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Abstract

In this paper, an automatic algorithm for the correction of orbits in the real
solar system model is described. The differential equations governing the
dynamics of a massless particle in the n-body problem are written as per-
turbation of the circular restricted three-body problem in a non-uniformly
rotating, pulsating frame by using a Lagrangian formalism. The refinement
is carried out by means of a modified multiple shooting technique, and the
problem is solved for a finite number of trajectory states at several time
instants. The analysis involves computing the dynamical substitutes of the
collinear points, as well as several Lagrange point orbits, for the the Sun–
Earth, Sun–Jupiter, and Earth–Moon gravitational systems.

Keywords: n-body model, dynamical system theory, three-body problem,
solar system model

1. Introduction

In the circular restricted three-body problem (CRTBP), two gravitational
attractions act simultaneously upon a massless particle. The CRTBP is the
easiest extension of the two-body problem, and as such it allows reproducing
solutions that depart from the conics. These range from Lagrange point
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orbits (Gómez et al., 2002a) to low-energy transfers (Topputo and Belbruno,
2015). Much effort has been put to characterise the region of the phase
space about the equilibrium points (Jorba and Masdemont, 1999; Gómez and
Mondelo, 2001). This is because most of the dynamics in the CRTBP can
be related to that of the equilibrium points. Nevertheless, large differences
in both position and velocity emerge when three-body orbits are integrated
in the real solar system model (Luo et al., 2014). That is, since three-body
orbits are typically defined in high-sensitive regions, where the gravitational
attractions tend to balance, any additional term (ascribable to eccentricity
of the primaries, fourth-body perturbations, or solar radiation pressure)
causes large deviations between the CRTBP orbit and the real one (Luo
and Topputo, 2015). Therefore, there is the need to devise methodologies
to correct the three-body orbits, while still retaining their unique features.

The dynamical substitutes of the equilibrium points and families of pe-
riodic orbits are found by continuation in energy and period in Gómez
et al. (2003); Gómez and Mondelo (2001). Reduction to the centre manifold
with enforcement of quasi-periodicity is performed in Gómez et al. (2002a),
whereas a selection of some frequencies representing the main contributions
of the solar system model is done in Gómez et al. (2002b). A large num-
ber of frequencies is instead considered in Hou and Liu (2011), where series
expansion of the gravitational potential is carried out.

This paper further elaborates on an automated algorithm to refine three-
body orbits in the real n-body problem, where the position of celestial bodies
is modelled through precise ephemeris data. The differential equations gov-
erning the dynamics of a massless particle are written as perturbation of
the CRTBP in a non-uniformly rotating and pulsating frame with a La-
grangian formalism (Gómez et al., 2002b). The refinement is carried out by
means of a modified multiple shooting technique, and the problem is solved
for the refined trajectory states at several locations. A finite set of NLP
variables is used for the multiple shooting transcription. The obtained so-
lution is then continued in a longer time domain through Fourier analysis
and extrapolation. The generality of the algorithm lies in the possibility
of handling both constrained and free boundary conditions. In the latter
case, the problem is solved by minimising the correction at each step. The
gradient of the objective function and the Jacobian of the constraints are
computed and assembled in an automatic way. Families of halo, Lissajous,
and planar Lyapunov orbits are reproduced, as well as dynamical substitutes
of the Lagrange points.

The approach undertaken in this work possesses similarities with that
in Lian et al. (2013) and Tang et al. (2013). Nonetheless, departures from
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previous works are featured in the implementation strategy, Fourier anal-
ysis, multiple shooting scheme, and performance index definition. These
peculiarities are detailed hereafter. 1) The Fourier series approach used in
this work is substantially different compared to the one used by Lian et al.
(2013) and addressed in Gómez et al. (2002b). The perturbing frequencies
are computed as the maxima of the signals Fourier transform (positions
and velocities), instead of letting them be optimisation parameters for the
trigonometric polynomial search. We thus show that it is not necessary to
have very precise guesses for the extrapolation step, because the modified
multiple shooting algorithm is able to converge and refine those orbits even
with rougher frequency information on the perturbing bodies. This acceler-
ates the whole procedure. 2) The amplitudes of the trigonometric polyno-
mial are found here by minimising in the least squares sense the deviation
between the real trajectory and the polynomial (see Step iii). Conversely, a
collocation method based on a refined Fourier analysis (described in Gómez
et al. (2010a,b)) is used in Lian et al. (2013). Secondly, the algorithm is ap-
plied here to a wider range of cases. 3) Refined orbits have been computed
for the Earth–Moon, Sun–Earth, and Sun–Jupiter problems. The results
of the Earth–Moon problem are compared to the ones in Lian et al. (2013)
and serve as solid benchmark to validate our procedure, and prove the al-
gorithm correct and reliable. On the other hand, dynamical substitutes
and refined quasi-periodic orbits of the Sun–Earth and Sun–Jupiter systems
provide new scientific contribution on the subject. It is also demonstrated
how the algorithm convergence properties does not depend on the particular
mass ratio of the gravitational system and can be hence applied to a large
variety of dynamical problems of this kind. 4) A minimisation procedure is
coupled with a modified version of the multiple shooting, where the objec-
tive function is quadratic form of the defects vector. The performance index
thus accounts for the displacement between the initial and final orbit, not
for this difference at each iteration. This implies that all the shooting legs
are considered at the same time. On the other hand, a common parallel
shooting at each iteration step has been implemented in Lian et al. (2013).

