kh,

and since - 1
τn
>− 1

γ ∀n, when taking the limit as n→∞, the right-hand side converges

to 0, which entails that uh satisfies the discrete optimality conditions (3.3).

In order to solve (3.6) we resort the Primal-Dual Active Set method, introduced in

[11]. Thus, the final formulation of the reconstruction algorithm is the following:

Algorithm 1 Solution of the discrete Parabolic Obstacle Problem

1: Set n= 0 and u0
h=u0, the initial guess for the inclusion

2: while
∥∥unh−un−1

h

∥∥
L∞(Ω)

>tolPOP do

3: solve the direct problem (2.3) with u=unh
4: solve the adjoint problem (2.15) with u=unh
5: compute un+1 solving (3.6) via PDAS algorithm

6: update n=n+1;

7: end while

8: return unh

Remark 3.1. It is a common practice to increase the performance of a reconstruction

algorithm taking advantage of multiple measurements. In this context, it is possible

to suppose the knowledge of Nf different measurements of the electric potential on

the boundary, ymeas,j j= 1, ·· · ,Nf , associated to different source terms fj. There-

fore, instead of tackling the optimization of the mismatch functional J as in (2.10),

it is possible to introduce the averaged cost functional JTOT (u) = 1
Nf

∑Nf
j=1J

j(u), where

Jj(u) = 1
2‖Sj(u)−ymeas,j‖2L2(∂Ω), being Sj(u) the solution of the direct problem (2.3)
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with source term f =fj. The process of regularization, relaxation and computation of

the optimality conditions is exactly the same as for J , and yields the same reconstruction

algorithm as in Algorithm 1, where at each timestep the solution of Nf direct and adjoint

problem must be computed.

4. Numerical results In this section we report various results obtained ap-

plying Algorithm 1. In all the numerical experiments, we consider Ω = (−1,1)2 and we

introduce an uniform and shape regular tessellation Th of triangles. Due to the lack of

experimental measures of the boundary datum ymeas, we make use of synthetic data,

i.e., we simulate the direct problem via the Finite Element method, considering the

presence of an ischemic region of prescribed geometry, and extract the value on the

boundary of the domain. In order to avoid to incurr an inverse crime (i.e. the perfor-

mance of the reconstruction algorithm are improved by the fact that the exact data are

synthetically generated with the same numerical scheme adopted in the algorithm) we

introduce a more refined mesh T exh on which the exact problem is solved, and interpolate

the resulting datum ymeas on the mesh Th.

In the following test cases, we apply Algorithm 1 for the reconstruct inclusions of

different geometries, in order to investigate the effectiveness of the introduced strategy.

We use the same computational mesh Th (mesh size h= 0.04, nearly 6000 elements)

for the numerical solution of the boundary value problems involved in the procedure,

except for the generation of each synthetic data which is performed on different finer

meshes T exh . According to Remark 3.1, we make use of Nf = 2 different measurements,

associated to the source terms f1(x,y) =x and f2(x,y) =y. The main parameters for

all the simulations lie in the ranges reported in Table 4.1. We make use of the same

relationship between ε and τ as in [20]. The initial guess for each simulation is u0≡0.

α ε τ tolPOP

10−4÷10−3 1/(8π) (0.01÷0.1)/ε 10−4

Table 4.1: Range of the main parameters

In Figure 4.1 we report some of the iterations of Algorithm 1 for the reconstruction

of a circular inclusion (α= 0.0001, τ = 0.01/ε). The boundary ∂ω is marked with a

black line, which is superimposed to the contour plot of the approximation of the in-

dicator function unh at different timesteps n. The algorithm converged after Ntot= 568

iterations, corresponding to a final (fictitious) time Ttot= 1427.54. In Figure 4.2 we

investigate the effectiveness of the algorithm to reconstruct inclusions of rather compli-

cated geometry. For each test case, we show the contour plot of the final iteration of the

reconstruction (the total number of iterations N and the final time T are reported in the

caption), and the boundary of the exact inclusion is overlaid in black line. Moreover,

each result is equipped with the graphic (in semilogarithmic scale) of the evolution of

the cost functional Jε, split into the components JPDE(u) = 1
2‖S(u)−ymeas‖2L2(∂Ω) and
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(a) n= 30 (b) n= 90 (c) n= 568

