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H I G H L I G H T S

• Novel MILP approaches to enable design of MES including seasonal energy storage.

• Good accuracy and much lower computational complexity compared to current approaches.

• Realistic Swiss case-study evaluated in terms of total annual cost and emissions.

• Extensive sensitivity analysis defining design guidelines for seasonal energy storage.
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A B S T R A C T

Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by
the complexity of the optimization problem. Indeed, the description of seasonal cycles requires a year-long time
horizon, while the system operation calls for hourly resolution; this turns into a large number of decision
variables, including binary variables, when large systems are analyzed. This work presents novel mixed integer
linear program methodologies that allow considering a year time horizon with hour resolution while sig-
nificantly reducing the complexity of the optimization problem. First, the validity of the proposed techniques is
tested by considering a simple system that can be solved in a reasonable computational time without resorting to
design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale
optimization, thus allowing to correctly size the energy storage and to operate the system with a long-term
policy, while significantly simplifying the optimization problem. Furthermore, the developed methodology is
adopted to design a multi-energy system based on a neighborhood in Zurich, Switzerland, which is optimized in
terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a
sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub
along the Pareto sets.

1. Introduction

Recently, the energy sector has been riding a wave of grand trans-
formation: the necessity of decreasing the environmental impact has led
to the deployment of conversion and storage technologies based on
renewable energy sources [1]. In this context, multi-energy systems
(MES) represent a new paradigm which exploits the interaction be-
tween various energy carriers (e.g. electricity and heat) at design and
operation phase, allowing for improved technical, economic and en-
vironmental performance of the system [2]. Within this framework,
seasonal storage systems have recently caught much attention due to
their ability to compensate the seasonal intermittency of renewable
energy sources [3]. However, compensating renewables fluctuations at

the seasonal scale is particularly challenging: on the one hand, a few
systems, such as hydrogen storage and large thermal storage, allow
offsetting seasonal variations in renewable energy generation; on the
other hand, the optimal design and operation is complicated by the
large number of decision variables, due to the required length and re-
solution of the time horizon.

Several works provide comprehensive reviews of the model for-
mulations and computer tools adopted for investigating MES and their
integration with renewable energy sources and storage technologies.
For instance, Alarcon-Rodriguez et al. focused on the multi-objective
planning of distributed energy resources [4]; Connolly et al. presented a
review of the computer tools implemented for analyzing the integration
of renewable energy into various energy systems [5], whereas Keirstead
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et al. [6] and Allegrini et al. [7] focused on urban energy system
models; Mancarella provided an overview of concepts and models for
the planning and analysis of multi-energy systems [2]. When storage
technologies are available, the optimal design of MES is significantly
complicated by the necessity to consider the system operation already
at design phase to accurately make use of the storage systems. Although
a few nonlinear approaches have been proposed, for instance by Elsido
et al. [8], mixed-integer linear programming (MILP) has been particu-
larly favored as optimization framework for MES design and operation
since it catches well the features of the system with a reasonable
computational complexity. The problem of optimal technology selec-
tion and unit commitment through MILP formulation has been ex-
tensively investigated in the past. For example, Marnay et al. presented

the case of a commercial building micro-grid with heat and electrical
storage [9]; Hawkes and Leach extended the study by considering a
hospital and residential buildings [10]. Later, Angrisani et al. in-
vestigated the energy, economic, and environmental performance of
micro tri-generation systems [11]. Fazlollahi et al. introduced methods
for multi-objective design of complex energy systems [12], and Ahmadi
et al. presented the thermodynamic modeling and multi-objective op-
timization of an energy system for the simultaneous generation of
electricity, heating, cooling and hot water [13]. Whereas these works
were mainly focused on small, yet centralized systems (i.e. one hub for
different end users), a number of studies also investigated energy dis-
tribution among the different nodes of decentralized energy systems
(i.e. multiple hubs for different end users). For example, Genon et al.

Nomenclature

A available area for solar installation (m2)
a binary variable for technology selection (–)
b binary variable for technology selection (–)
D number of design days (–)
d design day index
E stored energy (kWh)
e annual CO2 emission (ton /yrCO2 )
F input power (kW)
I solar radiation (kWh/m2)
i technology index
J annual cost (€/yr)
j carrier index
K length of the time horizon (hour of the day)
k time index (hour of the day)
L user demand (kW)
M set of available technologies
M number of available technologies (–)
N set of available carriers
P output power (kW)
Q thermal output power (kW)
S technology size (kW)
T length of the time horizon (hour of the year)
t time index (hour of the year)
U import power (kW)
u import price (€/kWh)
V export power (kW)
v export price (€/kWh)
w binary variable for capital cost calculation (–)
x binary variable for on/off status (–)
Y length of the time horizon (day of the year)
y time index (day of the year)

Greek letters

α efficiency coefficient (–)
β efficiency coefficient (–)
γ efficiency coefficient (kW)
Δ time variation (h)
δ size coefficient (–)
ε specific emission coefficient (ton /kWhCO2 )
ζ size coefficient (kW)
η conversion or storage efficiency (–)
Θ air temperature (°C)
θ cost coefficient (–)
κ size coefficient (–)
Λ storage loss coefficient (h−1)
λ cost coefficient (–)
μ cost coefficient (€)

ν size coefficient (kW)
Π storage loss coefficient (–)
ρ first principle-to-electrical efficiency ratio (–)
σ sequence of design days along the year (–)
τ storage charging/discharging time (h)

Subscripts

A subset of technologies
B subset of technologies
c capital cost
e electricity
g natural gas
h heat
m maintenance cost
o operation cost
S subset of technologies

Superscripts

A subset of decision variables
B subset of decision variables
int intermediate
max maximum
min minimum

Acronym

COP coefficient of performance
CS conventional scenario
edHP electricity-driven heat pump
FC fuel cell
FSO full scale optimization
HS hydrogen storage
HWTS hot water sensible thermal storage
LiB lithium battery
M0 method 0
M1 method 1
M2 method 2
MES multi-energy system
MGT micro gas turbine
MILP mixed integer linear program
NG natural gas
PEME proton exchange membrane electrolyzer
PEMFC proton exchange membrane fuel cell
PtG power to gas
PV photovoltaic
PWA piecewise affine
SOFC solid oxide fuel cell
TS thermal solar
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presented the environmental assessment of small district heating sys-
tems [14], while Weber and Shah optimized the structure of the heating
network in addition to technology selection and unit dispatch [15].
Furthermore, various case-studies have been proposed by applying such
tools: Mehleri et al. investigated the optimal design and operation of
different neighborhoods within the Greek energy sector [16,17]; Omu
et al. focused on the possible measures to reduce the carbon footprint of
the UK energy sector [18], and Bracco et al. presented the design and
operation of the micro-grid built at the University campus in Savona,
Italy [19]. Finally, the interest in multi-energy systems at different le-
vels (from residential to national) has triggered the development of
commercial tools for MILP formulation. These include EnergyPlan, an
optimization tool developed at Aalborg University, which simulates the
operation of national energy systems [20], and DER-CAM, developed by
the Lawrence Berkeley National Laboratory [21]. Recent improvements
of DER-CAM tool include building retrofitting [22] and detailed models
of sensible thermal storage systems [23].

