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A systematic approach is devised to find ballistic captures in the planar elliptic

restricted three-body problem. Simple symmetric periodic orbits around the smaller

primary in the circular problem are used as generators for ballistic captures. Com-

bining a scaling factor that maps states from the circular to the elliptic model, and

restricting the motion to emanate from periodic solutions, the search space for ballistic

capture is reduced to three dimensions. Results in the Sun–Mars system indicate an

abundance of long-duration, regular solutions with a variety of characteristics, includ-

ing low osculating eccentricities. A large scale survey is completed using 3 families of

periodic orbits encompassing more than 2,600 periodic solutions. Discretizing over the

mapping parameter, the Mars true anomaly, and the generating periodic orbits, 37

million ballistic captures are evaluated and classified for potential use. The existence

of sample solutions into a high-fidelity ephemeris model is evidenced.
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Nomenclature

C = Rotation matrix [-]
C = Ballistic capture set [-]
E = Escape set [-]
e0 = Initial osculating eccentricity [-]
ep = Primaries eccentricity [-]
f = True anomaly of the smaller primary [deg]
H2 = Kepler energy with respect to the smaller primary [km/s2]
Iσ×σ = σ by σ identity matrix, where σ ∈ Z+ [-]
J = Jacobi constant [-]
k = Map parameter [-]
K = Crash set [-]
k1 = Stability index [-]
m1,2,3 = Mass of P1,2,3 [kg]
M = Monodromy matrix [-]
nf = Grid dimension of true anomaly [-]
nk = Grid dimension of map parameter [-]
Nr = Number of P3 revolutions about P2 [-]
Ns = Number of solutions [-]
NCs = Capture ratio [-]
Nx = Number of x axis crossings [-]
P = Persistent set [-]
p0 = Initial osculating semi-latus rectum [km]
P1,2,3 = Smaller primary, larger primary, and artificial object [-]
R = Inertial P2-centered position vector [km]
r0 = Initial osculating pericenter radius [-]
r2 = Synodic position vector with respect to P2 [-]
rp = Primaries distance [km]
Rs = Mars sphere of influence [km]
R♂ = Mars mean radius [km]
S = Regularity index [-]
T = Orbital period in the synodic frame [-]
V = Inertial P2-centered velocity vector [km/s]
v2 = Synodic velocity vector with respect to P2 [-]
W = Weakly stable set [-]
µ2 = Mars gravitational parameter [km3/s2]
∆S% = Regularity coefficient [-]
ι = Percentile threshold [-]
λ1 = First eigenvalue of monodromy matrix [-]
ω = Pseudo-potential of the elliptic problem [-]

Subscripts
(·)0 = Initial condition
(·)2 = Quantity with respect to P2

(·)e = Escape
(·)k = Crash
(·)r = Revolution

Superscripts
(·)+ = Forward integration
(·)− = Backward integration
(·)(2b) = Kepler two-body quantity
(·)(c) = Circular restricted three-body problem quantity
(·)(j) = Looping index
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I. Introduction

Low-energy transfers, of which ballistic capture is an important mechanism, have gained central

importance in space mission analysis and design. These orbits provide improved mission versatility

when compared to Keplerian solutions. In fact, ballistic capture is used in astrodynamics to reduce

fuel consumption [1], mitigate the risks associated to single-point burn failures [2], and accommodate

wider launch windows [3, 4]. These advantages are achieved at the cost of generally longer transfer

times [5, 6]. Ballistic capture enabled the rescue of Hiten [7], and was used in SMART-1 [8] and

GRAIL [9] missions. It has been proposed in BepiColombo [2], Lunette [10], and ESMO [11]. The

applicability of ballistic capture in asteroid retrieval contexts has also been analyzed [12].

The concept of ballistic capture is intimately related to that of weak stability boundary (WSB),

heuristically proposed in the context of an Earth-to-Moon transfer [13]. The goal was to produce

trajectories in which the spacecraft approaches the Moon and temporarily revolves about it in a

totally natural fashion. However, since then, several distinct definitions share the WSB and ballistic

capture nomenclature. Originally, (a) the design strategy of low-energy transfers was associated

to a fuzzy boundary region located at approximately 1.5 million km away from the Earth in the

Sun–Earth direction [14]. (b) An algorithmic definition for the WSB had since been proposed [15],

and later reviewed and extended [16], based on the classification of sets of osculating initial con-

ditions around the smaller primary. These sets give rise to orbits satisfying a simple definition of

stability [17, 18], based on prescribed energetic and geometric behavior. (c) The WSB has also

been interpreted as the intersection of three subsets of the phase space [19, 20], and d) has been

derived from weakly stable sets and escape sets, whose intersection forms capture sets at specified

osculating parameters [21].

Ballistic capture orbits have been studied in the Hill problem [22], the planar [4, 23] and spatial [24]

circular restricted three-body problem (CRTBP), incorporating planet eccentricity [21, 25–29], the

effect of perturbations [30], and in the full-ephemeris dynamics [31–35]. Although some light was

shed in the above-mentioned works, the global picture behind the ballistic capture mechanism is yet

to be thoroughly understood. As dynamical models become nonautonomous or nonconservative, the
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lack of invariant structures requires leveraging the dynamical insight to reduce the complexity of the

analysis and explore the whole extent of a six-dimensional space. Solutions are not scalable and do

not provide a deeper understanding of the complex dynamics at hand. These issues, coupled with

the high sensitivity to initial conditions, have limited the use of ballistic captures in applied mission

designs. On the other hand, few works have tried to establish a connection between the WSBs and

the CRTBP periodic orbits, limiting the research to Lagrange point dynamics [16, 36, 37]. Periodic

solutions represent a resource to describe and quantify the dynamics in the neighborhood of the

smaller primary, in terms of orbit size, period, energy, altitude profiles, and stability properties [38–

42]. The chaotic and stability features of the CRTBP are so marked that their effects reverberate

when extended to higher fidelity models [43, 44]. An example is the persistency of large stability

islands, seen in a Poincaré map, associated to distant retrograde orbits (DROs) [45]. The phase

space of the CRTBP has been already demonstrated to be the backbone for several mechanisms in

nonautonomous and nonconservative models [46–48]. Accordingly, evidence is mounting that the

ballistic capture mechanism is intimately related to CRTBP periodic solutions.

The main objective of this work is to find conditions that generate weakly capture orbits in the

elliptic restricted three-body problem (ERTBP). In the circular problem, periodic orbits (POs)

and their stable and unstable manifolds provide sufficient dynamical diversity to span most of the

CRTBP phase space. This convenient property is not true for the elliptic case. Symmetric POs exist

in the planar ERTBP only for a discrete sets of primary geometrical configurations (e. g., with initial

true anomalies that are exact multiple of π), otherwise quasi-periodic motion is obtained [49]. In

[17, 28], finding planar ballistic captures require fine searching through a 4D search space. However,

alternative approaches may rely on manifold-type structures (analogous to invariant manifolds in

the CRTBP) and Lagrangian coherent structures can be computed in the ERTBP [50, 51], and

could involve corrections of known periodic and quasi-periodic solutions to recover trajectories with

long-term stability properties [49].

In this paper, the use of a single-parameter mapping is proposed to make up for the lack of manifolds

and to link the circular and elliptic problems. Periodic orbits of the circular problem, computed
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through a global grid search and differential correction [40], are mapped to states in the ERTBP,

which then constitute the initial conditions for ballistic captures. This mapping is applied for the

first time in the Sun–Mars context (case study of this work), but has proved useful in the continu-

ation from the Jupiter–Europa CRTBP to the ephemeris model [52]. By restricting to motion that

emanates from periodic solutions in the CRTBP, the 4D search space is reduced to 3D. Moreover,

thanks to the symmetric nature of the CRTBP, candidate initial conditions in the elliptic problem

always start at the periapsis of an osculating conic about the smaller primary, compatibly with the

algorithmic definition of WSB. The use of CRTBP periodic orbits as generators for ballistic cap-

tures in the elliptic problem, and the mapping approach, is motivated for systems with low (but not

negligible) eccentricities; e. g., Sun–Mars. The method devised in this work exploits the transport

mechanism of POs when transitioning from the circular to the elliptic model. To large deviations

from the CRTBP assumptions (e. g., highly elliptical motion of primaries) correspond large devia-

tions on the transport mechanism during the transition, and hence a variation in performance for

the search of ballistic captures.