Figure 4.1: Reconstruction of a circular inclusion: successive iterations

Jregularization(u) =αε‖∇u‖2L2(Ω) + α
ε

∫
Ω
u(1−u). The reported results consist in approx-

(a) Ntot= 3491, Ttot= 3509.54,

α= 0.001, τ = 0.02/ε

(b) Ntot= 1537, Ttot= 772.58,

α= 0.0001, τ = 0.02/ε

(c) Ntot= 4670, Ttot= 2347.40,

α= 0.0001, τ = 0.02/ε

(d) Ellipse: evolution of Jε (e) Rectangle: evolution of Jε (f) Two circles: evolution of Jε

Figure 4.2: Reconstruction of various inclusions

imations of minimizers of Jε in K: they are smooth function and range between 0 and

1. They show large regions in which they attain the limit values 0 and 1, and a region

of diffuse interface between them, whose thickness is about ε/2. As Figures 4.1 and

4.2 show, the algorithm is able to reconstruct inclusion of rather complicated geometry.

The identification of smooth inclusion is performed with higher precision, whereas it

seems that the accuracy is low in presence of sharp corners. We point out that we do

not need to have any a priori knowledge on the topology of the inclusion ω, i.e., the
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number of connected components is correctly identified.

We now assess that the final result of the reconstruction is independent of the ini-

tial guess imposed as a starting point of the Parabolic Obstacle problem. In Figure 4.3

we compare the behaviour of the algorithm applied to the reconstruction of a circular

inclusion (the same as in Figure 4.1), where we impose a different initial datum with

respect to the constant zero function. In the first experiment, we start from an initial

datum which is the indicator function of an arbitrarily chosen region. In the second

one, we impose as a starting point the indicator function of a sublevel of the topological

gradient of the cost functional J . As investigated in [10], the topological gradient is a

powerful tool for the detection of small-size inclusions, which yield a small perturbation

in the cost functional with respect to the background (unperturbed) case. The position

of a small inclusion is easily identified by searching for the point where the topological

gradient of J attains its (negative) minimum. As the information given by the topologi-

cal gradient G has shown to be useful even in the case of large-size inclusions (see, e.g.,

[7], [14]), we take advantage of it by computing G (see Theorem 3.1 in [10]), setting a

threshold Gthr and defining u0 =χ{G≤Gthr}. The results reported in Figure 4.3 show the

(a) Initial guess: arbitrary (b) Intermediate: n= 60 (c) Final: Ntot= 661, Ttot= 1661.27

(d) Initial guess: topological (e) Intermediate: n= 50 (f) Final: Ntot= 489, Ttot= 1228.99

Figure 4.3: Reconstruction of a circular inclusion with different initial conditions

starting point of the algorithm, an intermediate iteration and the final reconstruction.

In both cases we set α= 0.001, ε= 1/(8π) and τ = 0.1/ε. We underline that the result in

each case is similar to the one depicted in Figure 4.1, but through the second strategy

it was possible to perform a smaller number of iterations.

We finally verify the stability result obtained in Proposition 2.7, by testing the

21



reconstruction algorithm when the measured boundary data are perturbed by a small

amount of noise. In particular, we consider yp=ymeas+pη, being η a Gaussian random

variable with null mean and standard deviation equal to maxΩymeas−minΩymeas and

p∈ [0,1] the noise level. In Figure 4.4 we report the final results of the reconstruction

algorithm when applied to the boundary measurements related to an elliptical inclusion

perturbed with different noise level. For each simulation, we fix α= 0.001 and ε= 1
8π .

In Figure 4.5, instead, we investigate the effect of the regularization parameter α in

(a) p= 0.01; Ntot= 430 (b) p= 0.05; Ntot= 503 (c) p= 0.1; Ntot= 1120

Figure 4.4: Reconstruction of an elliptical inclusion with noisy measurements

the reconstruction from noisy data, fixing p= 0.1. We observe that a higher value of α

may help in filtering the information coming from the noise, avoiding to let it spoil the

reconstruction, although it might result in an overall loss of precision.

(a) α= 0.001; Ntot= 1120 (b) α= 0.003; Ntot= 751 (c) α= 0.01; Ntot= 462

Figure 4.5: Reconstruction of an elliptical inclusion with noisy measurements

5. Comparison with the Shape Derivative approach In the previous secti-

ons, we have analyzed in detail the phase-field relaxation of the minimization problem

expressed in (2.11). We now aim at describing the relationship between this method and

a shape derivative based approach, which consists in updating the shape of the inclu-

sion to be reconstructed by perturbing its boundary along the directions of the vector

field which causes the greatest descent of the cost functional. Such a direction can be

deduced by computing the shape derivative of the functional itself. In this section, we
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first theoretically investigate the relationship between the shape derivative of the cost

functional Jreg and the Fréchet derivative of Jε and then report a comparison between

the numerical results of the two algorithms in a set of benchmark cases.