In these works, the remarkable complexity of the optimization
problem required significant model simplifications. In specific, all these
past studies considered a one-year time horizon based on design days.
Recently, Elsido et al. investigated the weekly periodicity in the op-
eration of CHP units with thermal storage, describing the entire year
through typical weeks [8]. These approaches are suitable when ana-
lyzing intraday storage installation and operation, whilst they are not
able to describe seasonal operation cycles due to the discontinuity be-
tween the selected design days (or weeks). Longer time horizons have
been considered when investigating only the operation of multi-energy
systems, e.g. in [24], but not at design phase.

This work aims at addressing and overcoming this issue. To this end,
two novel MILP formulations based on the coupling of typical design
days and on the distinction between two groups of decision variables
are proposed. These approaches allow considering an hour resolution of
the entire year while maintaining a low number of binary variables,
thus enabling the solution of complex systems featuring seasonal energy
storage. In the following, first, the proposed techniques are tested by
considering a simple system that can be solved in a reasonable com-
putational time without resorting to design days (i.e. year time horizon
with full hourly resolution). Next, the presented methodology is applied
to a residential multi-energy system based on a neighborhood in Zurich,
Switzerland: different hub designs are determined and analyzed to
minimize the total annual cost and CO2 emissions. Finally, the opera-
tion of the energy storage during the whole year is presented and dis-
cussed.

The paper is structured as follows. Section 2 describes the features
of the investigated multi-energy system, formulates the traditional op-
timization problem and describes the novel approaches. Section 3
presents the results. Finally, in Section 4 conclusions are drawn.

2. System description and formulation of the optimization
problem

The multi-energy system considered in this study has the primary
objective of supplying the energy demanded by a specified user. The
MES is connected to the gas and electrical grids and includes a set of
conversion technologies, both traditional and renewable-based, and of
storage units. Fig. 1 provides a schematic representation of such a
system. The weather conditions, electricity and gas prices, and energy
demand profiles are the three sets of inputs to the optimization pro-
blem. The model returns the optimal system design in terms of tech-
nology selection and size, and the optimal operation of the installed
units.

The problem is mathematically formulated as a MILP, where binary
variables are introduced to model the performance of the conversion
units, and the capital cost of the investigated technologies. The MILP
can be written in general form as

+

+ =A B

c x d y

x y b

min ( )

s.t.

T T
x y,

(1)

⩾ ∈ ∈x 0 y, {0,1}N Nx y

where c and d represent the cost vectors associated to continuous and
binary decision variables, x and y respectively; A and B are the corre-
sponding constraint matrices and b is the constraint known-term; Nx
and Ny indicate the dimension of x and y, respectively. In the following,
the optimization problem is described in detail in terms of input data,
decision variables, constraints, and objective function.

2.1. Input data

The input data are time-dependent profiles for 2016 in a fraction of
Altstetten, a neighborhood within the city of Zurich, Switzerland, which
features a peak electricity demand of 0.43 MW and a peak thermal
demand of 2 MW. The hour profiles for all input data are reported in the
appendix. Data are assumed to be constant along the lifetime of the

Fig. 1. Schematic representation of the investigated multi-energy system.
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system and known without uncertainty, i.e. it is assumed that the
possible realizations of the uncertainty and the evolution of the demand
profiles are represented by the historical data. Indeed, the optimization
of MES considering the uncertainties of the input data (e.g. electricity
price, heat and electricity demand, renewable potential) is an important
and open topic, which is being tackled by several researchers by means
of different methodologies (e.g. [25–32]). However, such research ac-
tivity is not within the scope of this paper, which aims at providing a
MILP framework for implementing seasonal storage, regardless of the
extent to which input data are representative of the future. Moreover,
findings of this work can be extended and implemented in optimization
problems under uncertainties. In this framework, solving the optimi-
zation problem at every time instant of the time horizon, i.e. every hour
of the year, provides the optimal solution to the problem.

In our MILP implementation, inputs to the optimization problem
are:

i. The expected weather conditions, namely air temperature, ∈Θ T ,
and solar radiation, ∈I T , where T indicates the length of the time
horizon. Data are available at every hour of the year, hence
T= 8760.

ii. The expected prices of energy utilities, namely import prices, ue and
∈u T

g , for electricity and gas, respectively, and export electricity
price, ∈ ×v M T

e , variable for different technologies, where M in-
dicates the number of available technologies. While the import gas
price is considered to be fixed along the year, the import electricity
price is not constant. Notably, the electricity price features a very
volatile profile, which is the result of a complex market regulation
together with a broad portfolio of electricity suppliers (i.e. renew-
ables-, nuclear-, fossil fuel-based). The Swiss electricity spot market
price for 2016 with an hourly resolution is considered.

iii. The expected electricity, ∈L T
e , and heat, ∈L T

h , demand pro-
files. Data are available at every hour of the year.

iv. The set of available technologies with the corresponding perfor-
mance and cost coefficients.

2.2. Decision variables

The following decision variables are returned:

i. The size of the installed technologies, ∈S M (deciding S also im-
plies selecting the technologies).

ii. The on/off status, ∈ ×x {0,1}M TA , of those MA conversion technolo-
gies which must be described accordingly.

iii. The input power, ∈ ×F M T , and output power, ∈ ×P M T , of the
conversion and storage technologies.

iv. The stored energy, ∈ ×E M Ts , of the storage technologies Ms.
v. The imported electrical and gas power, Ue and ∈U T

g ,

respectively, and the exported electrical power, ∈ ×V M T
e . Note

that the exported electrical power must be determined separately
for each technology due to the different selling prices.

While the size and selection of the installed technologies is typically
referred to as a design variable, decision variables (ii)–(v) are denoted
as operation variables and are determined at every hour of the year.

2.3. Constraints

The constraints of the optimization problem can be divided into two
categories: (i) performance of the conversion and storage technologies,
and (ii) MES energy balances. Both are described in detail in the fol-
lowing.

Performance of conversion and storage technologies. The set of avail-
able technologies is indicated withM and includes all the technologies
described below. Here, affine and piecewise affine (PWA) correlations
describing the performance of the considered technologies are derived
based either on first-principle models or on manufacturer data. In
particular, the approach proposed by Yokoyama et al. [33] is used to
linearize the power and size dependency of conversion performance. In
the following equations, S refers to the size of the technology of in-
terest, i.e. the rated input power. For each technology M∈i , Si must
vary between a minimum and a maximum value, Si

min and Si
max re-

spectively:

⩽ ⩽S a S S ai i i i i
min max (2)

where the binary variable ∈a {0,1}i indicates whether the i-th tech-
nologies is installed. The following constraints hold for all time steps

∈ …t T{1, , } (the linear coefficients for all the investigated technologies
are reported in Table 1):

• Photovoltaic (PV) panels, generating electricity from solar energy:
the generated electrical power Pt is expressed as

<P η I I S( ,Θ )t t t t (3)

where S is the installed PV area, limited by the roof area availability;
η is the pre-determined conversion efficiency, modeled as a function
of air temperature Θt and solar radiation It , based on the approach
suggested by De Soto et al. [34]: an average value around 0.15 is
obtained for our case using that approach. Note that Pt is the t-th
element of the vector P (similar notation is used for all the other
vectors).

• Thermal solar (TS) panels, generating heat from solar energy: the
generated thermal power Pt is expressed as

=P ηI St t (4)

where S is the installed TS area, limited by the roof area availability;

Table 1
Input data for description of conversion and storage technologies.

