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Abstract The saddle points are locations where the net gravitational accelera-
tions balance. These regions are gathering more attention within the astrophysics
community. Regions about the saddle points present clean, close-to-zero back-
ground acceleration environments where possible deviations from General Rela-
tivity can be tested and quantified. Their location suggests that flying through a
saddle point can be accomplished by leveraging highly nonlinear orbits.

In this paper, the geometrical and dynamical properties of the Sun–Earth saddle
point are characterized. A systematic approach is devised to find ballistic orbits
that experience one or multiple passages through this point. A parametric analysis
is performed to consider spacecraft initially on L1,2 Lagrange point orbits. Sun–
Earth saddle point ballistic fly-through trajectories are evaluated and classified for
potential use. Results indicate an abundance of short-duration, regular solutions
with a variety of characteristics.
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1 Introduction

Flying in highly nonlinear gravitational fields is becoming more and more ap-
pealing due to the unique features that can be achieved in these models: Lagrange
point orbits (LPO) [12], ballistic captures [14], low-energy transfers [21], etc. These
orbits generally require less ∆v than the equivalent high-energy orbits. This reduc-
tion is enabled by a wise exploitation of the high sensitivity in initial conditions.
Low-energy transfers have gained central importance in space mission analysis
and design. These orbits provide improved mission versatility when compared to
Keplerian solutions. In fact, they are used in astrodynamics to reduce fuel con-
sumption [4], mitigate the risks associated to single-point burn failures [13], and
accommodate wider launch windows [23].

Lately, attention has been paid to the exploration of the gravitational saddle points
(SP) within the solar system [8,26,27]. These are locations where the net grav-
itational accelerations balance. Regions about the saddle points present clean,
close-to-zero background acceleration environments where possible deviations from
General Relativity (GR) can be tested and quantified. In particular, evidence
is mounting that MOND (Modified Newtonian Dynamics) and TeVeS (Tensor-
Vector-Scalar) theories can be valid for accelerations below 10−10 m/s2 [16].

MOND is an alternative paradigm to Newtonian dynamics, originally formulated
to explain anomalies in galaxies velocities without invoking non-baryonic dark
matter. It constitutes a modification of dynamics in the limit of low accelerations
that rests on the following basic assumptions [17]: i) There appears in physics a
new constant, a0, with the dimensions of acceleration; ii) Taking the formal limit
a0 → 0 in all the equations of physics restores the equations of classical (pre-
MOND) dynamics; and iii) For purely gravitational systems, the opposite, deep-
MOND limit, a0 → ∞, gives limiting equations of motion that can be written
in a form where the constants a0 and G, and all masses in the problem, mi,
appear only in the product miGa0 = mi/µ0 where µ0 = (Ga0)

−1 [18]. Anomalous
MOND/TeVeS gravity gradients ≥ 10−13m/s2 are predicted within an elliptic
bubble around saddle points [28]. Direct tests of the background acceleration in
this region would provide unique information. An experiment can be conducted
by flying a highly sensitive gradiometer through the SP region. Data points can
either reveal deviations from GR or rule out once for all these speculations.

Among the saddle points in the solar system, the Sun–Earth one seems particularly
appealing due to its relatively easy accessibility [3]: it is located at a distance of
approximately 258, 800 km from the Earth, along the Sun–Earth line, between the
Sun and the Earth [5]. Its location and the nonequilibrium nature suggest that
flying to the Sun–Earth SP can be accomplished by using highly nonlinear, under-
actuated orbits as opportunistic mission extension of spacecraft already about the
Sun–Earth Lagrange points.

In this work, the geometrical and dynamical properties of the Sun–Earth SP are
characterized in several dynamical models of increasing complexity. A systematic
approach is then devised to find orbits that experience one or multiple passages
through the saddle point in a ballistic way. A parametric analysis is performed to
consider spacecraft initially on a number of LPO at different energies. Orbits are
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sought in the Circular Restricted Three-Body Problem (CRTBP) with Sun and
Earth as primaries, in the bicircular Restricted Four-Body Problem (RFBP) that
includes the Moon, as well as in a full-ephemeris, three-dimensional restricted
n-body model stated in a roto-pulsating frame incorporating non-gravitational
forces [7], termed Roto-Pulsating Restricted n-Body Problem (RPRnBP). This
design strategy follows the hierarchy of astrodynamical models presented in [6]. A
large scale survey is completed encompassing more than 200, 000 initial conditions
on several L1,2 libration point orbits. Sun–Earth saddle point ballistic fly-through
trajectories are evaluated and classified for potential use. Results indicate an abun-
dance of short-duration, regular solutions with a variety of characteristics.