5.1. Sharp interface limit of the Optimality Conditions In order to study

the relationship between the optimality conditions in the phase-field approach and the

ones derived in the sharp case, we follow an analogous approach as in [12]. First of

all, in Proposition 5.1 we introduce the necessary optimality condition for the sharp

problem (2.11), taking advantage of the computation of the material derivative of the

cost functional. We then define in Proposition 5.3 similar optimality conditions for

the relaxed problem (2.12), which are related but not equivalent to the one stated in

(2.13)-(2.14) through the Fréchet derivative. In Proposition 5.4 we finally assess the

convergence of the phase-field optimality condition to the sharp one when ε→0.

For the sake of simplicity, in this section we will refer to Jreg as J . Consider the

minimization problem (as in (2.11)):

argmin
u∈X0,1

J(u); J(u) =
1

2
‖S(u)−ymeas‖2L2(∂Ω) +αTV (u). (5.1)

Since u∈X0,1 implies that u=χω, being ω a finite-perimeter subset of Ω, we can perturb

u by means of a vector field φt : Ω→R2, φt(x) =x+ tV (x), being

V ∈C1(Ω) s.t. V (x) = 0 in Ωd0 ={x∈Ω s.t. dist(x,∂Ω)≤d0}. (5.2)

Consider the family of functions {ut}: ut=u◦φ−1
t : we can compute the shape derivative

of the functional J in u along the direction V (see [21]) as

DJ(u)[V ] := lim
t→0

J(ut)−J(u)

t
, (5.3)

where J(ut) is the cost functional evaluated in the deformed domain Ωt=φt(Ω) but,

according to (5.2), Ωt and Ω are the same set, thus we do not adopt a different notation.

We prove the following result:

Proposition 5.1. If u is a solution of (5.1) and f ∈L2(Ω) satisfies assumption (2.2),

then

DJ(u)[V ] = 0 for all the smooth vector fields V . (5.4)

The shape derivative is given by:

DJ(u)[V ] =

∫
∂Ω

(S(u)−ymeas)Ṡ(u)[V ]+

∫
Ω

(divV −DV ν ·ν)d|Du|, (5.5)

where d|Du|= δ∂ωdx, ν is the generalized unit normal vector (see [27]) and Ṡ(u)[V ] =: Ṡ,

the material derivative of the solution map, solves∫
Ω

a(u)∇Ṡ ·∇v+

∫
Ω

b(u)3S(u)2Ṡv=−
∫

Ω

a(u)A∇S(u) ·∇v−
∫

Ω

b(u)S(u)3vdivV+∫
Ω

div(fV )v ∀v∈H1(Ω),

(5.6)
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being A=divV −(DV +DV T ).

Proof. We start by deriving the formula of the material derivative of the solution

map. Define S0 =S(u) and St : Ω→R, St=S(ut)◦φt. Then, applying the change of

variables induced by the map φt, it holds that∫
Ω

a(u)A(t)∇St ·∇v+

∫
Ω

b(u)S3
t v|detDφt|=

∫
Ω

(f ·φt)v|detDφt| ∀v∈H1(Ω), (5.7)

where A(t) =Dφ−Tt Dφ−1
t |detDφt|. By computation,

d

dt
A(t) =A= (divV )I−(DV t+DV ) and

d

dt
|detDφt|=divV.

Subtract (2.3) from (5.7) and divide by t: then wt= St−S0

t is the solution of∫
Ω

a(u)A(t)∇wt ·∇v+

∫
Ω

b(u)qtwtv|det(Dφt)|=−
∫

Ω

a(u)
A(t)−I

t
∇S0 ·∇v

−
∫

Ω

|det(Dφt)|−1

t
b(u)S3

0v+

∫
Ω

1

t
(f ◦φt)v|det(Dφt)|−

∫
Ω

1

t
fv

(5.8)

∀v∈H1(Ω), where the norm of the right-hand side in the dual space of H1(Ω) is bounded

by ∥∥∥∥A−It
∥∥∥∥
L∞(Ω)