Conversion technology α β γ [kW] δ ζ [kW] κ ν [kW] ρ

edHP 3.59 −0.08 0.10 0.13 0.01 0.99 0.01
MGT {0.36, 0.33} {−0.02, 0.00} {−6.72; −7.02} {0.17; 0.00} {−0.58; 108} {1; 1} {0; 0} 3.01
Boiler [39] 0.92 0 0 0 0 0 0
NG SOFC {0.71, 0.61, 0.51, 0.41} {−0.05, −0.02, 0.04, 0.11} 0 0.14 0 1 0 1.46
NG PEMFC {0.54, 0.47, 0.41, 0.36} {−0.04, −0.01, 0.02, 0.06} 0 0.19 0 1 0 2.01
PtG

H2-air PEMFC {0.59, 0.54, 0.50, 0.47} {−0.00, 0.02, 0.06, 0.11} 0 0.01 0 1 0 1.71
PEME {0.60, 0.55, 0.53, 0.51} {−0.01, 0.020, 0.01, 0.03} 0 0.07 0 1 0

Storage technology η Λ [ −h 1] Π τ [hr] Θmin [°C] Θmax [°C] p[bar]

LiB [40] 0.96 0.001 0 3
HS [41] 1 0 0 4 40
HWTS [42] 0.95 0.005 0.001 4 65 90 1.01
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η is the conversion efficiency, which is typically given as function of
the generated heat temperature: here it is assumed to be constant,
and equal to 0.65 [35]. Note that the sum of installed PV and TS
area is also limited by the total availability.

• Electricity-driven heat pumps (edHPs), generating heat by absorbing
electricity: given the Swiss boundary conditions, here the heat
pumps are only used to provide heat. The generated thermal power
is expressed as

= + +P αF f βSx γx(Θ )t t t t t (5)

where

+ ⩽ ⩽ +x δS ζ F x κS ν( ) ( )t t t (6)

Here xt is a binary variable indicating whether the device is turned
on at time step t, producing power but also incurring in a minimum
power consumption +δS ζ ; the parameters α β γ δ ζ κ ν, , , , , , linearly
correlate the generated power Pt to the input power Ft and the unit
size S, and are determined by fitting manufacturer data for several
sizes and part-load conditions [36]; the influence of air temperature
on the efficiency is taken into account through the given function
f (Θ )t , based on the data presented in [37]. Finally, note that the
bilinearity Sxt between a continuous and a binary variable can be
formulated as a linear constraint through the introduction of an
auxiliary variable =∼S Sxt t [38]:

⩽ ⩽∼S x S S xt t t
min max (7)

− − ⩽ ⩽∼S S x S S(1 )t t
max (8)

• Micro-gas turbines (MGTs) generating electricity and heat from
natural gas (NG): the generated electrical power is expressed as

= + +α β γP F Sx xb b b( · ) ( · ) ( · )t t t t (9)

where

+ ⩽ ⩽ +δ ζ κ νSx x F Sx xb b b b( · ) ( · ) ( · ) ( · )t t t t t (10)

⩽b 1· 1 (11)

+ ⩽ ⩽ +b S b S S b S b S1
min

2
int

1
int

2
max (12)

Here two different sets of linear coefficients α - ν are implemented to
distinguish between devices below and above a certain size S int. In
other words, different affine approximations are implemented for
different size ranges, which are identified through the binary vari-
able ∈b {0,1}2. This allows a better fitting of manufacturer data
[43].
Micro gas turbines produce at the same time electrical and thermal
power Qt , the two being related by

= −Q P ρ( 1)t t (13)

where ρ is the average ratio of first-principle efficiency to electrical
efficiency.

• Fuel cells and electrolyzers: both solid oxide fuel cells (SOFCs) and
proton exchange membrane fuel cells (PEMFCs) are considered.
While SOFC run on NG, PEMFC can use NG or hydrogen (H2) as fuel.
A proton exchange membrane (PEM) electrolyzer is also included,
generating hydrogen and oxygen by absorbing electrical power. The
produced hydrogen and oxygen can be stored in pressurized tanks.
The possibility of producing and re-converting hydrogen is here
referred to as power-to-gas (PtG). For the fuel cell, Pt and Ft refer to
generated electrical power and inlet fuel power (fuel LHV), re-
spectively. For the electrolyzer Pt and Ft refer to generated fuel
power (hydrogen LHV) and absorbed electrical power, respectively.

For both devices, a piecewise affine approximation based on first-
principle models is implemented to describe the conversion effi-
ciency, as discussed in [44,45]. For all line segments = …i m{1, , }:

⩽ +P α F β Sxt i t i t (14)

where

⩽ ⩽δSx F Sxt t t (15)

Here the parameters α βandi i are the coefficients of the i-th ap-
proximating line segment. Note that due to the modularity of these
systems the size does not significantly affect the performance,
translating into = = =γ ζ ν 0.
Like MGTs, fuel cells produce at the same time electrical and
thermal power Qt , the two being related by Eq. (13). Note that start-
up/shut-down and ramp-up/ramp-down limitations of fuel cells,
electrolyzers and micro gas turbines are modeled through the set of
linear constraints presented by Arroyo and Conejo in [46] (in par-
ticular, we refer to Eqs. (1)–(12) in that paper), where two addi-
tional binary variables yt and zt are introduced.
An additional remark about the oxidant fed to the fuel cells (FCs) is
worth making. In this work, oxygen from air is used instead of pure
oxygen produced by the electrolyzer. Although this translates into a
lower electrical efficiency of the fuel cell, it avoids: (i) the oversizing
of electrolyzer and storage tanks (oxygen is produced by the PEM
electrolyzer with a H2:O2 ratio of 2:1 and consumed by the PEM fuel
cell with a H2:O2 ratio of 1.15:1), (ii) the injection of excess hy-
drogen into the natural gas grid, which is still a debated procedure
in terms of cost and flow rate limitations.

• Boiler, generating heat from natural gas: the generated thermal
power is expressed as

=P αFt t (16)

where

⩽ ⩽F S0 t (17)

Here, the size dependency of boiler performance is neglected, and
no minimum value is imposed for the generated power. A con-
servative treatment is adopted, as the boiler is used as a reference
technology for thermal generation.

• Storage systems: three types of storage systems are considered: (i)
hot water sensible thermal storage (HWTS), (ii) lithium battery
(LiB), and (iii) H2 tank storage (HS). Although latent and thermo-
chemical thermal storage systems promise to be suitable solutions
for long-term storage in the near future [47], sensible thermal sto-
rage represents the cheapest, most developed and commercial
system. In this work, HWTS is considered, where the water is stored
at 90 °C and cooled to 65 °C. Due to the fairly high energy losses and
the low energy density, this system is mainly used to overcome
short-term mismatch between thermal energy generation and use.
Similarly, battery storage is mainly used for short-term electricity
compensation due to its energy losses and high investment cost. On
the contrary, H2 storage features negligible energy losses, and
therefore represents a promising solution for offsetting seasonal
mismatch between renewable energy generation and energy con-
sumption. The HS is coupled with the PtG system to generate, store
and use hydrogen. In this context, hydrogen can be generated at
high pressure, 40 bar here. While on the one hand HS has very
limited energy losses in time, on the other hand the round-trip ef-
ficiency of the overall PtG process is around 40%, much lower than
that of thermal and battery storage systems (see Table 1). For this
reason, HS represents an efficient alternative when storing energy
for long time periods. It is worth mentioning that the different uti-
lization of the storage units typically translates into a larger installed
size for the HS than for HWTS and LiB.
All the aforementioned storage units are described through the
following linear equations:
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= − − +−E E t Sg ηP t(1 ΛΔ ) (Π (Θ ) )Δt t t t1 (18)

where

=E ET0 (19)

= −
−

g Θ Θ
Θ Θ

t
min

max min (20)

⩽ ⩽E S0 t (21)

− ⩽ ⩽S
τ

P S
τt (22)

Here Pt assumes positive or negative values for charging and dis-
charging power, respectively; Λ and Π are self-discharge para-
meters, and g(Θt) expresses the influence of the ambient tempera-
ture on the losses of the storage devices, as suggested in [23] for the
thermal storage; η indicates the charging/discharging efficiency; tΔ
is the duration of the time interval t τ; is the time required to fully
charge or discharge the storage. Note that the same value for
charging and discharging efficiency is assumed. As the two effi-
ciencies are typically similar, there is no need for binary variables
specifying whether the device is charging or discharging. The peri-
odicity constraint, Eq. (19), imposes the same storage level at the
beginning and at the end of the year.