The remainder is organized as follows. Dynamical models are described in the following Section.

Next, the methodology is briefly reviewed to seek planar CRTBP periodic orbits. Periodic initial

conditions are mapped to the elliptic problem, then solutions are placed into proper sets. The

definition of ballistic capture is applied and the algorithm to construct weakly captured solutions

from periodic orbits is presented. The Results Section elaborates on POs and the resulting ballistic

captures. Samples of regular and irregular trajectories are shown and recommendations for an

applied context are given according to the global behavior of the ballistic capture solutions. Families

and stability indices of periodic solutions are connected to the quantity and quality of the resulting

ballistic capture orbits. Finally, sample ballistic captures in a high-fidelity model are shown and

conclusions are drawn.
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II. Dynamical models

A. The planar circular restricted three-body problem

Let us consider a body P3 of mass m3 in the vector field of a larger primary, P1, and a smaller

primary, P2, of masses m1 and m2, respectively, such that the condition m3 � m2 < m1 is satis-

fied. The primaries revolve in planar configuration at constant angular speed. The motion of the

third body, or particle, is studied in a rotating synodic reference frame, whose origin is located at

the primaries center of mass, the x axis is always aligned with the P1P2 direction, the z axis is

orthogonal to their plane of motion, and the y axis forms a right-hand tern. By means of a proper

nondimensionalization [53] the equations of motion depend only on the mass parameter, defined as

µ = m2/(m1 + m2). The nondimensionalization is such that the distance between the primaries,

their angular speed, and the sum of their masses are set to a unity value. The equations for the

motion of P3 are

ẋ(c) = f(x(c)) :=
(
u(c), v(c), 2v(c) + Ω/x(c) ,−2u(c) + Ω/y(c)

)T
, (1)

where x(c) := (x(c), y(c), u(c), v(c))T is P3 state, dots denote derivatives with respect to nondimen-

sional time, and slashed subscripts are partial derivatives. The three-body pseudo-potential is

Ω =
1

2

[
(x(c))2 + (y(c))2

]
+

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ), (2)

where terms r1 =
√

(x(c) + µ)2 + (y(c))2 and r2 =
√

(x(c) − 1 + µ)2 + (y(c))2 are the distances

between P3 and each primary, respectively. Because the system is Hamiltonian and autonomous,

an integral of motion exists, i. e., the Jacobi constant:

J(x(c), y(c), u(c), v(c)) := 2Ω(x(c), y(c))−
[
(u(c))2 + (v(c))2

]
. (3)

The CRTBP possesses five equilibrium points, three of them located along the x axis (collinear

points L1,2,3), and the others at the vertex of two equilateral triangles having the primaries distance

as common base (triangular points L4,5). These points are also referred as Lagrangian or libration

6



points. The state transition matrix (STM), Φ(t0, t) =

[
∂x(c)(t)

∂x(c)(t0)

]
, is obtained by integrating the

variational equations

Φ̇(t0, t) =

[
∂f

∂x(c)

]
Φ(t0, t), Φ(t0, t0) = I4×4, (4)

from t0 to t. The STM plays an important role in determining the stability of a periodic orbit. It is

an essential part for the differential correction scheme used for the investigation carried out in this

work, which relies on the derivatives of a final state with respect to a given initial state. The first

order time-free variation of a reference solution x(c)(t) reads

δx(c)(t+ δt) = Φ(t0, t)δx
(c)(t0) + ẋ(c)(t)δt. (5)

B. The planar elliptic restricted three-body problem

In the elliptic restricted three-body problem both primaries move on elliptic orbits of common

eccentricity, ep. Let f be the true anomaly of P2, the equations for the planar motion of P3 are [53]

x′′ − 2y′ = ω/x, y′′ + 2x′ = ω/y, (6)

where primes denote derivatives with respect to f , and the elliptic pseudo-potential is

ω(x, y, f) =
Ω

1 + ep cos f
, (7)

in which Ω is the one defined in Eq. (2). Eqs. (6) are written in a nonuniformly rotating, barycentric,

nondimensional coordinate frame. The coordinate frame isotropically pulsates as the P1P2 distance

is assumed to be the unit length. The independent variable plays the role of time: f is zero when

P1, P2 are at their periapsis. Normalizing the period of the primaries to 2π, the dependence of f

on nondimensional time is

df
dt

=
(1 + ep cos f)2

(1− ep)3/2
. (8)
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Table 1: Parameters of the Sun–Mars system.

Parameter Symbol Value

Mass ratio µ 3.227154876045166× 10−6

Length unit LU 2.279497905330276× 108 km
Time unit TU 109.3425420965616 days

Velocity unit V U 24.128831378998047 km/s
Eccentricity ep 0.0935643512

Mars mean radius R♂ 3396.19 km
Mars sphere of influence Rs 577254.3 km

Mars gravitational parameter µ2 4282.837362069909 km3/s2

Interior Lagrangian point location with respect to Mars xL1 −1.082385474× 106 km
Exterior Lagrangian point location with respect to Mars xL2 1.085822733× 106 km

Unlike the CRTBP, the true anomaly in Eq. (7) makes the elliptic problem nonautonomous. The

trajectory-dependent integral of motion of the elliptic problem reads

Ĵ(x, y, u, v, f) := 2ω(x, y)− (u2 + v2)− 2ep

∫ f

f0

Ω(x, y) sin f̃

(1 + ep cos f̃)2
df̃ . (9)

Once the energy level is specified, Eq. (9) defines allowed and forbidden regions of motion, bounded

by pulsating Hill curves. These curves vary according to the mutual position of the primaries.

Table 1 gives SPICE1 estimates for the mean Sun–Mars parameters used in this work. Ephemeris

file de432s is used, and Mars orbital elements are computed by means of a time average.

III. Periodic orbits

Closely following the approach in Russell (2006) [40], periodic orbits around P2 in the planar CRTBP

are computed by (1) making explicit use of restricted three-body problem symmetries, (2) target-

ing the periodicity condition via a local differential correction, and (3) implementing a numerical

exploration for the grid search parameters. Based on the propagation of deviations from a reference

state (i. e., Eq. (5)), the differential correction is a single shooting that tweaks the initial vertical

velocity v
(c)
0 , and the nondimensional PO period, T , once the initial horizontal position, x(c)0 , is

fixed, in order to obtain trajectories with two perpendicular x axis crossings separated by T/2 time

1The toolkit is freely available through the NASA NAIF website; refer to http://naif.jpl.nasa.gov/naif/.
Downloaded on Dec 22, 2016.
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units (see [40] for more details). At both perpendicular crossings, y(c) = u(c) = 0. The stability of

a periodic orbit depends on the spectrum of its monodromy matrix (the STM evaluated after one

period), M := Φ(0, T ). The monodromy matrix provides a linear mapping of small initial state per-

turbations across a full period (refer to Eq. (5)). Because of the symplectic nature of Φ matrix [54],

the eigenvalues of M occur in reciprocal pairs. There are two unity eigenvalues due to the existence

of the Jacobi constant and to the exact periodicity of the solution. The eigenvalues of M in the

planar CRTBP thus occur as (λ1, 1/λ1, 1, 1). If an eigendirection exists that leads to a contraction,

then there is also an accompanying eigendirection that leads to an expansion. A common way to

indicate stability is the stability index, k1 = |λ1 + 1/λ1| [40, 54]. A periodic solution in the CRTBP

is termed

1. Stable if k1 ≤ 2; 2. Mildly unstable if k1 ∈ (2, 11]; 3. Unstable if k1 > 11.

For the classification of stability, | · | represents the Euclidean norm of a complex number. Stability

index k1 = 11 is a convenient threshold found with numerical experiments that is used in this work

to differentiate stability properties of periodic solutions. This value is chosen to have the size of

periodic orbit families uniformly distributed across the stability index. Observation for a particular

subset of parameters in transitioning from the CRTBP to the ERTBP has shown that k1 is also

a good indicator of persistence (see Definition 4 in Section IVC) for the solutions mapped into

the elliptic problem. Periodic initial conditions are grouped according to their stability indices and

relations with the WSBs are sought for these groups.