The remainder of this paper is organized as follows. After a brief description of the
dynamical models in Section 2, the Sun–Earth saddle point geometry is analyzed
in the CRTBP, RFBP, and RPRnBP (see Section 3). A dynamical characterization
of the SP is then presented in Section 4, where trajectories that fly through the
saddle point in a natural way for one or multiple times are sought. Critical remarks
and recommendations are drawn in Section 5.

2 Dynamical models

2.1 The circular restricted three-body problem

Let us consider a body P of mass m in the vector field of two primaries P1, P2 of
masses m1 and m2, respectively, such that m� m2 < m1. The primaries revolve
in planar configuration at constant angular speed. The motion of P is studied
in a rotating synodic reference frame, whose origin is located at P1P2 center of
mass, the x axis is always aligned with the P1P2 direction, the z axis is orthogonal
to their plane of motion, and the y axis forms a right-hand tern. By means of a
proper scaling [20], the equations of motion depend only on µ = m2/(m1 +m2).
The scaling is such that the distance between the primaries, their angular speed,
and the sum of their masses are set to a unity value. The positions of P1 and P2

are thus fixed, P1 being located at (−µ, 0, 0), and P2 at (1−µ, 0, 0). The equations
of motion read

x′ = f3(x) :=
(
u, v, w, 2v +Ω/x,−2u+Ω/y, Ω/z

)T
, (1)

where x := (x, y, z, u, v, w)T is P state, primes denote derivatives w.r.t. nondi-
mensional time, and slashed subscripts are partial derivatives. The three-body
pseudo-potential is

Ω =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ), (2)

where r1 = ((x+µ)2+y2+z2)1/2, r2 = ((x−1+µ)2+y2+z2)1/2 are the distances
between P and P1, P2, respectively.
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2.2 The bicircular restricted four-body problem

Let us now consider a perturber P3 of massm3 such thatm� m3 < m2 < m1. P1,
P2, and P3 move in planar configuration at constant angular speed such that P1

and P2 revolve in circular orbits around their barycenter, while P3 moves in circular
orbit around P2. The motion of P is studied in the reference frame introduced in
the CRTBP. The following quantities are introduced: 1) µ3 = m3/(m1 +m2), 2)
P2P3 distance, a3, and 3) P3 angular velocity in inertial and synodic coordinates,
n3 and ω3, respectively. All these quantities are not independent. The following
relations hold (see [6] for more details):

ω3 = n3 − 1, a33n
2
3 = µ+ µ3. (3)

The equations of motion for P read

x′ = f4(x) :=
(
u, v, w, 2v +Ω/x + Ux,−2u+Ω/y + Uy, Ω/z + Uz

)T
, (4)

where U = [Ux, Uy, Uz]
T is the perturbing acceleration due to P3,

U = µ2

[
(1− µ) ρ1 − ρ3

‖ρ1 − ρ3‖3
+ µ

ρ2 − ρ3
‖ρ2 − ρ3‖3

− ρ− ρ3
‖ρ− ρ3‖3

]
, (5)

and ρ3 is the position of P3 in the rotating frame,

ρ3 = ρ2 + a3
(
cosα, sinα, 0

)T
, (6)

with α = ω3f is the phase angle of P3 with respect to the P1P2 line, and f is the
nondimensional time. The CRTBP and the RFBP presented so far are later used
by assuming P1 = Sun, P2 = Earth, and P3 = Moon.

2.3 Roto-pulsating restricted n-body problem

In the RPRnBP, the motion of P is subject to the gravitational attractions of
n− 1 primaries, Pi, i = 1, . . . , n− 1, which move under their mutual gravitational
attractions, and whose motion is given. The primaries are assumed oblate, and
the force exerted by the Solar Radiation Pressure (SRP) on P is considered as
well. Let R and V be the dimensional position and velocity of P in a reference
frame centered at solar system barycenter, and let ρ and η be the corresponding
nondimensional quantities in a rotating and pulsating frame of reference defined
by P1 and P2. The equations of the RPRnBP are written as perturbation of the
CRTBP by means of time-dependent coordinates and time transformations [7,10]:

R(t) = b(t) + k(t)C(t)ρ(τ), (7a)

V (t) = ḃ+ k̇Cρ+ kĊρ+ τ̇ kCρ′, (7b)
τ = ω(t− t0), (7c)
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where

b(t) =
m1R1 +m2R2

m1 +m2
, k(t) = ‖R2 −R1‖, C(t) = [e1, e2, e3] , (8)

with

e1 =
R2 −R1

k
, e2 = e3 × e1, e3 =

(V2 − V1)× (R2 −R1)

‖(V2 − V1)× (R2 −R1)‖
. (9)

The coordinates transformation in Eq. (7a) is composed by (1) A translation of
the origin from the solar system barycenter to P1P2 barycenter, b(t); (2) A nondi-
mensionalization with the factor k(t), that is the actual P1P2 distance; and (3)
A rotation by means of the orthogonal cosine angle matrix, C(t). As a result, the
new frame rotates and pulsates in a nonuniform fashion and the primaries are at
rest on the x-axis. P1 and P2 positions are ρ1 = [−µ, 0, 0]> and ρ2 = [1−µ, 0, 0]>,
respectively. The time transformation, Eq. (7c), (1) Shifts the initial epoch to
t0, and (2) Scales the time unit by means of the primaries mean motion about
their common barycenter, ω. By choosing a constant mean motion, the average
primaries revolution period is 2π and τ̇ = ω.