Note that in the present form the optimization framework does not
include considerations on possible malfunction of the devices.

MES energy balances. The set of considered energy carriers within
the multi-energy system is indicated with N and includes:

• Electricity (e): it can be consumed and generated by the conversion
technologies, stored by the storage units, exchanged with the elec-
trical grid and utilized by the end users.

• Heat (h): it can be generated by the conversion technologies, stored
by the storage units and utilized by the end users.

• Natural gas (g): it can be imported from the gas grid and consumed
by the conversion technologies.

• Hydrogen (H2): it can be consumed and generated by the conversion
technologies, stored by the storage units, and injected into the gas
grid.

It is worth noting that cooling is not considered here; however, it
could easily be included.

The sum of imported and generated power must equal the sum of
exported and used power for each energy carrier N∈j for all time
steps ∈ …t T{1, , }. This can be expressed in general form as

M

∑ + − − − =
∈

U P V F L( ) 0
i

j i t j i t j i t j i t j t, , , , , , , , ,
(23)

Here, U is the imported energy, P the generated energy, V the exported
energy, F the absorbed energy and L the energy required by the end
users. With this notation, the set of technologies M also includes the
direct utilization of the energy carriers. Note that limitations on the
imported and exported energy could easily be included if necessary.

An additional remark about the modeling of electricity and heating
demands is needed. These demands are modeled for several buildings
based on a neighborhood in Zurich, Switzerland, following the ap-
proach presented in [48]. A centralized energy hub is assumed to be
located at the center of the neighborhood, and an approximate grid
topology for the district heating is considered using a shortest path
algorithm. Based on the calculated distance between the hub and the
buildings, the original heat demand of each building is updated to ac-
count for transport losses. A specific heat demand increment of 4% per

km is assumed [49]. Also, an auxiliary electricity consumption of 8.5%
of the heat demand is considered for pumping [15]. Finally, the elec-
tricity and heat demands for all buildings are aggregated and the total
demands are implemented.

2.4. Objective function

The objective function of the optimization problem is the total an-
nual cost of the system, J, given by the sum of three contributions,
namely the capital, Jc, operation, Jo, and maintenance, Jm, annual costs.

The annual capital cost is expressed as

M

∑= +
∈

J λ S μ ω( )
i

i i i ic
(24)

where λi and μi represent the variable and fixed cost coefficients for the
i-th technology; Si indicates the unit size, i.e. the rated input power for
non-solar conversion technologies, the rated stored energy for storage
technologies, and the installed area for solar panels. To compute the
equivalent annual investment cost, the annuity factor ω is included,
which is calculated using the standard definition and based on an in-
terest rate of 6%. A piecewise affine approximation is implemented to
model the size dependency of the capital cost. For each technology

M∈i :

= = ⩽θ πλ μw w w 1· , · , · 1i i i i i i i (25)

⩽ ⩽Sw S w S· ·i i i i i
min max (26)

where ∈w {0,1}i
m is a binary variable specifying the active line segment

for the capital cost calculation of technology i, wherem is the number of
line segments; ∈θ π,i i

m are the variable and fixed costs of a specific
line segment, respectively; ∈S S,i i

mmin max are the minimum and
maximum size values of every line segment, respectively. Since the
capital cost must be minimized, and due to the concavity of the curve, a
binary variable for each line segment is required to identify the active
linear approximation. The cost approximation for two exemplary
technologies, namely heat pump and thermal storage, is illustrated in
Fig. 2. Table 2 reports the cost coefficients for all the investigated
conversion and storage technologies, as well as their capacity con-
straints.

The annual operation cost is calculated based on the amount of
imported and exported electricity and gas during the year:

N M

∑ ∑ ∑= −
∈ ∈ =

J u U v V t( )Δ
j i t

T

j t j i t j i t j i to
1

, , , , , , ,
(27)

where import and export prices, u and v, and powers, U and V, depend

Fig. 2. PWA approximation for the calculation of the capital cost of heat pump (edHP)
and hot water thermal storage (HWTS).

P. Gabrielli et al. Applied Energy 219 (2018) 408–424

413



on the energy carrier j, technology i, design day d and time instant t. A
feed-in-tariff strategy is considered for the electricity sold by PV panels,
i.e. =v 0.15te,PV, €/kWh ∀ t , while a lower electricity selling price,
0.05 €/kWh, is assumed for the other conversion and storage technol-
ogies. The Swiss electricity spot market price for 2016, which varies
from 0.01 to 0.12 €/kWh is used [56], whilst a constant import price of
0.064 €/kWh is used for natural gas [57].

The annual maintenance cost is given as a fraction ψ of the annual
capital cost [52,53]:

M

∑=
∈

J ψ J
i

i c im ,
(28)

Along with the total annual cost, the system is also evaluated in
terms of environmental performance by means of the ε-constraint
method. This translates into a minimum-cost optimization problem,
where the annual CO2 emissions are constrained below a maximum
threshold. The total annual emission is calculated as the sum of the
contributions of electricity and gas imported from the grid:

N M

∑ ∑ ∑= ⎛

⎝
⎜

⎞

⎠
⎟

∈ ∈ =

e ε U tΔ
j

j
i t

T

j i t
1

, ,
(29)

where εj is the specific carbon dioxide emission of carrier j, assumed to
be constant along the year. The values of the emission coefficients for
electricity and gas are =ε 0.137e tonCO2/MWh and

=ε 0.237g tonCO2/MWh, respectively. Note that the Swiss energy mix
strongly relies on hydroelectric and nuclear power, thus resulting into
low CO2 emissions for grid electricity.

2.5. Time horizon modeling

So far, we have described the optimization problem considering as
time horizon one year with hour resolution, i.e. =T 8760. Because of
the large number of variables and constraints arising when in-
vestigating different technology options, the full scale optimization is
hardly feasible and the time variability during the year is normally
simplified. Recently, Pfenninger presented a systematic analysis of the
different techniques to reduce the time resolution of energy models
[58], including time slices and representative design days or weeks.
Here, a set of D design days and their sequence σ along the year are
identified by using the MATLAB®-embedded clustering algorithm k-
means [59]. Based on weather conditions, energy prices and load pro-
files (i.e. input data (i)–(iii)), the algorithm solves a mixed-integer
nonlinear problem to identify the most representative set of D design
days and to assign every day of the year to a specific design day

∈ …d D{1, , }, characterized by its own typical hour resolution. The ori-
ginal formulation of k-means clustering, or Lloyd’s algorithm, was
presented by Lloyd in [60]. It is worth mentioning that the clustering
procedure would level off the original input profiles, reducing the

variation between the minimum and maximum values. Consequently, a
system design based on such clustered input profiles would not be able
to meet the energy demand at every hour of the year. To address this
issue, and having in mind that the primary goal of the hub is to satisfy
the user demand, the clustering procedure has been constrained to
maintain the minimum and maximum values of the original demand
profiles.