IV. Ballistic capture

A. Initial conditions set

In the planar elliptic problem, an initial condition is specified by 5 scalars, which define the spacecraft

position, r0 = (x0, y0)T, and velocity, v0 = (u0, v0)T, for a given value of true anomaly, f0. Let l(ϑ)

be the radial segment emanating from the smaller primary and connecting P2 with P3, where ϑ is

the counterclockwise angle measured from the x axis to l(ϑ). According to the algorithmic definition

of WSBs [15], sets of initial conditions are constructed for which P3 departs from l(ϑ) while being

9



at the pericenter of an osculating ellipse around P2 with eccentricity e0 and radius r0. In this case,

the search space variables are (r0, ϑ, e0, f0). These initial conditions are then propagated forward

and backward in the ERTBP. Ballistic captures are classified according to energetic and geometric

criteria. Correlations between the osculating orbital parameters and the quantity and quality of the

weakly captured solutions have been found [21]. The role of system true anomaly in the ballistic

capture process has also been investigated [28]. Boundaries for the problem variables can be derived

from these correlations, thus reducing the search space size. Nevertheless, ballistic capture solutions

in the planar ERTBP are found by sampling a four-dimensional space.

In the present work, a different approach altogether is pursued: periodic orbits around P2 within the

CRTBP constitute the sets of initial conditions for the computation of weakly captured solutions in

the elliptic problem. The idea is that periodicity is a persistent property of the CRTBP phase space

and plays an important role also in the ERTBP. Under specific conditions, stable, mildly unstable,

and unstable periodic orbits can generate, when integrated in the elliptic problem, trajectories that

temporarily orbit around P2 in a weakly captured state, or quickly escape from it. These properties

are essentially the same mechanisms that enable weakly captured motion. Numerical simulations

show that ballistic capture solutions exist starting from simple symmetric periodic orbits (i. e., one

revolution in the synodic frame around the smaller primary) with a wide range of k1.

As an example, in Fig. 1 six initial conditions corresponding to periodic solutions of the CRTBP are

propagated in the ERTBP, from f0 = 0 to twice the period of the generating periodic orbit. Ordered

by columns, there are 2 stable, 2 mildly unstable, and 2 unstable periodic orbits, respectively. Their

integration in the elliptic problem gives rise to both bounded (first row, see Definition 1 in Section

IVC), and unbounded motion (second row). In the latter scenario, the zero-velocity curves (ZVCs)

of the elliptic problem allow P3 to escape following a path that would have been prohibited in the

CRTBP. The ZVCs, dashed lines in Fig. 1, correspond to the Jacobi constant of the CRTBP periodic

orbit.
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Fig. 1: Trajectories of periodic initial conditions in the CRTBP (light line), and their ERTBP
propagation (dark line). (See Eq. (10) for the meaning of k.)

B. Single-parameter mapping

The transformation between the circular and elliptic problems is yet another important variable for

seeking ballistic capture solutions. Let x
(c)
0 = (x

(c)
0 , 0, 0, v

(c)
0 )T be the initial condition for a given

periodic solution in the CRTBP, and let x0 = (x0, 0, 0, v0)T be the corresponding initial condition

in the ERTBP. A one-parameter map is introduced, F(k) : x
(c)
0 → x0, such that

x0 = x
(c)
0 , v0 =

v
(c)
0

k
, (10)

where k is the mapping parameter. This single-parameter mapping is simple, yet it introduces a

degree of freedom to account for the pulsating nature of the elliptic problem. The sets of periodic

orbits, represented by the initial conditions (x
(c)
0 , v

(c)
0 , T ), start on the x axis. The ERTBP position

along the x axis is kept unchanged and equal to the CRTBP position. This approach preserves the

x direction discretization of the periodic orbits (generally a subset of the grid used to compute the
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POs). Bounds for the parameter k are heuristically found by means of a direct comparison between

the circular and elliptic problems dynamics: the velocity transformation between the two systems

yields x′ = ẋ/ḟ . The true anomaly derivative with respect to time is then formally equivalent to

the dynamical mapping parameter, k ∼ ḟ . Eq. (8) provides a lower and upper bound for the map

parameter given a P1P2 eccentricity (kmin = 0.95207 and kmax = 1.38574 for the Sun–Mars case),

corresponding to values of true anomaly of f = π and f = 0, respectively. In transitioning from the

circular to the elliptic problem, the mapping parameter is allowed to vary between kmin and kmax to

aid the transition from circular to elliptic problem and to ensure sufficient variety in the capture and

escape trajectories produced in the ERTBP. A map approach is employed, instead of using discrete

states along the PO as variables for the grid search, because the mapped initial state of a periodic

orbit always lies at the periapsis of an osculating conic having one focus at P2. In view of the

properties of the map F(k), if velocity and position vectors are perpendicular in the CRTBP, then

this property is true also after the mapping. Thus, the particle stays at osculating periapsis condition

in the ERTBP, albeit with different osculating eccentricity and semi-latus rectum. Consequently,

the search space is reduced and ballistic captures computed in this work may be compared to results

of existing works that employ, for instance, the algorithmic definition of WSB [17, 31]. It is noted

here that this mapping is simply a heuristic guided by intuition to allow a single parameter degree

of freedom to the nontrivial mapping problem. Bounding k is also needed to proceed with a grid

search.

ERTBP propagations are attached to a given value of system true anomaly. Hence, the quality and

quantity of the ballistic capture solutions depend on the initial periodic state x(c)0 , the initial system

true anomaly f0, and the map parameter k. Thus, the search space is three-dimensional, (x
(c)
0 , f0, k);

as opposed to the four-dimensional search space of the algorithmic WSB definition [15–18]. This

reduction in search space is an improvement in terms of computational efficiency in comparison to

an unguided grid search and for results interpretation. The stated improvement is not compared to

other methods such as the quasi-periodic approach. For a given initial state in the circular problem

(ascending x axis crossing of a periodic orbit), ballistic capture trajectories are sought by sampling

(k, f0). Let x0 = (r0,v0) be the k-dependent initial condition in the ERTBP. Eqs. (6) are integrated
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to yield x(f) = (r(f),v(f)) for f ∈ [f0, f0 ± ∆fmax], where ∆fmax is a maximum duration, and

the plus/minus sign accounts for forward/backward integration. Analyzing only those solutions

whose periapsis lies on the x axis, without spanning the full phase space around P2, might seem

a restrictive choice. However, this is just a by-product of how simple symmetric POs are defined.

Furthermore, assuming that ballistic capture features quasi-regular motion, the solutions are simply

ellipses in the inertial frame that circulate in argument of periapsis. Thus, these orbits eventually

have their periapsis on or close to the x axis.

C. Criteria for orbits classification

For the planar case, the persistence (proxy for stability quality of a ballistic capture) of P3 can be

inferred by studying its intersections with the x axis. Let x = (x, y, u, v)T be a generic state of P3

in the planar ERTBP.

Definition 1 (Revolution). The particle performs a complete revolution around P2 at true anomaly

fr if the following conditions are all simultaneously satisfied [35],

i) y(j)(fr) = 0, ii) [x(j)(fr)− 1 + µ](x̄− 1 + µ) > 0, iii) v(j)(fr)v̄ > 0, (11)

where the superscript (j) counts the number of x axis crossings.

The first of Eqs. (11) expresses the particle intersection with the x axis at true anomaly fr; the

second condition limits the analysis to the segment of interest and excludes half revolutions; and

the last kinematic condition is used to filter out undesired incomplete revolutions for which condi-

Algorithm 1 Algorithm to compute and update barred quantities in Definition 1.
Require: Initialize x̄ = x(0), v̄ = v(0), and number of revolutions, Nr = 0
1: for j ← 1, Nx do
2: Compute next x crossing with Condition i) of Eq. (11) and store (x(j), v(j))
3: if Condition ii) of Eq. (11) is satisfied then
4: if Condition iii) of Eq. (11) is satisfied then
5: Complete revolution around P2 is counted, Nr = Nr + 1
6: end if
7: Update barred quantities, x̄ = x(j) and v̄ = v(j)

8: end if
9: end for
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tion 1 and 2 are satisfied (e. g., two consecutive crossings on the same axis). Barred quantities in

Eq. (1) indicate states on a preceding crossing (j − 1, . . . , 0); they are updated with Algorithm 1.

