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Engineering models of SVEGM are usually calibrated from strong-motion dense array data from past 
earthquakes and neglect the issues related to the proximity to the seismic source. Several models of 
spatial coherency functions, both theoretical and empirical, have been developed on the basis of 
spectral estimation of the recorded data and regression fitting of an analytical function to the empirical 
coherency estimates (see e.g. Harichandran and Vanmarcke, 1986; Abrahamson et al., 1991a; 1991b; 
Luco and Wong, 1986; Ancheta et al., 2011). However, in spite of the increasing availability of strong 
motion records, observations at dense arrays are still very scarce even on a worldwide scale, especially 
in near-source conditions scale.  
As an alternative powerful method, numerical simulations of earthquake ground, based on physical 
models of the seismic source, the propagation path from the source to the site and local geologic 
irregularities, can be used to simulate spatially variable ground motion when recorded data are lacking. 
The main aim of this paper is to evaluate the spatial variability of ground motions using the results of a 
wide set of 3D physics-based numerical simulations, with emphasis on near-fault conditions. Note that 
this approach has the great advantage of allowing one to investigate the dependence of SVEGM on 
physical factors, such as magnitude, near-source effects, local site conditions, for a variety of 
“virtual”, albeit realistic, conditions. The numerical dataset includes earthquake ground motion 
scenarios in different areas worldwide, namely, in the Po Plain and Marsica region (Italy), in Santiago 
(Chile) and in Wellington (New Zealand), with moment magnitude MW between 6 and 7 and 
epicentral distance Repi < 30 km. The numerical results are obtained using the high-performance 
computer code SPEED (http://speed.mox.polimi.it), based on the Discontinuous Galerkin Spectral 
Element method (Mazzieri et al., 2013).  
For each case study, lagged coherency estimates are provided for both horizontal (fault-normal and 
fault-parallel) and vertical components of motion based on a standard spectral analysis and, then, are 
compared with the semi-empirical and empirical models available in the literature. To better identify 
the physical aspects underlying the spatial variability of motion, the dependence of coherency 
estimates on a variety of parameters, such as magnitude, source-to-distance, azimuth, fault-normal vs 
fault-parallel components, horizontal vs vertical components, site conditions, is presented and 
discussed.  
 

2. OVERVIEW ON SPATIAL VARIABILITY OF EARTHQUAKE GROUND MOTION  
 
2.1 Theoretical background 
 
The importance of SVEGM has been recognized for a long time in earthquake-resistant design and 
analysis of large and extended structures and is associated with three different factors (see e.g. 
Kramer, 1996; Harichandran, 1999):  
(i) wave passage effect, arising from differences in the arrival times of seismic waves at separate 

stations on ground surface;  
(ii) extended source and ray-path effects, arising from differences in the manner of superposition of 

waves (a) arriving from an extended source, especially in the near-source region, and (b) scattered 
by irregularities and heterogeneities along the path from the source to the site;  

(iii) local site effects, arising from differences in local sub-surface soil conditions at each station, 
which may alter the amplitude and frequency content of seismic waves propagating from the 
bedrock to the ground surface. 

The common approach to quantify SVEGM in engineering applications is the evaluation of the spatial 
coherency function (for a thorough overview see Zerva, 2009). The coherency of the seismic motions 
is obtained from the cross spectral density of the time histories between two sites, normalized with 
respect to the corresponding power spectral density. More specifically, given a pair of motions 
recorded at two discrete locations j and k at a separation distance d, the coherency jk(,d), function of 
both circular frequency  (or frequency f, with = 2f) and distance (d), can be computed as follows: 
 

)(S)(S

)d,(S
)d,(

kkjj

jk
jk







     (1) 

where:  
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Sjj() and Skk() are the smoothed power spectral density at stations j and k, respectively, 
defined as the Fourier transform of the auto covariance function of the two signals, Ckk(t) and 
Cjj(t); 

- Sjk(,d) is the smoothed cross spectrum between stations j and k, defined as the Fourier 
transform of the cross covariance function, Cjk(t), between stations j and k. 