The traditional MILP formulations based on design days are not able
to include seasonal storage. In the following, three methods for mod-
eling the time horizon are discussed: M0, which is the existing method
that excludes seasonal storage, and M1 and M2, which are proposed in
this work as alternative solutions that allow including seasonal storage.

Method 0 (M0) – Traditional approach. The traditional approach,
hereafter denoted as method 0 (M0), considers uncoupled design days:
The sequence of design days along the year is not considered in the
optimization problem, which is therefore formulated independently for
each design day d. As an example, the equations describing the power
generated by fuel cell and electrolyzer devices (Eqs. 14,15) are recast
as:

⩽ +P α F β Sxd k i d k i d k, , , (30)

⩽ ⩽δSx F Sxd k d k d k, , , (31)

where ∈ …d D{1, , } indicates the d-th design day and ∈ …k K{1, , } the k-th
daily time instant, with hour resolution hence =K 24. Similarly, the
storage dynamics (Eqs. (18) and (19)) becomes

= − − + ∀−E E k Sg k ηP k d k(1 ΛΔ ) Π (Θ )Δ Δ , ,d k d k d k d k, , 1 , , (32)

= ∀E E d,d d T,0 , (33)

where the periodicity constraint, Eq. (33), is written independently for
each d-th design day, thus decoupling each day from both the previous
and the next. Note that this may result into a mismatch between the
energy stored at the end of a day and the energy stored at the beginning
of the following one. Following the same logic, the energy balances of
Eq. (23) are recast as:

M

∑ + − − − = ∀
∈

U P V F L j d k( ) 0 , , ,
i

j i d k j i d k j i d k j i d k j d k, , , , , , , , , , , , , ,
(34)

and the annual operation cost of Eq. (27) is given by

N M

∑ ∑ ∑ ∑= ⎡
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⎢ − ⎤

⎦
⎥
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1 1
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(35)

where Γd is the number of design days of type d occurring during the
year (hence ∑ == Γ 365d

D
d1 ).

Although this approach reduces the complexity of the optimization
problem, as D is smaller than 365, the discontinuity between different
design days does not allow to describe seasonal operating cycles,

Table 2
Cost coefficients of conversion and storage technologies.

Technology θ μ [€] Smin Smax ψ

PV [50] 300 €/m2 0 0 m2 6000 m2 0.05
TS [50] 500 €/m2 0 0 m2 6000 m2 0.03
edHP [51,52] {2088;1221;930.9} €/kW ×{0;4.33;13.0} 104 {0;50;300} kW {50;300;700} kW 0.015
MGT [43] {738.4;892.5;716.1} €/kW ×{4.38;0.93;33.0} 104 {112;224;1818} kW {224;1818;3030} kW 0.05
boiler [39] {194.1;82.4;65.2} €/kW ×{0;6.88;10.4} 103 {0;70;200} kW {70;200;2500} kW 0.02

NG SOFC [53] {4260;2580;1320} €/kW ×{0;1.12;2.80} 106 {0;800;1600} kW {800;1600;2500} kW 0.08
NG PEMFC [53] {2320;1360;640} €/kW ×{0;9.60;2.40} 105 {0;800;1600} kW {800;1600;2500} kW 0.08
H2 PEMFC [53] {2160;1680;1320} €/kW ×{0;3.20;8.00} 105 {0;800;1600} kW {800;1600;2000} kW 0.08
PEMEC [53] {2693;1727;1354} €/kW ×{0;9.67;2.46} 104 {0;200;800} kW {200;800;2000} kW 0.05
LiB [54] 500 €/kWh 0 0 kWh 10000 kWh 0.020
HS [55] {20.7;13.6;10.9} €/kWh ×{0;2.35;94.5} 103 ×{0;0.05;5.55} 103 kWh ×{0.05;5.55;150} 103 kWh 0.03
HWTS [42] {10.5;7.5;6.25} €/kW ×{0;8.4;22.9} 104 ×{0;0.28;11.4} 104 kWh {0.28;11.4;28.0}·104 kWh 0.02
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therefore resulting in a daily operation of the multi-energy system. In
the following, two novel approaches are proposed to allow for long-
term system operation while at the same time limiting the computa-
tional complexity of the optimization problem.

Method 1 (M1) – Coupling design days. The first approach proposed
in this paper, hereafter named method 1 (M1), allows for the optimi-
zation of the level of stored energy hour-by-hour while still describing
the year time variability through typical design days. This requires the
introduction of the sequence σ of design days, which allows to couple
successive days of the year. In other words, the energy stored during the
last hour of every day of the year is connected to the energy stored
during the first hour of the following day, where each day of the year is
described by a given design day. Note that σ takes each day of the year
y and returns the corresponding design day d, i.e.

⩽ ⩽ ⩽ ⩽y σ y D1 365, 1 ( ) . In this case, the storage dynamics of Eqs.
(32) and (33) is written as:

= − − + ∀ ∀ ∈ …−E E k Sg k ηP k y k K(1 ΛΔ ) Π (Θ )Δ Δ , , {2, , }y k y k y k σ y k, , 1 , ( ),

(36)

= − − + ∀−E E k Sg k ηP k y(1 ΛΔ ) Π (Θ )Δ Δ ,y y K y σ y,1 1, ,1 ( ),1 (37)

=E EY K0 , (38)

where ∈ …y Y{1, , } indicates the y-th day of the year, with =Y P365; σ y k( ),
is the charging/discharging power at day y, described by the typical day
σ y( ). Eqs. (36)–(38) imply that, although two days of the year described
by the same design day must be characterized by the same variation in
stored energy, they can have different values of stored energy at the
beginning of each day. The improved storage flexibility obtained with
respect to M0 comes at the price of a larger number of variables and
constraints. Indeed, ∈ ×E Y K (instead of ∈ ×E D K ) can now assume
different values at every hour of the year, and the corresponding
number of constraints is imposed by Eqs. (36) and (37). As for the full
scale optimization, the periodicity constraint, Eq. (38), is imposed on
the whole year, instead of on each design day.

Method 2 (M2) – Detailed input data. The second approach pro-
posed, hereafter named method 2 (M2), allows to optimize the storage
operation hour-by-hour while considering the actual energy demands.

The underlying consideration is that the computational complexity of
the optimization problem is mainly caused by binary variables. Thus,
the method divides the aforementioned operation variables (i.e. deci-
sion variables (ii)–(v)) in two categories: (A) operation variables related
to binary variables, and (B) other operation variables not related to
binary variables. Group A includes the operation variables of those
technologies characterized by an on/off status, i.e. the on/off status and
the input/output power of heat pump, micro gas turbine, fuel cells and
electrolyzer (subset MA). Since such variables represent the main
source of computational complexity, their number is limited by using
typical design days. Group B includes all other decision variables,
namely the imported/exported grid energy, the charging/discharging
energy and the stored energy, and the power generated by those con-
version technologies where the on/off status is neglected, i.e. renew-
able-based technologies and boiler (subset MB). These variables are
defined at every hour of the year.