The equations of motion for the roto-pulsating restricted n-body problem are de-
rived by applying coordinates and time transformations of Eqs. (7) to the restricted
and inertial form of the Newton’s gravitational equations. These reads:

η′ +
1

ω

(
2k̇

k
I + 2CTĊ

)
η +

1

ω2

(
k̈

k
I + 2

k̇

k
CTĊ + CTC̈

)
ρ+

+
1

ω2

(
CTb̈

k
+
∇V
k2

)
=

SP0

ω2k3
ρ− ρs
‖ρ− ρs‖3

.

(10)

In Eq. (10), primes and dots denote derivatives with respect to nondimensional and
dimensional time, respectively, I is the 3-by-3 identity matrix, and the RPRnBP
pseudo-potential gradient is

∇V =
∑
j∈S

µ̂j

[
ρ− ρj
‖ρ− ρj‖3

+ J2jR
2
Bj

(
3I + 2Iz
‖ρ− ρj‖5

− 5I(ρ− ρj)TIz(ρ− ρj)
‖ρ− ρj‖7

)
(ρ− ρj)

]
,

(11)
where S is the set of n−1 primaries included in the model, µ̂j = Gmj is the grav-
itational parameter of the j-th celestial body, J2j its second harmonic coefficient
related to the inhomogeneous mass distribution, RBj

its equatorial radius, Iz is a
3-by-3 null matrix except for the third diagonal component, which is one, and ρs
is the Sun position vector. Moreover, SP0 is the SRP parameter on P ,

SP0 = (1 + cr)
A

m

Ψ0d
2
0

c
, (12)

where cr is the reflectivity coefficient of P , A/m its area-to-mass ratio, Ψ0 the solar
flux intensity at a distance d0 from the Sun, and c the speed of light in vacuum.
Table 1 gives values of the parameters used in this work and SPICE1 estimates
for the mean Sun–Earth–Moon system parameters.

1SPICE is NASA’s Observation Geometry and Information System for Space Science Mis-
sions [1,2]. https://naif.jpl.nasa.gov/naif; last downloaded on February 7, 2018.

https://naif.jpl.nasa.gov/naif
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Table 1: Parameters of the Sun–Earth–Moon system.

Parameter Symbol Value

Earth gravitational parameter µ̂1 398600.4354360959 km3/s2

Sun–Earth mass ratio µ 3.003480593992993× 10−6

Moon mass parameter µ3 3.694292214919400× 10−8

Length unit LU 1.495978706136889× 106 km
Time unit TU 58.13235351684487 days

Velocity unit V U 29.78473657194809 km/s
Earth mean radius RB2

6371.008366666666 km
Moon mean radius RB3

1737.4 km
Earth oblateness coefficient J22 0.001082616
Moon oblateness coefficient J23 0

SRP parameter SP0 2.210656810849369× 106 km3/s2

Earth–Moon distance a3 0.002569555291283
Moon synodic angular speed ω3 12.386902201906503
L1 location w.r.t. Earth xL1

−1.491551005309341× 106 km
L2 location w.r.t. Earth xL2

1.501531764462003× 106 km
Reflectivity coefficient cr 0.08
Area-to-mass ratio A/m 0.02 m2/kg

Equations (10) are integrated with double precision using a 7th/8th order variable
step Runge–Kutta–Fehlberg scheme with absolute and relative error tolerances
set to 2.5 × 10−14. The integration is stopped in case a crash event is found,
defined to occur when P distance with respect to the attractor is less or equal
than its mean radius. The RPRnBP has been validated against GMAT2. Table 2
reports the difference between this work and GMAT when integrating the initial
state of LISA Pathfinder for 100 days. In the following, parallel computations are
performed with a hub of 80 IntelTM XeonTM CPUs E5-4620 v4 at 2.1 GHz with
256 Gb of RAM3.

Table 2: Validation errors of RPRnBP against GMAT.

Object Position error [km] Velocity error [mm/s]

Lisa PathFinder 1.080 106.020

2GMAT is NASA’s General Mission Analysis Tool. https://gmat.gsfc.nasa.gov/; Last
downloaded on March 9, 2017

3This is the Euler workstation at the Department of Aerospace Science and Technology,
Politecnico di Milano.

https://gmat.gsfc.nasa.gov/
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3 A hierarchical characterization of the Sun–Earth saddle point

The Sun–Earth saddle point is analyzed in three models of increasing complexity:

1. Sun–Earth circular restricted three-body problem (CRTBP), where by defini-
tion the SP is fixed with respect to the synodic reference frame.