Updating the position and velocity as the particle moves along its trajectory is a modified version of

conditions used in Luo et al. (2014) [31], for which some orbits were pruned out due to a restrictive

kinematic constraint. Algorithm 1 cannot capture revolutions when P3 motion becomes prograde

from retrograde, and vice versa.

The Kepler specific mechanical energy of P3 with respect to P2 is

H2 =
‖V ‖2

2
− µ2

‖R‖
, (12)

where

R = rpCr2, V =
ḟ

TU

[
(r′pC + rpC

′)r2 + rpCv2

]
, (13)

and

C =

cos f − sin f

sin f cos f

 . (14)

In Eqs. (12)–(13), µ2 is the gravitational parameter of P2 (see Table 1), R and V are P3 position and

velocity vectors in the inertial P2-centered reference frame, respectively, rp(f) = LU(1 − e2p)/(1 +

ep cos f) is the pulsating distance between the primaries, C is the rotation matrix, and r2, v2 are

P3 synodic position and velocity with respect to P2, respectively.

Definition 2 (Escape). The particle escapes from P2 at true anomaly fe if the following conditions

are both satisfied [32],

H2(fe) > 0, r(fe) > Rs, (15)

where H2 is the Kepler energy as in Eq. (12), and Rs is the radius of P2 sphere of influence (Table 1).
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According to Eq. (15), escape occurs when the particle is physically located outside of the P2 sphere

of influence (SOI) and, at the same time, it possesses positive Kepler energy with respect to P2.

The two conditions have to be satisfied simultaneously since the first one alone does not guarantee

escape, and vice versa [17]. The Kepler specific mechanical energy in a multi-body environment

is a fluctuating term and lacks the direct physical significance it has in the two-body problem.

However, it has been shown that use of both geometrical and energetic conditions in Definition 2 is

a conservative choice to discriminate between escape and weakly stable conditions [1, 17, 31]. The

use of the sphere of influence to define escape in the multi-body dynamical system, rather than the

L1,2 gateways, is motivated by the wide energy level range of the present analysis.

Definition 3 (Crash). Let R♂ be P2 mean radius (see Table 1), the particle impacts P2 at true

anomaly fk if

r(fk)−R♂ ≤ −100 km. (16)

Crash events are considered when P3 is below the planet surface. Subsurface solutions are computed

for up to 100 km below P2 radius. Therefore, it is easy to track the end of a WSB family to a physical

collision.

Definition 4 (Classification). Definitions 1−3 of revolution, escape, and crash are used to classify

initial conditions that generate the trajectory x(f) (to which the definitions above are applied) when

flown forward and backward under Eqs. (6). Orbits are classified into four mutually exclusive cate-

gories. The following sets of initial conditions are constructed according to the orbits they generate.

• Weakly stable set, W±n: contains initial conditions whose orbits perform n complete revolu-

tions about P2 before escaping [31].

• Escape set, E±: contains initial conditions whose orbits escape from P2 without completing

any revolution around it [31].

• Crash set, K±g: contains initial conditions whose orbits impact with P2 after g−1 revolutions
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around it [31].

• Persistent set, P±: contains initial conditions whose orbits do not escape from or impact

with P2 (likely performing several revolutions about it), within a specified maximum duration,

∆fmax.

Plus and minus signs in the set names indicate forward and backward integration of the matching

initial condition, respectively. Escape and Crash conditions are checked at every integration step.

The integration is halted if either condition occurs. Completed revolutions around P2 are checked

a posteriori. Note that the indices definition of weakly stable and crash sets differs: index ±n of

the weakly stable set indicates completion of n revolutions about P2, while index ±g of the crash set

refers to trajectories that crash before completing the g-th revolution about P2.

In this work, Definition 2 of escape is Boolean, i. e., either an orbit escapes or it does not. In this

framework, no other descriptors are added to specify affinity of initial conditions with the persistent

set, P±. In view of this, a highly irregular trajectory would be classified as persistent, similarly to

a trajectory that asymptotically approaches a single type of motion. This difference is accounted in

Section VC, where the quality of ballistic captures is discussed.

A group of sample orbits about Mars is shown in Fig. 2. A few observations arise from the definitions

above. (i) The definition of revolution solely relies on a geometrical criterion; i. e., P3 completes a

revolution about the smaller primary regardless of its Keplerian energy upon completion [16, 18, 36].

(ii) The persistent set, P±, is attached to the maximum duration of flight, ∆fmax. Namely, a given

initial condition is persistent only within the simulation time. When longer ∆fmax are considered,

(a) Persistent, P+. (b) Weakly stable,
W2.

(c) Escape, E+. (d) Crash, K1.

Fig. 2: Orbits in the Sun–Mars ERTBP. The black triangle is the initial condition, the gray spot is
Mars (not to scale). Arrows indicate direction of motion.
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the ERTBP dynamics might cause the spacecraft to either collide or escape from P2, leading to a

different initial condition classification. In this paper, ∆fmax is chosen corresponding to 100 years.

D. Construction of ballistic capture orbits

Two types of ballistic capture sets are identified by manipulating the persistent and weakly stable

sets: the finite capture set Cn−m and the persistent capture set C∞−m. These are found as intersection

between sets that include orbits generated from propagation along opposite directions of independent

variable. Thus, the intersection would result in a subset including only continuous orbits, compatibly

with the theorem of existence and uniqueness of differential equations. The initial conditions in Cn−m

generate orbits that (1) perform m revolutions around P2 before escaping from it when integrated

backward, and (2) perform n revolutions in forward true anomaly without impacting or escaping [21];

Cn−m =W−m ∩Wn. (17)

On the other hand, initial conditions in C∞−m generate orbits like Cn−m except that the forward motion

is persistent around P2 for the whole flight duration;

C∞−m =W−m ∩ P+. (18)

The persistent capture set C∞−m represents an addition and expands the concept of WSB to account

for solutions that remain persistently trapped in the vicinity of Mars in a weakly captured state (in

the timeframe of the simulation). From a mission analysis perspective, the most desirable situation

is E− ∩ P+. The orbits generated from these sets are indeed good candidates to design ballistic

capture solutions upon arrival at a planet or moon. These solutions come from outside of P2

SOI with positive Kepler energy, and perform ideally a large number of complete revolutions at a

completely zero-cost basis, without escaping or impacting P2 within the maximum set ∆fmax. In

the formalism of the patched-conics method, the pre-capture occurs resembles a hyperbola (albeit
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low-energy), whereas the post-capture shows a repetitive, quasi-regular behavior, typical of two-

body motion. This dichotomy is achieved by exploiting the natural dynamics of the ERTBP: no

orbital maneuvers are necessary. A detailed summary of the developed algorithm to construct the

sets, manipulate them, and practically extract the ballistic capture solutions is outlined in Table 2.

Table 2: Algorithm to design practical ballistic capture solutions in the planar ERTBP.