This classification of the decision variables affect the formulation of
both constraints and objective function. In particular, as group A is
modeled using design days (e.g. Eqs. (30) and (31)) and group B using
every hour of the year (e.g. Eqs. (18)–(22)), the sequence of design days
σ couples the two types of decision variables within the energy balances
and the objective function (following the same logic of Eq. (36)). The
energy balances, Eq. (23), become:
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Similarly, the annual operation cost, Eq. (27), becomes
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This method features a higher flexibility for the multi-energy system
compared to the previous approaches, which comes at the cost of a

Fig. 3. Optimization framework implemented to perform and evaluate the design of multi-energy systems.
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higher number of decision variables and constraints. Finally, note that
for both M1 and M2 σ enables the coupling of the dynamics of con-
version technologies of group A during two successive days of the year.

The overall optimization framework considered in this work is
summarized in Fig. 3. First, the set of typical design days is determined
as described above. Based on the adoption of such design days, the
optimal design of the multi-energy system is carried out, i.e. technology
selection, sizing and operation. Afterward, with the aim of assessing the
quality of the different methods, the system design is tested by running
the operation with the real hour-by-hour input data, i.e. no design days
are used and the system topology is fixed by the design procedure.

3. Results

In this section, first, the validity of the proposed techniques is tested
by considering a simple multi-energy system that can be solved in a
reasonable computational time without resorting to design days. Next,
the developed tool is applied to minimize the total annual cost and
emissions of a multi-energy system characterized by a wider park of
conversion and storage technologies.

3.1. Comparison of M0, M1 and M2 for a simple MES

The set of available technologies considered in this simplified case is
reported on the left-hand side of Fig. 4, which also shows the selected
configuration on the right-hand side. The system can include PV panels,
boiler, battery and PtG system. The PtG system consists of a PEM
electrolyzer (PEME) and a PEM fuel cell using H2 and air to generate
electricity and heat; moreover, it is coupled with a hydrogen tank (HS),
which ensures the possibility of seasonal storage. The optimization
problem is formulated as a single-objective MILP that minimizes the
total annual cost of the system, with no additional constraints on the
CO2 emissions. In this context, a maximum size of 1 MW is imposed for
the boiler to ensure the operation of the PtG, which would not be
convenient otherwise. Here, the new methods, M1 and M2, are com-
pared with the traditional approach (M0) and the full scale optimiza-
tion (FSO). The comparison is performed in terms of computational
time, system design, operation and annual costs. The MILP is solved by
using the commercial software IBM CPLEX 12.7 [61], set to have a
relative MIP gap of 0.01% and an aggressive policy for Gomory frac-
tional cuts and probing.

Fig. 5 shows the size of the HS and the PEME as function of the design

days, which vary from a minimum of 3 to a maximum 72. The PV panels
and the battery are not selected, whereas the size of the boiler is constant
and equal to 1 MW, i.e. the maximum allowed value. It can be noted that,
while the traditional approach M0 is unable to exploit a long-term op-
eration of the HS, both M1 and M2 design a storage size similar to FSO.
Indeed, the seasonal operation of the storage calls for a larger size of the
HS, as this is charged or discharged during periods longer than one day.
The figure shows that, independently of the number of design days, M0
provides a HS size much smaller and a PEME much larger than the one
obtained with the FSO. In this case, the size of the storage is set by the
daily variations in energy demands and prices, whereas the size of the
electrolyzer is set by the maximum value of the thermal demand. On the
contrary, both M1 and M2 determine a size of the system similar to FSO
when implementing a number of typical days above a certain threshold,
which is here of about 25 design days. With respect to M1, a better (less
conservative) description of the energy demands is obtained when

Fig. 4. Schematic representation of the investigated multi-energy system for model validation: set of available technologies (left) and selected configuration (right).

Fig. 5. Size of the hydrogen storage (HS) and PEM electrolyzer (PEME) for M0, M1 and
M2 for a number of design days ranging from 3 to 72 and comparison against FSO.
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increasing the number of design days, which translates in a more accu-
rate (less conservative) system design. With respect to M2, more design
days enable more operation modes of the conversion technologies, which
yields a more accurate system operation and design. It is worth noting
that M2 is unfeasible when using few typical design days (in this case less
than 6), because the produced hydrogen can be reconverted to electricity
and heat only according to a limited number of operational modes (i.e.
the number of design days), which does not allow to match the thermal
supply and demand.

A detailed operation of the HS for M0, M1, M2 and FSO during ten
days of the year (10.01–20.01) and as obtained in the design phase with
48 design days, is illustrated in Fig. 6. Notably, M0 results in a daily
operation policy, which is different for different design days. On the
contrary, M1 and M2 result in a long-term operation policy, similarly to
the FSO. In the last four days of the examined period shown in the
figure, the storage system is operated following an almost-daily pattern.
In this case, all methods behave similarly, as highlighted in the insets at
the top-right corner of the figure. Overall, the amount of stored energy
along the year is equal to 2.7 GWh for M0, 419 GWh for M1, 386 GWh
for M2 and 395 GWh for FSO. This confirms a long-term utilization of
the storage system by M1 and M2.

To further test the quality of the different methods, full scale opti-
mizations with unfiltered input data and fixed designs, as described in
Fig. 3 are carried out. Results are shown in Fig. 7 in terms of total,
capital and operational costs as function of the design days. Again, the
full scale optimization can be regarded as benchmark as it achieves the
minimum objective function. Notably, the trends of the objective

function reflect quite well those obtained for the system size: the system
design determined by M0, independent of the number of design days,
translates into a constant discrepancy in the objective function (around
9% for the total annual cost). On the contrary, a more accurate value of
the objective function is determined by M1 and M2 when increasing the
number of design days, with the latter approaching faster the value
determined by the FSO: a relative error below 1% is obtained by using
M2 for a number of design days greater than 24.

Finally, Fig. 8 compares the computation time for the three strate-
gies for a number of typical days ranging from 3 to 72. First, it can be
noted that resorting to design days allows to significantly reduce the
computation time compared to the FSO, independently of the time
horizon description method. Whereas the full scale optimization

Fig. 6. Optimal operation of the HS along ten days of the year (10.01–20.01) determined
by M0, M1, and M2 for 48 design days and comparison against FSO. Same design days are
reported with the same colors (red, yellow, purple and blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. Total (top), capital (middle) and operation (bottom) annual costs for M0, M1 and
M2 for a number of design days ranging from 3 to 72.

Fig. 8. Computation time of optimization problem for M0, M1 and M2 for a number of
design days ranging from 3 to 72. Note that the FSO is not reported here for sake of
clarity, as it requires about one day of CPU time.
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requires about 23 h to complete, all the investigated techniques require
less than 1 h. Moreover, it can be noted that the additional computation
time required by M1 and M2 with respect to M0 is limited. Finally,
while M1 has proven to perform generally worse than M2, it however
(i) enables the problem resolution with smaller design days and (ii)
features a shorter computation time.

3.2. Design of a MES of interest

In the following, we aim at designing a MES starting from a com-
prehensive set of technologies. To this end, we rely on the use of M2,
which proved to be the most accurate approximation of the full scale
optimization, when based on 48 design days; this proved to be a rea-
sonable trade-off between results reliability and computation time. No
additional constraints on the size of the installed technologies are im-
posed. In this case, the full scale optimization cannot be completed
within five days for a MIP gap of 1%, while the optimization problem is
solved within 12 h when implementing M2 with 48 design days. The
same solver options described in Section 3.1 are used, but for a MIP gap
of 1%. The ε-constraint method is used to minimize both total annual
cost and CO2 emissions of the system: first, two single-objective opti-
mization problems minimizing the total annual cost and the total an-
nual emission of the system are solved, providing the upper and lower
limits of annual CO2 emission, respectively. Next, the emission interval
is divided into ten steps and single-objective optimization problems are
solved to minimize the total annual cost of the system subject to the
corresponding emission constraint. Fig. 9 shows the available technol-
ogies on the left-hand side and the selected configuration on the right-
hand side: while the system can consist of several conversion and sto-
rage technologies, all design points that lay on the cost-CO2 emission
Pareto considers (i) PV and TS panels, (ii) electrical-driven heat pump,
(iii) boiler, (iv) battery, (v) sensible thermal storage and (vi) PtG as
optimal technologies. These technologies are selected and sized differ-
ently for the different Pareto points.