The coherency function of Eq.(1) is a complex function and can be therefore expressed as follows:  
 

 )d,(iexp)d,()d,( jkjkjk      (2) 

 
where |jk(,d)|, termed  lagged coherency (note that 0 ≤ |jk(,d)| ≤ 1), is the absolute value and 
jk(,d) is the phase spectrum. The lagged coherency and is the most commonly used coherency 
measure in engineering applications and it provides, at each frequency f, the degree of “similarity” of 
earthquake ground motions, i.e., the extent to which data recorded by two stations at distance d are 
correlated. It is expected that at small separation distances and at low frequencies motions are highly 
correlated and, therefore, the lagged coherency will tend to unity for d or f approaching zero. On the 
other hand, at large separation distances and at high frequencies, motions tend to be completely 
uncorrelated and, therefore, theoretically, the lagged coherency will tend to zero for large values of d 
or f.  
 
2.2 Engineering models of spatial coherency  
 
A variety of spatial coherency models has been developed on the basis of the spectral estimation of 
recorded data and regression fitting of an analytical function to the empirical coherency estimates. 
There are two main classes of coherency models: semi-empirical and empirical models. The semi-
empirical models differ from the empirical ones as they provide functional forms obtained from 
analytical derivations, where model parameters require calibration from recorded data. Examples of 
semi-empirical models are: Luco and Wong (1986), Somerville et al. (1988), Der Kiureghian (1996) 
and Zerva and Harada (1997). Among these studies, one of the most widely used models in 
engineering applications is the Luco and Wong (1986) model, referred to hereafter as LW86. It is 
based on the analysis of shear waves propagating through random media and gives the following 
expression for the lagged coherency:  
 

  ]dexp[)d,( 2       (3) 

 
where  is the coherency drop parameter controlling the exponential decay of the coherency with 
distance and frequency; increasing values of  implies a higher decay of coherency as d and  
increase. A median value of  equal to 2.510-4  s/m is suggested by the authors. The functional form 
of Eq. (3) will be largely used in this work.  
The development of empirical models began with the analysis of the first seismic data recorded at the 
Strong Motion Array - Phase 1 (SMART-1), located at Lotung, Taiwan, in an alluvial valley. The 
SMART-1 array is a two-dimensional surface array consisting of 37 stations arranged in three 
concentric circles with a minimum spacing of 100 m. Relying on SMART-1 array data, various 
researchers proposed empirical model for lagged coherency, such as Loh (1985), Harichandran and 
Vanmarcke (1986), Oliveira et al. (1991), Abrahamson et al. (1991a; 1991b) and Ancheta et al. 
(2011). In EPRI (2006; 2007) a spatial coherency model, derived from the analysis of different dense 
arrays worldwide, was proposed.  
 
3. ESTIMATING SPATIAL COHERENCY FROM 3D PHYSICS-BASED NUMERICAL 

SIMULATIONS 
 
In this work, spatial coherency estimates are obtained using 3D physics-based numerical simulations 
of earthquake shaking through the spectral element code SPEED (Mazzieri et al. 2013). Deterministic 
approaches, like the spectral element method adopted in this study, rely on the rigorous numerical 
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solution of the seismic wave propagation problem and can provide synthetic ground motion time 
histories consistent with the 3D model of the seismic source, of the source-to-site propagation path and 
of local site response.  
This numerical approach has the following main advantages:  
(i) possibility to locate an arbitrary number of receivers at the desired locations, with the desired 

inter-station distances and at desired soil conditions (soft/stiff soil vs rock);  
(ii) generation of arbitrary earthquake scenarios with prescribed magnitude at a given source-to-site 

distance, giving the possibility to study near-source motions;  
(iii) possibility to investigate the physical mechanisms underlying the SVEGM in a more systematic 

way than empirical models can do owing to the lack of data;  
(iv) finally, application of homogeneous spectral processing techniques, avoiding the inevitable issues 

related to the subjectivity in the numerical processing of data from different arrays and during 
different events.  

On the other hand, the main drawback of 3D physics-based numerical simulations is the frequency 
threshold of computed results, hardly larger than about 2 Hz, and the related limit in the minimum 
spacing between mesh nodes.  
 