1. Initialization
Select primaries (e. g., Sun–Mars) and load their physical parameters (see Table 1)

2. Periodic orbits computation (For more details see Russell (2006) [40])
Set the CRTBP as default dynamical model, Eqs. (1)
Set bounds for search variables x(c)0 ∈ [x

(c)
0min

, x
(c)
0max

], v(c)0 ∈ [v
(c)
0min

, v
(c)
0max

] and discretize them
Set number of revolutions, Nr, around P2, and maximum period of the periodic orbits
Perform differential correction on search grid
Save periodic orbits solutions in (x

(c)
0 , v

(c)
0 ) pairs and orbit period T

3. Ballistic capture solution construction
Set the ERTBP as default dynamical model, Eqs. (6)
Select (a) stability range, k1, and (b) x(c)0 boundaries
Load periodic solutions, (x

(c)
0 , v

(c)
0 ), according to k1 and x(c)0 boundaries in matrix Σ ∈ RNs×2

Set the number of initial true anomaly samples, nf , and map parameter samples, nk
Set boundaries for map parameter k, k ∈ [kmin, kmax]
Discretize the initial true anomaly f0 by df0, and the map parameter k by dk
Set the maximum ∆fmax, and the maximum number of x axis crossings, Nx
FOR ii = 1 to ii = Ns by 1

Extract current initial condition from Σ→ x
(c)
0 = (x

(c)
0 , 0, 0, v

(c)
0 )T

FOR f0 = 0 to f0 = 2π by df0
FOR k = kmin to k = kmax by dk

Apply mapping F(k) : x
(c)
0 → x0, Eq. (10), to get ERTBP initial condition, x0

Integrate (f0,x0) until (15) or (16) are true or f0 ±∆fmax or Nx is reached
Store forward and backward true anomalies, f±, for which above conditions are met
Classify initial conditions with to Definition 4, and generate sets P±, W±n, E±, K±g

ENDFOR k
ENDFOR f0

ENDFOR ii
Extract capture sets Cn−m and C∞−m by intersecting initial conditions sets according to (17)-(18)

4. Post-processing and analysis
Compute geometrical and physical properties of periodic orbits (J , stability, etc.)
Reconstruct each ballistic capture solution within f = [f−, f+] by backward/forward integration
Compute and draw capture sets properties and trend (H2, altitude profiles, number of revolu-
tions, regularity, osculating parameters, approaching direction, TOF, etc.)
Select desired ballistic capture trajectories according to mission requirements
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E. Quality of the ballistic capture

The capture sets defined in Eqs. (17)-(18) are made of points that depend upon the search space

variables (k, f0) discretization. A fine discretization is generally favored not to lose possible inter-

esting dynamics. However, many ballistic capture solutions may not be practical for application,

since they correspond to chaotic high-sensitivity trajectories. The quality of the ballistic capture

needs therefore to be evaluated. The ballistic capture trajectory is ideal when appears regular

and repetitive, much like it would occur in a two-body ellipse. For these solutions, the particle

approaches P2 and describes Nr closed orbits around it having similar shape and orientation. A

regular post-capture orbit possesses two advantages: (1) it allows multiple insertion options, and

(2) it permits to better plan the post-capture phase and better analyze the mission requirements.

The quality of the capture solutions is measured by the regularity index [31], S,

S =
fNr − f0
Nr

, S(2b) =
2π
√
µ

(
r0

1− e0

)3/2

, ∆S% = 100

∣∣∣∣ S

S(2b)
− 1

∣∣∣∣ , (19)

where Nr is the number of forward or backward revolutions completed by the particle, f0 is the

initial system true anomaly, fNr is the system true anomaly corresponding to completion of the

Nr-th revolution of P3 about P2. In [31], S is called stability index. To avoid confusion with the

periodic orbit stability index, k1, the name has been adjusted to regularity index in this work. It

has been shown that S embeds sufficient information to characterize the regularity of the ballistic

capture [35]. S(2b) is the regularity index of a Keplerian orbit at the periapsis of an osculating ellipse

with pericenter r0 and eccentricity e0. There is evidence that regular capture orbits feature values

of the regularity index that are close to their Keplerian counterpart [32]. The distance between S

and S(2b) is measured by the regularity coefficient, ∆S%, and indicates how far an orbit is from

being Keplerian. In this work, the regularity coefficient is used solely to characterize a geometrical

qualitative feature of the ballistic capture, not a dynamical property. If the osculating conic is a

parabola or a hyperbola, ∆S% is set to a negative value and is not representative of the actual

regularity of the trajectory.
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V. Results

In this Section, the Sun–Mars system is taken as case study for the application of the process

described above. In particular, (1) families of simple periodic orbits about Mars are found in the

Sun–Mars planar CRTBP; and (2) these orbits are mapped through F(k) in Eq. (10) to the Sun–

Mars planar ERTBP for the construction of initial conditions and capture sets that lead to ballistic

capture at Mars. The families of simple symmetric periodic orbits (1 revolution) that circulate P2

catch the dominant features of the motion in the vicinity of P2. Three simple planar periodic orbit

families are sought in this class. Note that Lyapunov orbits around Lagrange points have been

computed as a by-product, but are not utilized further.

A. Periodic orbits in the CRTBP

The differential corrector scheme [40] is applied to 10.5 million starting points. The algorithm in

Table 2 is applied first with a course mesh with liberal values for ranges on the search space (x
(c)
0 , v

(c)
0 )

to determine appropriate mesh sizes and ranges for later more refined searches. Table 3 presents

the final uniform mesh parameters and bounds. In total, 2653 Mars-circulating simple symmetric

periodic solutions have been sequentially found using roughly 9 hours on a 2.9 GHz Intel Core i7

Unix machine and a 7th/8th order variable step Runge–Kutta–Fehlberg scheme implemented within

a Matlab mex file, and absolute and relative error tolerances 2.5 × 10−14. Of the periodic families

of interest, approximately 39% were classified as stable, 30% were found mildly unstable, and 31%

unstable (see Section III). In view of the high computational cost to compute the periodic orbits,

a grid search approach is preferred in this work, rather than a continuation technique, because the

grid search method is more apt to extension to the spatial problem.

Table 3: Search regions for Sun–Mars periodic orbits.

Search region x
(c)
0min

x
(c)
0max

# x0
v
(c)
0min

v
(c)
0max # v0[km/s] [km/s]

Retrograde xL1 surface 500 0 2.41 5000
Direct surface xL2 1500 0 2.41 12000
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Figs. 3–4 represent a complete picture of the single-periodic planar solutions near Mars, and circu-

lating about it. In Figs. 3a–3d, the synodic Mars-centered initial position along x, Jacobi constant,

period, and osculating parameters of the periodic orbits are plotted. The variables are grouped

according to their stability index (black stable, dark shading mildly unstable, and light shading

unstable). Osculating semi-latus rectum, p0, and eccentricity, e0, are computed by applying two-

body formulas [55] to the areocentered initial condition as transformed from the CRTBP. Osculating

semi-latus rectum is used, rather than osculating semi-major axis, because p0 is always well defined

for varying osculating eccentricities, whereas osculating semi-major axis is a discontinuous indicator.

Fig. 3c displays the Jacobi constant and the Mars-centered x position: three distinct families are
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0 0.5 1 1.5
Semi-latus rectum [1e6 km]

0

0.2

0.4

0.6

0.8

1

1.2

Ec
ce

nt
ric

ity
 [-

]

DRO family

Family g2

Family g1

(d) Osculating semi-latus rectum vs eccentricity.

Fig. 3: POs scatter plots of relevant variables. Each point corresponds to a different trajectory.
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Family g2

(3.000032, 0.172) (3.000118, 0.432) (3.000203, 0.556) (3.000203, 0.775) (3.000186, 0.842)

Family g1

(3.011712, 0.006) (3.000410, 0.198) (3.000203, 0.161)
(3.000203, 0.081)

(3.000186, 0.027)

DRO family

(3.009513,−0.008) (3.000255,−0.256) (3.000015,−0.944)

Fig. 4: Evolution of PO families. Coordinates are J [nondimensional units] and x0 [106 km] on
Fig. 3c. Grey spot represents Mars to scale.

recognized. The solutions are manually grouped as families and termed as Distant Retrograde

Orbits (DRO), g1 and g2 [56]. These families are the same, albeit with different terminology, to

those in [39, 40, 57]. The evolution of the families is outlined in Fig. 4 for different values of Jacobi

constant. Henon’s g and g′ families in the Hill model intersect, whereas Fig. 3c (upper right zoom)

shows a clear gap between the g2 and g1 families [58].

DRO solutions are never unstable. On the other hand, families g2 and g1 contain stable, mildly

unstable, and unstable solutions. Unstable solutions of family g1 mostly gather for low values of

Jacobi constant, J ≤ 3.0002. Conversely, a clear majority of family g2 solutions exhibit (mildly)

unstable behavior. For the observed orbit families at the constrained value of the mass ratio, periodic

solutions tend to become more unstable as the period increases; this trend is clearly visible in Fig. 3a

and Fig. 3b (light colored unstable dots are predominant in the right tail of the families, that is for

higher values of T ). On the other hand, no clear link is present between stability index and x0.