Fig. 10 reports the Pareto front of a reference configuration fea-
turing an available area for solar installation equal to 6000 m2, which is
based on the actual availability of the investigated neighborhood, and
highlights the capital and operational cost contributions. It is worth
noting that, on the one hand, a more expensive system design is re-
quired when reducing the carbon emissions because of the higher ca-
pital cost of solar panels and storage systems. Especially, two sharp
slope variations, which are due to changes in the hub topology, can be

identified when reducing the CO2 emissions: at about 400 ton /yrCO2 a
significant reduction in the boiler size is observed along with a higher
utilization of the thermal storage; at about 280 ton /yrCO2 PtG and bat-
teries are added to thermal storage. Before the former, the decrease in
CO2 emissions does not imply a significant increase in cost; after the
latter, the decrease in CO2 emissions comes at a very large increase in
the total annual cost. On the other hand, such designs allow to reduce
the operation costs substantially, as less natural gas and electricity are
imported from the grids.

Moreover, Fig. 10 compares the Pareto set with a conventional
scenario (CS) where electricity is bought from the grid and heat is
generated using a boiler. Notably, there are design configurations for
which a potential reduction in both cost and emissions can be achieved:
taking as an example the configuration at 340 ton /yrCO2 (characterized
by a 50% emission reduction with respect to the maximum achievable
emission reduction), a cost and emission reduction around 22% and
73%, respectively, are achieved with respect to CS.

To investigate the influence of renewables availability on the Pareto

Fig. 9. Schematic representation of the investigated multi-energy system for model application: set of available technologies (left) and selected configuration (right).

Fig. 10. Cost-emission Pareto front for a reference scenario featuring =A 6,000 m2 of
area available for solar installation (M2 with 48 design days). Highlighting of the capital
and operation contributions, and comparison with the conventional scenario (CS).
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front, a sensitivity analysis is performed on the area available for solar
installation A. Findings are shown in Fig. 11 which presents the Pareto sets
for three scenarios characterized by A=3,000, 6,000 and 12,000 m2, i.e.
half, reference and double available area, respectively. As expected, a
higher renewable installation allows to import less energy from the elec-
trical grid and to achieve lower CO2 emissions. However, in this case
larger storage facilities are needed to fully exploit the higher amount of
renewable excess generation, thus translating into higher total annual
costs at low emission levels (see Fig. 12). Furthermore, it is possible to
notice that the three Pareto fronts coincide at highCO2 emissions, whereas
they are separated at low emissions, where the storage technologies play a
relevant role.

A better insight on the different hub topologies is illustrated in
Fig. 12, which reports the size of the installed technologies as a function
of the CO2 emission reduction. The CO2 emission reduction is equal to 0
for the minimum cost configuration and 1 for the minimum emission
configuration. A few considerations can be made:

i. Natural gas based fuel cells and micro gas turbines, are never in-
stalled, independently of the required reduction in CO2 emissions.

ii. The area available for solar installation determines the minimum
carbon emissions that can be reached by the multi-energy system.
Independently of its value, the total available area is used uniquely

Fig. 11. Cost-emission Pareto fronts for three scenarios characterized by different areas
available for solar installation A: 3,000 m2 (red diamond), 6,000 m2 (blue circle) and
12,000 m2 (green square). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Size of the installed technologies along the Pareto fronts for 3,000 m2 (red diamond), 6,000 m2 (blue circle), 12,000 m2 (green square): (a) photovoltaic (PV), (b) thermal solar
(TS), (c) heat pump (edHP), (d) boiler, (e) battery, (f) sensible thermal storage (HWTS), (g) hydrogen storage (HS). The figure (h) also reports the amount of imported electricity
normalized over the whole energy required by the system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for PV panels until about a 80% emission reduction, whereas
thermal solar panels are installed for a further emission reduction
thanks to their higher conversion efficiency (Fig. 12a and b).

iii. Different combinations of boilers and heat pumps are installed
along the Pareto fronts to satisfy the thermal demand (Fig. 12c and
d), with the former being used only at very low emission reductions
(lower than 10–20%). The higher the area available for solar in-
stallation, the lower the size of the boiler. Interestingly, a significant
heat pump size is always selected despite the high installation cost.
This can be explained through an approximate calculation based on
average energy prices and conversion efficiencies. Assume the
minimum-cost scenario, with no renewable installations. Moreover,
assume a cold winter day with conditions favorable to the boiler:
average gas price of 0.06 €/kWh, average electricity price of 0.12
€/kWh, average boiler efficiency of 0.92 and average heat pump
coefficient of performance of 2.3 (calculated for an ambient tem-
perature of −15 °C). Dividing the average energy prices by the
average efficiencies leads to an average thermal energy cost of
0.065 €/kWh for the boiler and of 0.052 €/kWh for the HP. A larger
discrepancy is observed when repeating the calculation for warmer
days of the year. Although approximate, this calculation shows an
operational advantage of the heat pump over the boiler, which
offsets the higher unit capital cost. Even greater benefits provided
by heat pumps are observed in terms of carbon emissions. Consider
a specific emission coefficients of 0.137 and 0.237 ton /MWhCO2 for
electricity and gas, respectively. Dividing these emission coeffi-
cients by the average efficiencies results in an average emission of
0.258 and 0.060 ton /MWhCO2 for the thermal energy generated by
the boiler and the heat pump, respectively. Finally, note that the
economic and environmental impacts of heat pumps are further
reduced when using solar electricity, suggesting a significant po-
tential for the electrification of the energy system under

investigation (no natural gas is imported for emission reductions
greater than 10–20%). A similar logic explains the absence of fuel
cells and micro gas turbines.

iv. With respect to the storage technologies (Fig. 12e–g), thermal storage
is installed along the entire Pareto set, with a larger size for lower
CO2 emissions and higher renewable installation. Note that the
thermal storage system also helps to satisfy the thermal demand
below the heat pump operation limit (commercial heat pumps can
typically operate between 10% and 100% of the rated power). On the
contrary, battery and power-to-gas systems are only selected at high
emission reductions, due to the necessity to fully exploit the renew-
able generation. Going from low cost to low emissions, the battery is
the first to be installed due to the lower installation cost and the
higher round-trip efficiency on short-term periods. Then, at very high
emission reductions (greater than 80–90%), where a seasonal com-
pensation of the renewable generation is necessary, the PtG system is
installed due to higher round-trip efficiency on long-term periods.

v Independently of the area available for solar generation, the elec-
trical grid plays a relevant role along the entire Pareto front
(Fig. 12h). For the base scenario, even when the maximum solar
area is installed (minimum-emission with A = 6,000 m2) the im-
ported electricity still accounts for more than half of the overall
energy required. This highlights the potential for reduced grid
emissions, which is in fact fairly low within the Swiss framework. In
contexts characterized by a higher environmental impact of the
electrical grid, e.g. US or UK, the decarbonization of the electrical
grid could reduce the need for decentralized storage or the necessity
for grid-independent energy hubs. The theme of energy autarky in
residential applications has been investigated, among others, by
McKenna et al. in [62].