‖S0‖H1(Ω) +

∥∥∥∥ |det(Dφt)|−1

t

∥∥∥∥
L∞(Ω)

‖S0‖H1(Ω)

+

∥∥∥∥ |det(Dφt)|−1

t

∥∥∥∥
L∞(Ω)

‖f‖L2(Ω) +C(‖V ‖C(Ω))‖f‖H1(Ω)≤CF ,

being CF independent of t. Moreover, the matrix A(t) is symmetric positive definite:

(A(t)y) ·y≥ 1
2‖y‖

2 ∀y∈R2,∀t. Together with the property that qt=u2
t +utu+u2≥ 3

4u
2,

and thanks to Proposition 2.4 and to the Poincaré inequality in Lemma 2.1,

‖wt‖2H1 ≤C
(
k‖∇wt‖2L2 +

3

4
m2/3‖wt‖2L2(Ωd0 )

)
≤CF ‖wt‖H1 .

Thus, ‖wt‖H1 is bounded independently of t, from which it follows that ‖St−S0‖H1(Ω)≤

Ct and that every sequence {wn}={wtn , tn→0} is bounded in H1(Ω), thus wt
H1

−−⇀w∈
H1(Ω). We aim at proving that w is also the limit of wt in the strong convergence,

which entails that

Ṡ(u)[V ] := lim
t→0

St−S0

t
=w.

First of all, we show that w is the solution of problem (5.6). It follows from (5.8), since

qtwt= 1
t (S

3
t −S3

0) = 1
t ((S0 + twt)

3−S3
0) = 3S2

0wt+3tS0w
2
t + t2w3

t , that∫
Ω

a(u)A(t)∇wt ·∇v+

∫
Ω

b(u)3S2
0wtv|detDφt|=−

∫
Ω

a(u)
A(t)−I

t
∇S0 ·∇v

−
∫

Ω

|detDφt|−1

t
b(u)S3

0v−
∫

Ω

b(u)3tS0w
2
t v|detDφt|−

∫
Ω

b(u)t2w3
t v|detDφt|

+

∫
Ω

(f ◦φt)
|detDφt|−1

t
v−
∫

Ω

(f ◦φt)−f
t

v ∀v∈H1(Ω).

(5.9)
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Taking the limit as t→0 and by the weak convergence of wt in H1, we recover the same

expression as in (5.6). One may eventually show that wt
H1

−−→w. In order to do this we

start proving that∫
Ω

a(u)A(t)|∇wt|2 +

∫
Ω

b(u)|detDφt|3S2
0w

2
t →

∫
Ω

a(u)|∇w|2 +

∫
Ω

b(u)3S2
0w

2. (5.10)

Indeed, take (5.9) and substitute v=wt: using the weak convergence of wt in the right-

hand side, we obtain that∫
Ω

a(u)A(t)|∇wt|2 +

∫
Ω

b(u)|detDφt|3S2
0w

2
t →−

∫
Ω

a(u)A∇S0 ·∇w−
∫

Ω

divV b(u)S3
0w

+

∫
Ω

fw divV −
∫

Ω

∇f ·V w (5.6)
=

∫
Ω

a(u)|∇w|2 +

∫
Ω

b(u)3S2
0w

2.

We then compute:∫
Ω

a(u)A(t)|∇(wt−w)|2 +

∫
Ω

b(u)3S2
0(wt−w)2|detDφt|=∫

Ω

a(u)A(t)|∇wt|2 +

∫
Ω

a(u)A(t)|∇w|2−2

∫
Ω

a(u)A(t)∇wt ·∇w

+

∫
Ω

b(u)3S2
0w

2
t |detDφt|+

∫
Ω

b(u)3S2
0w

2|detDφt|−2

∫
Ω

b(u)3S2
0wtw|detDφt|.

(5.11)

Using (5.10), the convergence of A to I and of |detDφt| to 1, and the fact that wt
H1

−−⇀w,

we derive that ∫
Ω

a(u)|∇(wt−w)|2 +

∫
Ω

b(u)3S2
0(wt−w)2→0

A combination of the Proposition 2.4 and of the Poincaré inequality in Lemma 2.1 allows

to conclude that also ‖wt−w‖H1→0.