Interestingly, the periodic families are well recognizable also when comparing osculating semi-latus

rectum and eccentricity in Fig. 3d. In a two-body sense, osculating parabolas and hyperbolas

exist within orbits of the g2 family (see Fig. 3d). These are of particular interest for ballistic

capture purposes as a higher approaching Keplerian energy generally yields a reduction of the
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heliocentric duration to rendezvous with the planet [59]. A highly energetic approach that turns

into a ballistic capture requires harnessing the dynamics of the pulsating system to slow down

the particle and temporarily trap it about the planet [35]. As expected, all the larger-than-one

osculating eccentricity orbits belong to the unstable g2 family. Families g2 and g1 span the whole

range of elliptical osculating eccentricity (also, osculating circular motion exists in two regions for

family g2), whereas the DRO family becomes monotonically more elliptic (with the apsides line

directed as the synodic y axis) as their amplitude increases, with e ≈ 0.4 at the libration points.

B. Ballistic capture at Mars in the ERTPB

The one-parameter dynamical map in Eq. (10) is applied to all the areocirculating periodic solutions,

organized in {x(c)0 , v
(c)
0 }

Ns
j=1 pairs, Ns = 2653, for varying values of initial true anomaly. The true

anomaly, {f (j)0 }
nf=120
j=1 , is discretized in equally spaced 3◦ segments that span the whole orbital

motion of Mars around the Sun. The map parameter is divided in nk = 399 equally spaced samples.

The resulting discrete vector, {k(j)}nk
j=1, contains the unity value corresponding to the identity map,

F(k) = I when k = 1. With this discretization, over 127 × 106 initial conditions, (f0,x0), are

forward and backward propagated in the ERTBP until conditions from Eqs. (15) or (16) are verified

or either propagation limits f0 ± ∆fmax or Nx are reached. For families g1,2 Nx = 50, whereas

Nx = 500 for DROs. According to Definition 4, these initial conditions are classified as persistent,

weakly stable, escape, or crash sets; P±, W±n, E±, K±g, respectively. Finally, ballistic capture

solutions are extracted by intersecting these sets as per conditions from Eqs. (17)-(18).

Surprisingly enough, 29.32% of the search space (i. e., 37.2 × 106 solutions) are found to be in one

of the capture sets. For comparison, the WSB algorithmic definition implemented in Luo et al. [32]

found that 0.0295% of the search grid space in the Sun–Mars ERTBP belonged to the C6−1 capture

set (refer to capture ratio in Table 3 therein). In the present study, 15.28% of the ballistic capture

solutions perform at least 6 complete revolutions around Mars before escaping. The increase in

captured solutions recovered by the present method is conjectured to be caused by the different grid

search topology of the methods: (a) the exploitation of periodic motion to study ballistic captures
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(this work) allows to sweep a wide variety of osculating conditions around Mars, ranging from ellipses

to hyperbolas; on the other hand (b) the algorithmic definition applied in [32] is limited to very

elliptical osculating conditions (i. e., e0 = 0.95) that circulate in osculating argument of pericenter

and at closer distances with respect, for instances, to initial conditions originating from DROs.

Six samples of ballistic capture solutions are shown in Figs. 5–6, corresponding to different combi-

nations of generating POs family and stability. Table 4 shows key parameters to reconstruct these

solutions. In the first column of Figs. 5–6 a topographic map is shown representing the total num-

ber of forward (N+
r ) plus backward (N−r ) revolutions around Mars as function of the search space

(k, f0), counted according to Definition 1. Each topographic map refers to one generating periodic

orbit. In all 2653 cases, the map is symmetric with respect to the f = π axis. Since the ERTBP

equations of motion are even in f (due to the cosine term in the pseudo-potential, ω), this symmetric

outcome was expected, and can be used to halve the search space. Each point in this map univocally

specifies the initial conditions (x0, v0, f0) for a potential ballistic capture solution. There is a wide

variation in the number of weakly stable revolutions both across families and stability parameter.

In Figs 5a and 5j the existence of capture sets seems to be confined within well-defined boundaries.

The gradient of the revolutions number along k is very pronounced within these boundaries. This

trend provides predictable regions in which ballistic capture solutions are likely to be found. On

the other hand, weakly captured initial conditions are more numerous for the mildly unstable and

unstable periodic solutions in the g2 family (Figs. 5d and 5g). These initial conditions are preferred

if quantity of the solutions is the driving factor. As expected, there are regions of the search space

in which ballistic capture does not exist. Fig. 6d shows extremely limited options for P3 to achieve a

weakly captured state. However, these extremely rare events, localized at k ∼= kmin and f0 ∼= 350◦,

generate solutions of interest for application as they are part of the persistent capture set. Since the

generating orbits exist also in the CRTBP at the mass ratio of the Earth–Moon system [60], these

types of solutions could be of interest, for instance, for NASA’s Asteroid Redirect Mission (ARM)

at the Moon [61].

The second and third columns of Figs. 5–6 display the behavior of one particular point in the

24



topographic map (light dots highlighted in each map corresponding to specified values of k and f0).

In particular, Figs 5b, 5e, 5h, 5k, 6b, and 6e show the backward (E−, dark line) and forward (E+,

light line) motion of solutions within the capture sets. Generating periodic orbits (C, dashed dark

closed line) and CRTBP zero-velocity curves (dashed light line) are also shown for reference. The

trajectories of Figs 5b and 5e display regular motion around Mars, before escaping through L1,2.

Although the other sample trajectories exhibit a more irregular motion, they get closer to Mars than

the regular orbits. This feature is observed in the vast majority of the solutions, and there seems to

exist a trade-off between regularity of the solution and repeated P2 close passages. The trajectory

of Fig. 6e belongs to the C∞−m set. Coming from the Sun side, P3 is weakly captured at Mars and

performs 310 revolutions about it without escaping for approximately 91.9 years. This capture is

achieved on a zero-cost basis. The particle will eventually escape, simply employing a longer ∆fmax

than is used for the present simulations. P3 gets closer than 105 km to Mars 125 times (averagely

4 times every 3 years), providing a discrete number of opportunities to permanently trap the orbit

around Mars (via propulsion).

In the third column of Figs. 5–6, altitude and Kepler energy profiles of the same orbit are shown.

These plots exhibit a repetitive signature: (a) the particle reaches Mars with a positive Kepler

energy, (b) in the weakly captured phase H2 fluctuates around a negative value, and then (c) P3

escapes retracing again an osculating hyperbola. Note how Definition 2 of escape is well posed.

Being geometrically situated outside the SOI is not a sufficient condition to guarantee that the

particle will cease revolving around Mars.

The quality and regularity of ballistic capture solutions are yet other important factors when ap-

plicability to mission scenarios is considered. Fig. 7 shows the regularity coefficient, ∆S% from

Table 4: Initial conditions and key parameters of ballistic captures shown in Figs. 5–6.

x
(c)
0 [adim.] v

(c)
0 [adim.] k [-] f0 [deg] f− [deg] f+ [deg]

Fig. 5a 1.001085292502152 0.023147929623056 1.184093091652790 300 −70.72963 437.37801
Fig. 5d 1.054270217770476 1.002232035596414 0.010928959027259 6 −402.03486 400.61490
Fig. 5g 1.002941622483471 0.006170022665865 0.995792311239681 258 −1500.27638 791.36927
Fig. 5k 1.000765344843256 0.025326253817461 0.995792311239681 93 −19.12681 782.20914
Fig. 6a 0.995431558509543 0.014322449245684 0.991584622479361 147 −1593.52443 1239.83258
Fig. 6d 0.999121563467277 0.020085493679947 0.832533987339290 339 −3322.99062 14267.36542
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(d) g2-family mildly unstable solutions.
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(e) Weak capture trajectory sample.
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(g) g2-family stable solutions.
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(h) Weak capture trajectory sample.
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(j) g1-family stable solutions.
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(k) Weak capture trajectory sample.