2. Bicircular restricted four-body problem (RFBP) having the Sun, the Earth,
and the Moon as primaries, in which the SP follows a periodic oval trajectory.

3. High-fidelity roto-pulsating restricted n-body problem (RPRnBP), where the
SP motion is dominated by the gravitational terms of the solar system.

By definition, the gravitational saddle point is the location in the configuration
space where the net gravitational acceleration balances. In an inertial frame, the
SP position is thus calculated by solving

F (RSP) :=
∑
j∈S

µ̂j
Rj −RSP

‖Rj −RSP‖3
= 0, (13)

for RSP once the positions of primaries, Rj , are known.

3.1 Saddle point in the CRTBP

The application of the CRTBP transformation to Eq. (13) yields

F3(ρSP) := (1− µ) ρSP − ρ1
‖ρSP − ρ1‖3

+ µ
ρSP − ρ2
‖ρSP − ρ2‖3

= 0. (14)

Eq. (14) possesses an analytic solution. Let ρSP = [xSP, ySP, zSP]
>, then

xSP = 1−
√
µ− µ2 − 2µ2

1− 2µ
, ySP = 0, zSP = 0. (15)

The Sun–Earth SP is 258, 813.23 km away from the Earth in the Sun direction.

3.2 Saddle point in the RFBP

In the bicircular restricted four-body problem, the saddle point location is influ-
enced by the presence of an additional celestial body (P3). The application of the
RFBP transformation to Eq. (13) yields

F4(ρSP) := (1− µ) ρSP − ρ1
‖ρSP − ρ1‖3

+ µ
ρSP − ρ2
‖ρSP − ρ2‖3

+ µ3
ρSP − ρ3
‖ρSP − ρ3‖3

= 0. (16)

Eq. (16) has no closed-form solution. In the Sun–Earth–Moon case, it can be pa-
rameterized for the Moon phase angle α and solved numerically over a lunar period.
Eq. (16) is solved numerically with Levenberg-Marquardt root-finding method [15],
with a tolerance of 10−24. The CRTBP fixed location is used as initial guess to
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start the solver. The SP trajectory is then interpolated by means of a piecewise
cubic spline for efficient access. As expected, the saddle point in the RFBP lies on
the xy plane (zSP = 0).

Figure 1 shows the SP trajectory on the xy plane in the RFBP (thick solid line).
In the left of Figure 2, the RFBP saddle point trajectory is displayed in the
neighborhood of its CRTBP counterpart, and in the right of Figure 2 the saddle
point x and y trends are shown as function of the Moon phase. The saddle point
trajectory is symmetric with respect to the x axis because so is the Moon motion.
The saddle point Moon-triggered location shift is more pronounced in the right
portion of its trajectory, reaching approximately 6000 km at its farthest point
from the CRTBP SP. In this configuration, α = π, that is, the Moon lies between
the Sun and Earth and is aligned to them. In the opposite configuration (α = 0),
when the Moon lies after the Earth on the x axis, the effect on the SP trajectory is
comparatively less intense. As a result, a bubble-like path emerges about the left
side of the CRTBP SP that can be appreciated in the magnification on the left
of Figure 2. Also, the SP moves slower when it is closer to its CRTB counterpart,
which also means that the RFBP SP sticks closer to its CRTBP approximation
for most of its trajectory (this is also true in the RPRnBP). This phenomenon
motivates the use of a fix SP location in preliminary trajectory design phases.
Table 3 shows the duration in percentile of lunar periods for which RFBP SP is
closer than a certain distance threshold, d, to its CRTBP approximation.

0 2000 4000 6000 8000 10000
x-xCRTBP [km]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y 
[k

m
]

104

RFBP
CRTBP
RPRnBP

Fig. 1: Saddle point trajectory in the RFBP (thick solid line) and in the restricted
n-body problem (thin dashed line). The reference is the Sun–Earth synodic frame.



Dynamical characterization of Sun–Earth saddle point 9

0 2 4 6
 [rad]

0

2000

4000

6000

x-
x C

R
TB

P [k
m

]

-5000

0

5000

y 
[k

m
]

-300 -200 -100 0 100 200
x-xCRTBP [km]

-2000

-1000

0

1000

2000

y 
[k

m
]

RFBP
SP

Fig. 2: RFBP SP trajectory in the vicinity of its CRTBP location (left) and RFBP
SP trajectory as function of the Moon phase angle over one lunar revolution (right).

Table 3: Percentile duration for discrete saddle point shift thresholds.