3.1 Case studies  
 
As a numerical dataset, 3D physics-based synthetic motions obtained at dense arrays in different areas 
worldwide are used, as provided in Table 1. Figure 1 shows the location of the dense networks for the 
case studies under consideration together with the surface projection of the causative faults and the 
epicenter location. Note that: 

- for Marsica (Central Italy): the historical MW 6.7 Jan 13 1915 earthquake together with a 
smaller (MW 6.0) hypothetical earthquake, originating from the same normal fault, and three 
arrays (two inside the soft basin, A1A2, soil class C/D with shear wave velocity at ground 
surface VS = 180 m/s and one on outcropping bedrock with VS = 1000 m/s) are taken into 
account;  

- for Emilia (Northern Italy): only the MW 6.0 May 29 2012 earthquake, with reverse focal 
mechanism, and 4 different arrays (A1A4) in the Po Plain (soil class C with VS = 300 m/s), 
are considered; 

- for Wellington (New Zealand): three hypothetical earthquake scenarios originating from a 
strike-slip fault, with MW = 6.0, 6.5 and 7.0, and two arrays (A1A2) in the Wellington bay 
area (soil class C with VS = 300 m/s), are considered;  

- for Santiago (Chile): three hypothetical earthquakes scenarios, with MW = 6.0, 6.5 and 6.7, 
originating from the reverse San Ramon fault bordering the Eastern edge of Santiago basin, 
and two arrays (A1 inside the basin – soil class B with VS = 400 m/s and A2 on rock with VS = 
2400 m/s), are simulated.  

 
Table 1. List of 3D numerical simulations used for the estimation of SVEGM. 

 

Location Arrays 
EC8 site 
class 

Earthquake 
Scenario 

Fault 
Type 

MW 
fmax 
(Hz) 

References 

Marsica,  
Central Italy A1A3 

A1A2: C/D 
A3: A 

Hypothetical 
Jan 13 1915 

Normal 
6.0 
6.7 

2.0 
Paolucci et al.  
(2016) 

Emilia,  
Northern Italy A1A4 A1A4: C May 29, 2012 Reverse 6.0 1.5 

Paolucci et al.  
(2015) 

Wellington,  
New Zealand  A1A2 A1A2: C Hypothetical Strike-slip

6.0 
6.5 
7.0 

2.0 
Paolucci et al.  
(2014) 

Santiago,  
Chile A1A2 

A1: B 
A2: A 

Hypothetical Reverse 
6.0 
6.5 
6.7 

2.0 
Paolucci et al.  
(2014)  
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constant value of , as routinely done in engineering practice for the analysis and design of 
extended structures, should be evaluated with care;  

- in conditions of proximity to the seismic source, spatial coherency tends to be smaller than 
that given by empirical models, especially at small separation distances, owing to the loss of 
coherency induced by the extended seismic source, directivity/directionality effects and 
propagation patterns in complex 3D geological structures, such as alluvial valleys;  

- typically, coherency of FN component tends to be larger than that of FP component, 
regardless of magnitude and of site condition (soft/stiff soil or rock), because near-source 
motion polarizes along the direction perpendicular to fault strike owing to the synchronous 
arrival of waves radiated by the rupture wavefront; 

- coherency of vertical motion, as compared to horizontal one, turns out to be magnitude 
dependent: for lower magnitudes, coherency of horizontal components tends to be larger than 
that of vertical component, while a reverse trend is found for larger earthquakes, especially at 
small to intermediate separation distances;  

- a clear dependence on magnitude is not found: a loss of coherency for increasing magnitude is 
observed for the majority of case studies, as intuitively expected, but a reverse behavior is 
found for Marsica earthquakes. Such an ambiguity is most likely due to the interaction of 
different factors affecting ground shaking (slip pattern on the fault, source-to-site 
configurations, source-basin interaction) which cannot be easily distinguished in the 
synthetics. Note that contradictory findings are also reported in the literature (Abrahamson et 
al., 1991a; Somerville et al., 1988; EPRI, 2007; AfifChaouch et al., 2016); 

- simulations confirm a strong dependence of coherency on site condition (soft/stiff soil vs 
rock): for all ground motion components, spatial coherency on soft soils can be significantly 
lower than that on rock, owing to the influence of local subsurface irregularities which modify 
the amplitude and frequency content of seismic waves.  

Future work will extend the analysis to further case studies to confirm and better explain and the role 
played by some important physical factors, such as ground motion component, magnitude, source-to-
site azimuth, on SVEGM.  
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