0 2 4 6 8 10 12
f [rad]

0

1

2

h 
[1

e6
 k

m
]

f0 = 93° -- k = 0.996 -- N r
+ = 7 -- N r

- = 0

SOI

0 2 4 6 8 10 12
f [rad]

-4
-2
0

H 2 [h
m

2 /s
2 ]

(l) Altitude (top), energy (bottom).

Fig. 5: Samples of ballistic captures generating from families g1,2. Kepler energy is in 104 m2/s2.

26



0.9 1 1.1 1.2
k [-]

0

50

100

150

200

250

300

350

f 0 [
de

g]

0

100

200

300

400

500

# 
re

vs

i.c.

(a) DRO mildly unstable solutions.

0.995 1 1.005
x [adim.]

-5

0

5

10

y 
[a

di
m

.]

10-3

C
E+

E-

(b) Weak capture trajectory
sample.

-20 -10 0 10 20
f [rad]

0
1
2
3

h 
[1

e6
 k

m
]

f0 = 147° -- k = 0.992 -- N r
+ = 7 -- N r

- = 11

SOI

-20 -10 0 10 20
f [rad]

-3
-2
-1
0

H 2 [h
m

2 /s
2 ]

(c) Altitude (top), energy (bottom).

0.9 1 1.1 1.2
k [-]

0

50

100

150

200

250

300

350

f 0 [
de

g]

0

100

200

300

400

500
# 

re
vs

i.c.

(d) DRO stable solutions.

0.994 0.996 0.998 1 1.002 1.004 1.006
x [adim.]

-6

-4

-2

0

2

4

6
y 

[a
di

m
.]

10-3

C
E+

E-

ZVC

(e) Weak capture trajectory sample.

-50 0 50 100 150 200
f [rad]

0

1

2

h 
[1

e6
 k

m
]

f0 = 339° -- k = 0.833 -- N r
+ = 250 -- N r

- = 60

SOI

-50 0 50 100 150 200
f [rad]

-4
-2
0

H 2 [h
m

2 /s
2 ]

(f) Altitude (top), energy (bottom).

Fig. 6: Samples of ballistic captures generating from DROs. Kepler energy is in 104 m2/s2.

Eq. (19), of three sets of ballistic capture solutions (only the forward part of the set is shown here).

The particularly evident empty island in Fig. 7a, formed around f0 ∼= 220◦ and k ∼= 0.88, has its

symmetric counterpart when the regularity coefficient is studied for the backward subset. In this

region, hyperbolic and parabolic osculating initial conditions give rise to motion that cannot be

compared with a two-body trajectory, in terms of the regularity index. The points belonging to
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Fig. 7: The regularity coefficient, ∆S%, for the sole forward part of the sets.
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the island boundaries are very far from being Keplerian, with ∆S% > 80. In this case, regular

solutions in forward integrations seem to gather for f0 ∈ [0, 180] degrees, i. e., when Mars is near

perihelion and flying away from the Sun with positive radial velocity. The family g1 stable case

(refer to Fig. 7b) solutions become more regular as the map parameter is increasing within the

bounded region. Thus, a more persistent solution is also likely to exhibit a more regular motion.

Lastly, ballistic solutions that generate from DROs generally have very persistent, mildly irregular

behavior, with ∆S% ∈ [40, 80]. The empty island in the middle left part in Fig. 7c is associated

with extremely persistent motion (i. e., the persistent capture set C∞−m).

C. Global characterization of ballistic capture solutions

A global portrait essentially provides a comprehensive insight on how the ballistic capture mech-

anisms work. Nevertheless, a global characterization is difficult to obtain, because of both the

dimensionality of the search space and the number of parameters that influence the survey (e. g., os-

culating parameters, stability of the generating initial conditions, primaries geometric configuration,

grid discretization, etc.). In this study, the global portrait of the ballistic capture process is deemed

to be well represented by four separated factors:

1. The capture ratio, NCs , i. e., the percentile number of weakly captured solutions with respect

to the search grid dimension, nfnk. For each generating periodic initial condition, the capture

ratio is a measure of the occurrence of capture orbits in the total set of initial conditions.

Through Fig. 3c the Jacobi constant is easily related to the position, and hence to the vertical

velocity. These can be used to compute osculating pericenter radius and eccentricity.

2. The percentile number of weakly captured solutions which feature a regularity coefficient,

∆S%, below a certain threshold. This figure is referred to ∆Sι%, where ι is the percentile

threshold. The scaling is here the number of solutions belonging to the capture sets for a fix

generating initial condition, and not the grid dimension. This scaling better emphasizes the

real trend of regularity within solution sets.

3. The number of backward and forward revolutions around P2, termedN−r andN+
r , respectively.
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This is a direct indicator of the time P3 dwells in the vicinity of the smaller primary in a weakly

captured state.

4. The regularity of the solutions, expressed by the regularity coefficient, ∆S%. Quasi-regular

motion is generally a desired feature for trajectories in an applied context, and low values of

∆S% are preferred over chaotic difficult-to-predict trajectories.

While NCs , ∆Sι%, and Nr are quantitative indices, ∆S% is a qualitative measure of regularity for

capture solutions only (see Section IVE). Indices Nr and ∆S% are shown as function of the initial

osculating eccentricity and periapsis distance, e0 and r0, respectively. This choice is motivated to

ease comparison with existing sets of ballistic captures.

Fig. 8a shows the capture ratio trend discriminating for family and stability index of the generating

periodic orbit. The shading scheme is the same as that of Fig. 3. As J increases, the capture

ratio of DROs (triangular markers) diminishes, until no ballistic capture practically occurs for

J ≥ 3.000341. Accordingly, DROs that originate closer to Mars (i. e., larger Jacobi constant) are

less likely to generate weakly captured motion. The NCs trend for solutions of family g1 (cross

markers) remarkably retraces the (J, x
(c)
0 ) trend of the CRTBP simple periodic orbits. Unstable g1

family motion is associated with very low values of capture ratio, no more than 1.7% were found to

generate ballistic captures. On the other hand, stable and mildly unstable initial conditions show a
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Fig. 8: Global quantitative trend of ballistic captures for varying energy of the generating POs.
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peak at NCs ≈ 35%. Capture ratio trend for family g2 periodic orbits (dotted markers) is somewhat

more complicated, due to the more complicated structure of this family (see orbit evolution diversity

in Fig. 4). For the unstable part of the family, the number of ballistic captures increases with J .

Stable and mildly unstable g2 generators feature a faster variation across J , with a maximum of

NCs ≈ 90%. Considering the large number of solutions, DROs seem to be less effective generators

of ballistic captures when compared to the g1,2 families.

In Fig. 8b ∆S20
% is shown. The threshold of ∆S% ≤ 20 is chosen to represent a near-Keplerian

capture condition. This value serves as an appropriate cut-off to discriminate between a geometric

quasi-regular and irregular motion around Mars. The regularity trend of the DROs solutions is

in contrasts with the abundance of the ballistic captures generating from them. Indeed, as the

DRO starts closer to Mars (and hence generates fewer ballistic captures) there are more regular

ballistic capture trajectories. The Pareto trade-off between regularity and abundance occurs across

J = 3.000064 nondimensional units. Index ∆S20
% of families g1,2 generally displays a concurrent

trend with the capture ratio, except for the low J parts of the unstable groups.

Referring to Fig. 9, the totality of ballistic capture solutions is binned according to initial osculating

eccentricity, e0, and regularity coefficient of the sole forward phase, ∆S%. The number of solutions

in each bin, expressed as percentile of the total solutions, is hence represented as a two-dimensional

gradient map. In this map, bins are considered empty if they contain less or equal than 0.01%

of the available data. The shading is darker for bins with fewer solutions, and lighter for a larger
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number of ballistic captures. A densely-populated island appears in the lower left part of Fig. 9b

for ballistic capture generated from POs of family g1. This region provides interesting opportunities

to achieve quasi-regular motion around P2 departing from small eccentricity osculating conditions.

In Fig. 9a ballistic captures generating from g2 periodic motion exist, albeit not numerous, for low

osculating eccentricities and low regularity index. This area shrinks and becomes more densely

populated as both e0 and ∆S% increases. Ballistic captures of practical interest originating from

DROs (Fig. 9c), with ∆S% ≤ 20, occurs at initial osculating eccentricities around e0 ≈ 0.5; yet

most of the solutions feature nonregular post-capture behavior. Interestingly, ballistic captures

originating from low osculating eccentricities and performing many revolutions around Mars are, in

fact, quite common cases.