Parameter Units Values

d 103 km 1 2 3 4 5 6
Duration % 53.44 68.24 75.40 80.04 83.68 88.24
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Fig. 3: Saddle point trajectory in a Sun–Earth synodic frame in the RPRnBP.
From left to right, the projection onto the xy, xz, and yz planes.

3.3 Saddle point in the RPRnBP

Eq. (13) is applied to the set of major celestial bodies in the solar system, namely,
the Sun, the Earth, the Moon, the barycenter of the remaining 7 planetary systems,
and Pluto. The solution is found numerically. To ease the converge at each time
step, an initial guess equal to the CRTBP SP is again provided.

The dashed line in Figure 1 represents the SP trajectory projected on the xy plane,
whereas Figure 3 displays the full projections. The SP trajectory in the RPRnBP



10 Francesco Topputo et al.

differs from its RFBP path by a maximum distance of 3600 km in the synodic
plane, and of 4000 km out of plane.

0 500 1000 1500
Time since since December 3 2015 04:47:27.9287 TDB [days]

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

Sa
dd

le
 p

oi
nt

 m
ag

ni
tu

de
 p

er
tu

rb
at

io
n 

w
rt 

SE
 [k

m
]

50 km

Moon Jupiter Venus Saturn Mars Mercury Uranus Neptune

Fig. 4: Difference of the perturbed saddle point location (single celestial body
active per line) and its nominal CRTBP location (semi-logarithmic scale). The
perturbations are computed for 1500 days.

Figure 4 shows, for each celestial body considered, the saddle point shift with
respect to its CRTBP position in a semi-logarithmic scale. The lunar gravity causes
the largest perturbation, ranging from 240 km to 11, 200 km. Jupiter and Venus
on the other hand shift the SP location of maximum 10 km and 4 km, respectively.
A mission that has to hit the saddle region with a precision of, say, 50 km must
thus account for these perturbative actions, in particular the Moon, Jupiter, and
Venus [24,25]. The gravitational field generated by the Milky Way also plays a
role in determining the exact position of the SP. The SP shift corresponding to the
galaxy gravity is estimated at 10 m in [27], assuming a uniform galaxy background
gravitation across the solar system, and at few centimeters in [9], assuming that
the Sun orbit around the center of the Galaxy is in centrifugal equilibrium. The
Milky Way contribution is therefore neglected in this work.

4 Saddle point ballistic fly-through opportunities

A thorough exploration of the solution space, by means of a grid search, aims at
extracting preliminary information on the cost, time, and, more generally, bounds
of the design variables. The goal is to explore the search space to detect orbits
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performing one (or multiple) SP passage(s) in a ballistic fashion. The focus is on
LPO missions, deemed good candidates for opportunistic mission extensions. In
this analysis, departure conditions are set within the regions about the Sun–Earth
L1,2. The output of this analysis may be used as a feasible initial guess for an
optimization for the problem of accurate SP targeting.

The exploration of the solution space for orbits leaving the Sun–Earth LPO regions
and flying through the SP is implemented in three steps:

1. Search space sampling in the CRTBP. This is done to analyze the relative
geometry and the phasing conditions between LPO invariant manifolds and the
fix SP location. By neglecting the influence of the Moon, preliminary results
are gathered on the LPOs-to-SP trajectories existence, geometry, and cost.

2. Search space sampling in the Sun–Earth–Moon RFBP. In this analysis the grav-
itational pull of the Moon, albeit on a simplified level, acts as a chaos-inducer
for the motion of P. This significantly increases the diversity and abundance
of solutions ballistically flying close to the saddle point. The role of the Moon
in modifying the solutions of interest is analyzed in detail.

3. Search space sampling in the RPRnBP. The solution space exploration is per-
formed directly within the high-fidelity RPRnBP. Accordingly, this analysis
gives the most realistic results for ballistic transfers from the Sun–Earth LPO
region to the saddle point.

4.1 Methodology

Regardless the dynamical model, the exploration of the solutions space is per-
formed with a specific set of initial conditions. It is assumed that the spacecraft
(S/C) initially lies on a halo orbit about either L1 or L2, defined in the CRTBP.
The spacecraft is then injected into a branch of the unstable manifold associated
to the halo, and it is free to move in the Sun–Earth–Moon region. The displace-
ment along the unstable direction is on average 150 km in position and 3 cm/s in
velocity. Accordingly, initial position and velocity are specified with:

(i) The halo out-of-plane amplitude, Az. In the following, only the southern
family is considered. Different values of Az uniquely correspond to different
Jacobi energies. Hence, given any of these two parameters, one particular
halo orbit is specified [11].

(ii) The nondimensional time along the periodic halo orbit, tpo. This parameter
univocally specifies the S/C state along a halo [22].

(iii) A phasing parameter, which specifies either an angular lunar phasing in the
RFBP, or a true date for the RPRnBP case. The parameter allows to uniquely
determine the states of all retained celestial bodies. This is not needed within
the CRTBP, due to its autonomous nature.