We now prove the necessary optimality conditions for the optimization problem

(5.1). The derivative of the quadratic part of the cost functional J can be easily com-

puted by means of the material derivative of the solution map:

lim
t→0

1

2

∫
∂Ω

(S(ut)−ymeas)2|det(Dφt)|−(S0−ymeas)2

t
(since S(ut) =St on ∂Ω)

= lim
t→0

1

2

∫
∂Ω

(St−ymeas)2 |det(Dφt)|−1

t
+ lim
t→0

1

2

∫
∂Ω

(St−ymeas)2−(S0−ymeas)2

t

=
1

2

∫
∂Ω

(S0−ymeas)2divV +

∫
∂Ω

Ṡ(u)[V ](S0−ymeas),

(5.12)

and the first integral in the latter expression vanishes since V = 0 on Ωd0 . On the other

hand, using Lemma 10.1 of [27] and the remark 10.2, we recover the expression for the

derivative of the Total Variation of u, which is the same reported in (5.5).

The optimality conditions reported in (5.4) are, at the best of our knowledge, the

most general result which can be obtained in this case, i.e. by simply assuming that
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u=χω and ω is a set of finite perimeter. We point out that, assuming more a priori

information on u, it is possible to recover from (5.5) the expression of the shape derivative

of the cost functional J . The following proposition can be rigorously proved by means

of an argument similar as the one used in [2], except for the derivative of the perimeter

penalization, which can be found in Section 9.4.3 in [21].

Proposition 5.2. Suppose that ω⊂Ω is open, connected, well separated from the

boundary ∂Ω and regular (at least of class C2), and u=χω. Then, the expression of the

shape derivative of the cost functional J along a smooth vector field V is:

DJ(u)[V ] =

∫
∂ω

[
(1−k)

(
∇τS(u) ·∇τw+

1

k
∇νS(u)e ·∇νwe

)
+S(u)3w+H

]
V ·ν,

(5.13)

where w is the solution of the adjoint problem (see (2.15)). The gradients ∇S(u) and

∇w are decomposed in the normal and tangential component with respect to the boundary

∂ω, and due to the transmission condition of the direct problem their normal components

are discontinuos across ∂ω: the valued assumed in Ω\ω is marked as ∇νS(u)e. The

term H is instead the curvature of the boundary.

For the sake of completeness, we point out that the latter result can be easily genera-

lized to the case in which ω is the union of Nc disjoint, well separated, components, each

of them satisfying the expressed hypotheses. Thanks to the results recently obtained in

[9], we expect formula (5.13) to be valid also under milder assumption, in particular for

polygons.

We aim at demonstrating that the expression of the shape derivative reported in

(5.4) is the limit, as ε→0, of the shape derivative of the relaxed cost functional Jε

(defined as in (5.3), replacing u by uε and J by Jε). In order to accomplish this result,

we need to introduce necessary optimality conditions for the relaxed problem (2.12)

which are different from the ones reported in Proposition 2.10 and can be derived by

the same technique as in Proposition 5.1 as shown in the following result.

Proposition 5.3. If uε is a solution of (2.12), then

DJε(uε)[V ] = 0 for all the smooth vector fields V , (5.14)

The expression of the derivative is given by:

DJε(uε)[V ] =

∫
∂Ω

(S(uε)−ymeas)Ṡ(uε)[V ]+αε

∫
Ω

|∇uε|2divV

−2αε

∫
Ω

DV∇uε ·∇uε+
α

ε

∫
Ω

uε(1−uε)divV
(5.15)

where Ṡ(uε)[V ] solves the same problem as in (5.6), replacing u with uε.

Proof. The same strategy as in the proof of Proposition 5.1 can be adapted to

compute Ṡ(uε)[V ] and the derivative of the first term of the cost functional. We now

derive with the same computational rules the relaxed penalization term. Recall

Fε(uε) =αε

∫
Ω

|∇uε|2 +
α

ε

∫
Ω

ψ(uε),
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being ψ :R→R, ψ(x) =x(1−x). After the deformation from uε to uε ◦φ−1
t and applying

the change of variables induced by φt,

Fε(uε ◦φ−1
t ) =αε

∫
Ω

A(t)∇uε ·∇uε+
α

ε

∫
Ω

ψ◦uε ◦φ−1
t .

Hence,

Ḟε(uε)[V ] = lim
t→0

Fε(uε ◦φ−1
t )−Fε(uε)
t

=αε

∫
Ω

A∇uε ·∇uε+αε
α

ε

∫
Ω

ψ(uε)divV =

=αε

∫
Ω

|∇uε|2divV −αε
∫

Ω

(DV +DV T )∇uε ·∇uε+
α

ε

∫
Ω

uε(1−uε)divV,

which is the same expression as in (5.15), since DV T∇v ·∇v=DV∇v ·∇v.