The persistence of the solutions as a global quantity is represented in Fig. 10. A longer ballistic

capture trajectory generally provides multiple close passages; thus, potential opportunities to per-

form scientific observations or experiments at P2 or to permanently close the system natural escape

routes. In particular, the number of backward and forward revolutions that P3 perform around

Mars in a weakly captured state is shown as function of the initial osculating eccentricity, e0, and

osculating periapsis distance, r0. It is important to note that initial osculating states might not be

good indicators of how close and how frequently a specific ballistic capture trajectory passes in the

(a) Families g2 and g1. (b) Family DRO.

Fig. 10: Number of ballistically captured forward/backward revolutions around P2.
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vicinity of P2 for the whole flight duration. Each dot in the maps corresponds to a different ballistic

capture solution. Approximately 32.8 and 4.4 million solutions are plotted in Fig. 10a and Fig. 10b,

respectively. Solutions with a higher number of revolutions are marked with lighter colored dots.

Ballistic captures originating from low osculating eccentricities and performing many revolutions

around Mars represent an ordinary phenomenon. The majority of solutions originating at the pe-

riapsis of osculating hyperbolas perform at most a few revolutions before escaping, shadowing the

difficulty to turn a highly energetic inbound trajectory to a weakly stable one. Ballistic captures

that originate close to P2 need to depart from a high elliptical osculating state to achieve weakly

captured motion. Generally, as the initial osculating radius decreases, the existence region of bal-

listic captures shrinks, with a clear persistency signature for lower values of e0 (i. e., spike-shaped

structure in the bottom-right part of Fig. 10a). DROs offer a wider range of opportunity for ballistic

solutions very far away from P2.

D. Behavior in an ephemeris model

Capture orbits whose initial conditions are reported in Table 4, are now demonstrated to exist within

a higher fidelity model. The behavior in an ephemeris model is helpful to show that ballistic captures

may ultimately be used in a real mission scenario, albeit the main results and contributions of this

work are found in the ERTBP. The ERTBP has fewer dimensions and more dynamical structure

(i. e., insight to be gained) than the full ephemeris model. In this Section, the SPICE ephemerides

of the Sun, Earth, Mars, Jupiter, and Saturn are used to better represent the dynamics. The

integration is performed in the roto-pulsating restricted n-body problem (RPRnBP), a high-fidelity

synodic model that has been thoroughly tested and validated [62, 63]. In the RPRnBP, the equations

of motion for a massless particle in the solar system barycentric model are transformed such that

the new frame of reference rotates and pulsates in a nonuniform fashion. The primaries are always

aligned with the x axis of the new frame, and their positions are fixed in time with respect to

the new frame of reference. This guarantees some convenient features, primarily suggested by the

CRTBP. The RPRnBP is preferred to an areocentric inertial frame because it naturally retains the

dynamical characteristics of the ERTBP.
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It is shown here how weak capture solutions in the planar ERTBP can be extended to a spatial

quasi-real solar system environment. The employed procedure is a simple one:

1. Retrieve the initial conditions defined in the planar ERTBP, and map them to the spatial

RPRnBP. Transition from the ERTBP to the solar system model is achieved with the unity

map, F(1), and setting to zero initial out-of-plane position and velocity components of the

state in the RPRnBP.

2. Find the epoch that corresponds to the Sun–Mars initial true anomaly, f0. This epoch is

searched within January 1 2017 and November 20 2018, roughly embracing one Mars year.

3. Build an epochs grid across the date found in Step 2. The grid spans ±15 days from the initial

epoch, roughly corresponding to an angular offset of ±10 degrees along Mars orbit, which is

tested to be sufficient to extend ballistic capture from the ERTBP to the RPRnBP.

4. For every epoch in the grid, backward and forward propagate each initial condition in the

RPRnBP and classify weak captures according to Definition 4.

Note that this analysis is not intended as a solution continuation per se, rather it aims at stressing

the role simplified models play in the search for ballistic captures. Fig. 11 displays two samples

of weak captures in the RPRnBP, Fig. 11a corresponding to the trajectory shown in Fig. 5k, and

Fig. 11b to that of Fig. 5h. The weak capture generated from the g1-family stable solution (refer to

Fig. 11a) remarkably sticks close to its periodic CRTBP generator before escaping, both backward

and forward in time, through a L1 aperture. This solution departs 14 days before the epoch

corresponding to f0. On the other hand, the ballistic capture stemming from the g2-family (refer to

Fig. 11b) originates exactly when Mars is at f0. In this case, the weak capture mechanism is similar

to the ERTBP counterpart: the particle approaches Mars from the exterior (i. e., L2) and escapes

after few complete revolutions towards the interior (i. e., L1).

In summary, (1) The out-of-plane motion of weak captures in the ephemeris-driven RPRnBP has a

negligible component; (2) Solutions born in the ERTBP may be feasibly found to exist in a more

realistic dynamical model, albeit with a qualitatively dissimilar motion, employing the initial epoch
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Fig. 11: Samples of ballistic capture in the high-fidelity roto-pulsating frame (xy projection).

as the sole degree of freedom; and (3) The dynamics in the RPRnBP still retains, qualitatively,

the stability properties of its generating orbits. While escape does eventually occur, it does not

occur after the same number of revolutions or necessarily through the same gateway (L1 versus

L2). Across the defined grid, none of the DROs produced a weak capture solution in the RPRnBP

(trajectories remained stably confined in the vicinity of Mars), and most of the unstable g1,2-family

solutions resulted in fast-escaping trajectories. Conversely, solutions emanating from stable g1,2

regions display a weak capture behavior also in the RPRnBP. As final remark, (4) Trajectories in

the ERTBP and the RPRnBP do not track one another exactly, which is not surprising considering

the associated chaotic sensitivities. However, similar stability and quality is demonstrated.

VI. Conclusions

In this work, a novel methodology is proposed to compute ballistic capture trajectories in the planar

elliptic three-body problem for small eccentricities. Periodic motion of the planar restricted circular

problem is used as a generator to trigger ballistic capture mechanisms in the Sun–Mars case, where

the capture ratio improves by two orders of magnitude when compared to existing works. This

approach is a paradigm shift: states are mapped from the circular to the elliptic problem with a

single-parameter transformation and the initial true anomaly of the P1P2 system is parameterized.
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By restricting the search to motion that emanates from the newly mapped initial conditions, the

search space has been reduced by a full dimension (from four- to three-dimensional). A large scale

survey is completed using 3 families of POs encompassing 2, 653 periodic solutions, which generated

37.2 million (29.32% of the search space) ballistic captures that are evaluated and classified for

potential use. This methodology has shown that ballistic captures originating from low osculating

eccentricities and performing many revolutions around P2 exist in abundance. One example of a

persistent trajectory is shown where P3 stays in the vicinity of Mars, in a weakly captured state, for

more than 90 years. Ultimately, ballistic captures in a high-fidelity dynamical model are computed

starting from solutions within the planar ERTBP. The presented examples demonstrate feasibility in

the continuation process of weak capture solutions towards a more realistic solar system environment.

A global analysis of the weakly captured solutions has shown a remarkable signature in the search

space domain. As expected, periodicity is a persistent property that can be exploited to favor the

generation of ballistic captures. Analysis on the post-capture qualitative behavior prunes many of

the initial conditions in the capture sets due to the highly irregular motion around P2. If quasi-

regular motion is sought, close-to-P2 DROs or far POs emanating from families g1 and g2 are

good candidates. If the aim is to maximize P3 persistence about Mars, sacrificing somewhat the

regularity of the trajectory, large DROs are the best options, providing for hundreds of weakly stable

revolutions. Asteroid capture missions, for instance, might profit from this mechanism to freely

achieve long-term weakly stable motion. If the objective is to maximize robustness in achieving

ballistic capture, family g2 unstable POs around J = 3.000164 and stable POs around J = 3.000202

feature exceptionally high capture ratios.
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