Fine searching is then performed on these three parameters, which specify a set
of initial conditions. Each initial condition is flown within the correct dynamical
model for a fixed duration, or time of flight (TOF). Here, TOF is set to 3 years.
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Eventually, solutions are ranked according to their geometry. In particular, trajec-
tories crossing a 10, 000 km circular bubble around the SP (either fixed or moving)
are considered and labeled. In this work, all trajectories flying through the bubble
encircling the SP are interchangeably termed passage or fly-through. The distance
of 10, 000 km from the SP is deemed to be sufficiently small to be regarded as close
passage at the Sun–Earth scales. On top of that, this distance can be zeroed by
means of a successive optimization step [25]. This strategy is undertaken because
it 1) Reduces the dimension of the search space by initially locating the S/C on
the halo unstable manifold; 2) Maximizes the chances of the S/C to permanently
leave the LPOs region along an unstable direction; and 3) Prevents solutions from
being restricted by a SP accurate fly-through.

4.2 Exploration in the Sun–Earth CRTBP

The spacecraft lies initially in a halo orbit about either L1,2 and is then injected
into a branch of its unstable manifold. The bounds and resolution of the fine search
are defined in Table 4. The analysis in the CRTBP ultimately provides insights
on the halo unstable manifolds relative geometry with the SP. The example of
Az = 105 km is shown in Figure 5. In this case, tpo = 0 corresponds to the
leftmost state of the orbit as seen in the xy plane; tpo increases by flowing in the
clockwise direction until tpo = Tpo, that is the period of the periodic orbit.

In this search space, 119 and 36 transfers (1.65% and 0.5% of the search space)
from L1 and L2, respectively, fly closer to the SP than the threshold of 10, 000
km. A few important remarks stem from this analysis: (a) No ballistic multiple
SP passage is obtained in the CRTBP with the current search settings (7, 200
samples); and (b) The unstable manifolds tube does not fully encircle the saddle
point, setting a limit to the opportunities for ballistic SP fly-through.

4.3 Exploration in the Sun–Earth–Moon RFBP

States on the halo unstable manifolds, defined in the CRTBP, are now propagated
within the RFBP. In addition, the lunar phase angle is included in the search
space. A total of 86, 400 transfers (10 Az samples × 720 tpo samples × 12 Moon
phase samples) are computed to investigate the geometric relation between the
manifold and the saddle point. Table 5 shows the bounds of the fine search for the
exploration in the RFBP. The SP is assumed to be fixed at its CRTBP location.
This assumption is justified, given the limited duration the actual SP travels far

Table 4: Bounds of the search space in the CRTBP.

Symbol Description Units Range Step

Az Size of the halo orbit km 50, 000 - 500, 000 50, 000
tpo Time along the halo – 0 - Tpo Tpo/720
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Fig. 5: Relative geometry between an L1 halo orbit (Az = 105 km) and the SP.

from its three-body approximation (see Table 3). As a result, for the L1/L2 case,
1591/903 solutions are obtained for the first SP passage, 51/54 solutions for the
second SP passage, 2/8 solutions for the third SP passage, and 0/3 solutions for the
fourth SP passage. The remaining cases do not feature SP distances that are less
than 10, 000 km within the propagation time. Relevant output for later analysis
are listed in Table 6.

During the transfer, the S/C may approach the SP multiple times. This is evident
in the sample transfer shown in Figure 6. The opposite of SP distance is plotted
in Figure 6b. When the peak distance between the manifold and the SP becomes
less than 10, 000 km, a SP passage occurs with a known minimum distance. For
instance, trajectory in Figure 6a has two SP passages. Ultimately, many trajecto-
ries experience close lunar encounters, defined within the lunar sphere of influence.
Close lunar encounters are also referred to as lunar gravity assists (LGAs).

The scatter plot matrix is used to compactly present results. With this tool, the
relationships between multiple variables can be assessed synthetically and simul-

Table 5: Bounds of the search space in the RFBP.

Symbol Description Unit Range Step

Az Size of the halo orbit km 50, 000 - 500, 000 50, 000
tpo Time along the halo – 0 - Tpo Tpo/720
α Moon phase degrees 0 - 360 30
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Fig. 6: Sample of SP transfer.

Table 6: Output variables.