The yearly operation of the storage technologies is further

Fig. 13. Left: A = 6,000 m2 of available area for solar installation. Right: A = 12,000 m2 of available area for solar installation. Top: average hourly value of the total stored energy (LiB,
HWTS, HS) during each month of the year for various scenarios: minimum-cost (solid line), minimum-emission (dot-dash line), 50% CO2 emission reduction (dashed line), 90% CO2
emission reduction (dotted line). Bottom: hourly profiles of stored energy for the different technologies for the minimum-emission scenario.
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investigated in Fig. 13. In the top sub-figures, the average hourly value
of the total stored energy is reported during each month of the year for
(i) the minimum-cost design, (ii) the minimum-emission design, (iii)
50% emission reduction and (iv) 90% emission reduction. The total
stored energy is given by the sum of the energy stored in the battery,
thermal storage and hydrogen storage systems. In the bottom sub-fig-
ures, the contributions of the different storage systems are reported
with hour resolution for the minimum-emission scenario. It is worth
noticing that the seasonal compensation of renewable generation is not
required for emission reductions lower than 90%. In fact, a lower
amount of energy is stored in summer until a 60% emission reduction
due to the lower thermal demand. Thus, shorter operation cycles,
though longer than one week, are implemented in this case by means of
the thermal storage system. On the contrary, seasonal operation cycles
become optimal for emission reductions above 90%. In this case, the
optimal storage system to enable seasonal compensation is the PtG due
to the low energy losses of the HS, whereas the battery and the thermal
storage system are used for shorter compensation, where their higher
round-trip efficiency is rewarded. This difference in storage utilization
translates into a maximum installed size for the HS significantly bigger
than for HWTS and LiB, though none of the storage technologies
reaches the maximum size value (see Table 2) independently of the
considered scenarios. Moreover, it is observed that doubling the
availability of renewable sources a remarkable increase in seasonal
compensation is observed, with the HS growing more than three times
with respect to the reference case.

Furthermore, sensitivity analysis is performed to investigate the
influence of user demands on the design of the integrated system. In
particular, while the overall required energy is kept constant, as well as
the shape of the demands, three different values of the ratio between
the maximum thermal demand and the maximum electrical demand are
considered, namely 2.5, 5 (reference value based on input data) and 10.
The results of the analysis are reported in Fig. 14, which shows the
Pareto sets (left) and the size of the hydrogen storage (right) for the
three cases. On the one hand, it is possible to notice that a higher
thermal-to-electrical demand ratio leads to lower CO2 emissions. This is
due to the possibility of converting electrical energy into thermal en-
ergy with a heat pump that features an average COP of 3.5 (typical
value based on average temperature conditions). On the other hand,
this emission reduction comes with a higher total annual cost. This
depends on the necessity of installing a power to gas system to store the
excess in renewable generation. In fact, the power to gas system is only
installed above a certain thermal-to-electrical demand ratio due to the
different yearly distributions of the two demands (see Appendix):
whereas the electrical demand is fairly constant along the year, the
thermal demand exhibits a strong seasonal variation. Seasonal opera-
tion cycles are required when a high offset between renewable gen-
eration (higher in summer) and demand (higher in winter) is registered,
i.e. when the thermal demand is predominant over the electrical de-
mand.

Finally, a sensitivity analysis is conducted on the installation cost of
battery and power-to-gas to investigate the impact of a cost reduction

Fig. 15. Left: size of the battery along the Pareto fronts for three scenarios characterized by different battery installation cost: current value (blue circle), 25% reduction (green square)
and 50% reduction (red diamond). Right: size of the hydrogen storage along the three Pareto fronts. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Left: cost-emission Pareto fronts for three scenarios characterized by different ratios of the maximum thermal to electrical demand: 2.5 (red diamond), 5 (blue circle) and 10
(green square). A ratio equal to 5 corresponds to the reference value based on the input data. Right: size of the hydrogen storage along the three Pareto fronts. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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on the design of the integrated system. In specific, a cost reduction of
25% and 50% is considered for both technologies with respect to the
reference scenario. The cost of the hot water thermal storage is not
changed, being this a mature technology. On the one side, reducing the
cost of the PtG system does not affect the optimal MES design, as the
PtG is always installed at high emission reductions and sized based on
the variation between renewable generation and user demand. On the
other side, reducing the cost of the battery affects the design of the
MES. Results are reported in Fig. 15, showing the size of the battery
(left) and the size of the hydrogen storage (right) for the three cases. A
reduction in the installation cost of the battery translates into a larger
battery installation and a smaller size of the HS, though a certain size of
HS is always needed to compensate seasonal variations. Fig. 16 (left)
reports the operation of LiB and HS systems along the year for the
minimum-emission scenario and a 50% cost reduction. It is observed
that although the PtG system represents the higher contribution to
seasonal operation, the battery starts being operated with longer-term
cycles: from daily cycles during the winter period to weekly and bi-
weekly cycles (up to 400 h) during the spring and summer periods,
characterized by a higher variation in renewable generation. This op-
eration of the battery system is justified by a round-trip efficiency sig-
nificantly higher than that of PtG during bi-weekly periods, as illu-
strated in Fig. 16 (right).

4. Conclusions

This paper presents an optimization framework for the optimal
design and operation of multi-energy systems including seasonal energy
storage. Two novel MILP models are formulated based on the coupling
of typical design days and on the distinction of the decision variables
between related and unrelated to binary variables. The proposed ap-
proaches allow to consider a year time horizon with hour resolution
whilst significantly reducing the computation complexity of the opti-
mization problem.

First, the validity of the proposed techniques are tested by con-
sidering a simple multi-energy system that can be solved in a reasonable
computation time without resorting to typical days, i.e. through a full
scale optimization. In this context, a minimum-cost optimization pro-
blem is formulated and the proposed strategies are compared against
the full scale optimization and the traditional approach relying on
uncoupled design days. Findings show that the proposed approaches
provide results in good agreement with the full scale optimization,
enabling the design, operation and analysis of complex multi-energy
systems involving long-term storage.

Furthermore, the developed tool is applied to perform the multi-
objective optimization of a residential multi-energy system including
seasonal storage. The results are presented in terms of cost-emission
Pareto fronts and underline the possibility of a significant reduction in
total annual cost and emissions with respect of traditional systems. The
topology of the system along the Pareto sets is presented to reveal the
behavior of the system and to identify the potential of the investigated
technologies for different emission levels and for different boundary
conditions. In particular, it is observed that seasonal operation cycles
become convenient when a significant reduction in CO2 emission is
required. Moreover, they are favored when a large amount of renew-
able generation is available and when the system is characterized by a
large ratio of thermal to electrical demand. Finally, a remarkable po-
tential for the electrification of the system under investigation, as well
as a relevant role of the electricity grid, are observed.
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Appendix A

The reference sets of input data used in this work, namely the hourly profile of the solar radiation, the ambient temperature, the electricity price,

Fig. 16. Left: hourly profiles of the stored energy for LiB (in yellow) and HS (in blue) for the minimum-emission scenario for a 50% reduction of the LiB investment cost. Right: round-trip
efficiency of the storage technologies.
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the natural gas price, the electrical demand, the thermal demand, are reported in Fig. 17.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apenergy.2017.07.142.
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