We point out that the optimality conditions deduced in the latter proposition are

not equivalent to the ones expressed in Proposition 2.10 via the Fréchet derivative of

Jε. Nevertheless, if uε satisfies (2.13)-(2.14), then it also satisfies (5.14) (it is sufficient

to consider in (2.13) v=uε ◦φ−1
t , which belongs to K thanks to the regularity of V ),

whereas the contrary is not valid in general. In particular, due to the regularity of the

perturbation fields V , the optimality conditions (5.14) do not take into account possible

topological changes of the inclusion: for example, the number of connected components

of ω cannot change. We remark that this holds also for the optimality conditions (5.4) for

the sharp problem, and consists in a limitation for the effectiveness of the reconstruction

via a shape derivative approach: the initial guess of the reconstruction algorithm and

the exact inclusion must be diffeomorphic.

We are now able to show the sharp interface limit of the expression of the shape

derivative of the relaxed cost functional Jε as ε→0, which is done in the following

proposition.

Proposition 5.4. Consider a family ūε s.t. ūε∈K ∀ε>0 and ūε
L1

−−→ ū∈BV (Ω) as

ε→0. Then,

DJε(ūε)[V ]→DJ(ū)[V ] for every smooth vector field V .

Proof. We follow a similar argument as in the proof of [12, Theorem 21]. Thanks

to Proposition 2.5, ūε
L1

−−→ ū ⇒ S(ūε)
H1

−−→S(ū). Also Ṡ(ūε)[V ]
H1

−−→ Ṡ(ū)[V ]: the proof is

done by subtracting the equations of which Ṡ(ūε)[V ] and Ṡ(ū)[V ] and verifying that the

norm of their difference is controlled by the norm of S(ūε)−S(ū) in H1(Ω). Thanks to

these results, surely∫
Ω

(S(uε)−ymeas)Ṡ(ūε)[V ]→
∫

Ω

(S(u)−ymeas)Ṡ(ū)[V ].

Eventually, the convergence

αε

∫
Ω

|∇ūε|2divV −2αε

∫
Ω

DV∇ūε ·∇ūε+
α

ε

∫
Ω

ūε(1− ūε)divV →
∫

Ω

(divV −DV ν ·ν)d|Dū|
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is proved in [25], Theorem 4.2 (see also annotations in [12], proof of Theorem 21).

In particular, we point out that this implies, together with Proposition 2.9, that the

expression of the optimality condition for the phase field problem converges, as ε→0,

to the one in the sharp case.

5.2. Comparison with the shape derivative algorithm In this section, we

report some results of the application of the algorithm based on the shape derivative.

In the implementation, we take advantage of the Finite Element method to solve the

direct and adjoint problems and compute the shape gradient as in (5.13). We consider

an initial guess for the inclusion (in all the simulations reported, the initial guess is a disc

centered in the origin with radius 0.02) and discretize its boundary with a finite number

of points, which always coincide with vertices of the numerical mesh. We iteratively

perturb the inclusion by moving the boundary with a normal vector field V which is the

projection in the Finite Element space of the shape gradient reported in (5.13) (see e.g.

[22] for more details). After the descent direction is determined, a backtracking scheme

is implemented (see [36]), in order to guarantee the decrease of the cost functional J

at each iteration. As in the case of Algorithm 1, we start from the initial guess u0≡0

and take advantage of Nf = 2 measurements, associated to the same source terms. The

main parameters of this set of simulations are reported in Table 5.1.

α maxstep tol

10−3 10 10−6

Table 5.1: Values of the main parameters

In Figure 5.1 we report the results of the reconstruction with the shape gradient

algorithm compared to the ones of the Parabolic Obstacle problem (with ε= 1
16π and

with mesh adaptation). Each result is endowed with a plot of the evolution of the cost

functional throughout time (in particular, of JPDE(u) = 1
2‖S(u)−ymeas‖L2(∂Ω)). The

reconstruction achieved by the shape gradient algorithm is qualitatively as accurate as

the phase-field one. The first method is less expensive in terms of number of iterati-

ons. Nevertheless, it requires a priori knowledge about the topology of the unknown

inclusion.
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