Notation Description Unit

rmin
SP Distance of saddle point passage km
tSP Time at the SP passage years

# LGA Number of LGA -
rmin
LGA Minimum distance for LGA km
tLGA Time at the minimum distance for LGA years

taneously. Let {v}ni,j=1 be a collection of n generic variables spanned by either
index i = 1, . . . , n or j = 1, . . . , n. The saddle point passage solutions depend on
variables v. Then, the scatter plot matrix is a n× n matrix whose element in row
i and column j is the standard scatter plot of the saddle point passage solutions
with respect to variables vi (along the y axis) and vj (along the x axis). Due to the
symmetric nature of the scatter plot matrix, only the lower (or upper) triangular
part is relevant as it provides independent information. The i-th diagonal element
of the matrix displays the histograms outlines of the SP passage solutions only
as function of variable vi. The histograms are normalized along the vertical axis
such that the area of each bin is the relative number of solutions, and the sum
of the bin areas is less than or equal to 1. The number and width of the bins are
determined by application of Scott’s rule [19].

In this work, 8 variables are used to produce the scatter plot matrix, i. e., 3 inputs
and 5 outputs of the simulation. The variables are thus the minimum distance
of the S/C to the saddle point and its time-stamp, the number of close lunar
encounters, the minimum LGA range and its time-stamp, the originating halo out-
of-plane altitude, the phase parameter, and the time along the halo. The variables
units and ranges are those in Tables 5–6 for the RFBP and Tables 8–6 for the
RPRnBP. Solutions are grouped into categories according to the number of saddle
point passages experienced, in shapes of copper shading gradient, a lighter dot
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is associated to more SP passages. To ease readability of the scatter plots, dots
represent solutions with 1 saddle point passage, circles with 2, stars with 3, and
crosses with 4 SP passages.

Figures 7–8 are the scatter matrix plots for the RFBP exploration from L1,2. With
reference to these two figures, the following can be said:

i. There are many solutions with short time-to-SP. The multiple SP passage
generally occurs for TOF greater than one year; see plots of tSP vs other
parameters and histograms in position (2,2).

ii. Multiple lunar close passages provide no apparent benefits on neither saddle
point fly-through distance nor time. In fact, the number of solutions drasti-
cally diminishes for increasing number of LGAs; see plots of #LGA vs other
parameters and histograms in position (3,3).

iii. SP passage solutions are spread all over lunar encounter altitude domain; see
plots of rmin

LGA vs other parameters and histograms in position (4,4).

iv. Comparatively, the SP is reached more often when departing from smaller
halos. Also, there are less multiple SP passage for increasing out-of-plane am-
plitude; see plots of Az vs other parameters and histograms in position (6,6).

v. Moon phase loosely influences solutions, indicating successful opportunities
might be gained for the n-body problem phasing; see plots of α vs other
parameters and histograms in position (7,7).

vi. The multiple SP passage does not seem to have a correlation with the Moon
phase and the time on the halo; see α vs tpo plots .

vii. Departure location has major influence. Most SP passages appear halfway
along the halo (tpo ≈ 1.6) or tend to accumulate toward the end (tpo ≈ 3.1);
see plots of tpo vs other parameters and histograms in position (8,8)

Additional direct numerical simulations are performed for non-ballistic cases. A
small tangential impulsive maneuver is applied three months after the halo depar-
ture point. Although this procedure is not automated, it allows gathering insights
into the sensitivity with respect to the design parameters of the SP passage dis-
tance and time. Two different impulses are considered: 0.25 m/s and 0.50 m/s. The
possibility to maneuver impacts the SP passage dynamics in a twofold fashion: for
increasing ∆v,

1. The number of SP passages increases/decreases for the L1/L2 cases. A case
occurs with six SP passages for ∆v = 0.25 m/s departing from L1.

2. The altitude of close SP passages generally decreases for both L1 and L2 cases.

The saddle point miss distance, and hence the number of SP passages, depends on
the magnitude of the maneuver. The main takeaway is that even a small impulsive
maneuver can significantly improve the SP miss distance. This motivates the use
of explored solutions as initial guesses for a more refined optimization in which
control authority is used to accurately target the SP. Thus, appropriate size and
timing of the maneuvers might be used to increase the number and accuracy of SP
fly-through. Table 7 shows the number of SP passages, for different maneuvers.
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Table 7: Number of SP passages for ballistic and controlled cases.

Location ∆v [m/s] Single SP passage Multiple SP passages

L1

0.00 1591 53
0.25 1489 58
0.50 1491 55

L2

0.00 903 65
0.25 895 55
0.50 838 35
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Fig. 7: Scatter plot matrix of saddle point ballistic fly-through
opportunities departing form Sun–Earth L1 LPOs region in the
RFBP. Single scatter plots represents the bounds of the search
space (see Table 5) and the outputs (see Table 6). In the matrix
plot diagonal, the outlines of grouped histograms are displayed for
the variable at that position within the matrix.
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4.4 Exploration in the RPRnBP

States on the halo unstable manifolds, as defined in the CRTBP, are propagated
within the RPRnBP. The nature of the problem requires specifying an initial
epoch, t0, rather than a phase angle for the Moon. The initial epoch is needed to
determine the states of all celestial bodies in the model. A total of 96, 000 transfers
(10 Az samples × 320 tpo samples × 30 t0 samples) are computed to investigate
the geometric relation between the manifold and the saddle point. Table 8 provides
the bounds and resolution of the search space for the exploration in the RPRnBP.
The initial epoch spans a duration of one month. This allows for a complete lunar
revolution around the Earth. At this stage, the SP is assumed to follow its real
trajectory, according to n-body calculation in Section 3.

Table 8: Bounds of the search space in the RPRnBP.

Symbol Description Units Range Step

Az Size of the halo orbit km 50, 000 - 500, 000 50, 000
tpo Time along the halo years 0 - Tpo Tpo/320
t0 Initial epoch TDB 30 Mar 2017 - 28 Apr 2017 1 day

Figures 9–10 represent the scatter matrix plots for the RPRnBP exploration from
L1 and L2, respectively. With reference to these two figures, the following can be
said:

i. There are still many solutions with short time of flight to the saddle point.
Multiple SP passages require larger TOF; see plots of tSP vs other parameters
and histograms in position (2,2).

ii. Many LGAs provide unfavorable conditions for repeated and close SP fly-
throughs. Generally, a small number of LGA provides sufficient diversity to
reach the SP ballistically; see plots of #LGA vs other parameters and his-
tograms in position (3,3).

iii. Solutions are spread over LGA altitude domain, with a tendency for multiple
SP fly-though to gather for low lunar encounter; see plots of rmin

LGA vs other
parameters and histograms in position (4,4).

iv. Small-halos-departing transfers offer more chances to hit the SP; see plots of
Az vs other parameters and histograms in position (6,6).

v. Initial epoch greatly influences the SP passage ballistic dynamics. In fact, no
solutions exist for certain lunar configurations. These SP geometrical holes
occur when the Moon is in opposition to the departing LPO, i. e., when the
lunar perturbation is the smallest; see plots of t0 vs other parameters and
histograms in position (7,7). A magnification of the rmin

SP vs t0 plots is given
in Figure 11: it provides a detailed view of the saddle point geometrical hole
phenomenon for L1,2-departing ballistic trajectories.
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vi. Halo departure phasing has minor influence on SP passages dynamics, but
patterns exist for proper combinations; see tpo vs t0 plots.
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Fig. 9: Scatter plot matrix of saddle point ballistic fly-through
opportunities departing form Sun-Earth L1 LPOs region in the
RPRnBP. Single scatter plots represents the bounds of the search
space (see Table 8) and the outputs (see Table 6). In the matrix
plot diagonal, the outlines of grouped histograms are displayed for
the variable at that position within the matrix.
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Fig. 11: Saddle point geometrical hole for the L1 (top left) and L2 (top right) cases,
and the corresponding Moon and SP trajectories (bottom). The SP trajectory is
encased.

4.5 Exploration summary

Table 9 summarizes the exploration direct numerical simulation discriminating
for different dynamical models. Specifically, the values reported in Table 9 are the
percentile numbers of solutions that experience one or more saddle point passages.
The normalization is done with respect to the total number of initial conditions
in the corresponding model. Notably,

1. No multiple SP passage solutions exist within the CRTBP;

2. The influence of a planar Moon in the bicircular RFBP is beneficial for the
number of saddle points fly-through and for multiple SP passages;

3. The contribution of several gravitational attractors and perturbations in the
high-fidelity model slightly penalizes SP transfers performances, yet providing
sufficient diversity in the search space to motivate an optimization campaign.
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Table 9: Indicator of SP passages in different dynamical models.

% SP passage CRTBP RFBP RPRnBP

L1
Single 1.650 1.841 0.981

Multiple 0.000 0.061 0.034

L2
Single 0.500 1.045 0.602

Multiple 0.000 0.075 0.026

5 Conclusion

The Sun–Earth gravitational saddle point geometrical and dynamical properties
have been characterized. The saddle point trajectory is analyzed in the CRTBP,
RFBP, and RPRnBPP. Evidence is given that flying through a 10, 000 km bubble
around the saddle point can be achieved in a ballistic fashion from the Sun–
Earth L1,2 libration point orbits region. The highly nonlinear and nonequilibrium
nature of the vector field in the vicinity of the saddle point are exploited to find
many orbits ballistically approaching the Sun–Earth SP. In turn, this suggests
that a limited-resources spacecraft may feasibly and accurately fly through the
saddle point. With the proper payload, measurements of background acceleration
gradients can be taken to test and assess the validity of alternative gravitational
theories.

Trajectories that fly through the saddle point neighborhood one or multiple times
are more numerous when departing from the Sun–Earth L1 libration point orbit
region. An opportunistic mission would thus achieve better results if departing
from L1. However, the difference in performances between L1 and L2 LPOs is
not so marked to exclude mission extension scenarios for spacecraft orbiting at
Sun–Earth L2.
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