The remainder of the paper is organised as follows. In Section 2 the
dynamical models are described. Effort is put in deriving the solar system n-
body model. Section 3 details the algorithm for trajectory refinement. This
is the core of the work: emphasis is put in the methodology and numerical
procedure. The results are illustrated and discussed in Section 4, whereas
final remarks are drawn in Section 5.
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2. Dynamics

2.1. Roto-pulsating restricted n-body problem

The equations of the solar system restricted n-body problem are written
as perturbation of the CRTBP, following the derivation in Gómez et al.
(2002b). This makes it easier to retain the features of orbits derived in the
CRTBP, and helps understanding the corrections applied in the refinement
step. We avail ourselves of the JPL ephemeris DE430 (Folkner et al., 2014)
to determine in a precise way the states of the Sun, the planets, and the
Moon at given epochs in an inertial reference frame centred at the solar
system barycentre (SSB).

Let r(t) and v(t) be the position and velocity, respectively, of a massless
particle, P , in the inertial solar system barycentric frame, and let t be the
dimensional time. Let also P1 and P2, of masses m1 and m2, m1 > m2, be
the two primaries of the unperturbed CRTBP, and let µ = m2/(m1 + m2)
be their mass ratio. The aim is writing the equations of motion for P in a
roto-pulsating frame (RPF), where P1 and P2 are at rest (see Fig. 1). We
apply the transformation

r(t) = b(t) + k(t)C(t)ρ(τ), (1)

where

b(t) =
m1r1(t) +m2r2(t)

m1 +m2
, k(t) = ‖r2(t)− r1(t)‖, (2)

and C(t) = [e1(t), e2(t), e3(t)] is a time-dependent operator defined by

e1(t) =
r2(t)− r1(t)

k(t)
, e2(t) = e3(t)× e1(t),

e3(t) =
(v2(t)− v1(t))× (r2(t)− r1(t))
‖(v2(t)− v1(t))× (r2(t)− r1(t))‖

.

(3)

In Eqs. (2)–(3), r1, r2 are the position vectors of P1, P2 in the SSB
frame, and v1, v2 are their velocities, respectively. The transformation (1)
is composed by 1) a translation of the frame centre, b(t), from the SSB to
P1–P2 centre of mass, 2) a rotation, C(t), to enforce P1, P2 positions on the x
axis, and 3) a scaling, k(t), to set P1–P2 distance to unity (see Gómez et al.
(2001) for details). In Eq. (1), ρ(τ) is the adimensional position vector of P
in the RPF, and τ is the adimensional time given by the transformation

τ = n (t− t0) =

√
G(m1 +m2)

ā3
(t− t0), (4)
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Figure 1: Roto-pulsating reference frame.

where G is the universal constant of gravitation, ā is the mean P1–P2 dis-
tance taken for a long time interval (e.g., 400 years), and t0 is a time shift.

The equations of motion of the roto-pulsating restricted n-body problem
(RPRnBP) are obtained by plugging (1)–(4) into the Lagrangian

L (r, ṙ, t) = T − V =
1

2
ṙ · ṙ +

∑
j∈S

Gmj

‖r− rj‖
, (5)

where S is the set of all celestial bodies included in the solar system model
andmj are their masses. Dots indicate derivation with respect to t. Carrying
out the Lagrangian mechanics operations yields the equations of RPRnBP.
After some manipulations (Dei Tos, 2014):

ρ′′ = − 2

n

(
k̇

k
I+CT Ċ

)
ρ′− 1

n2

[(
k̈

k
I+2

k̇

k
CT Ċ+CT C̈

)
ρ+

1

k
CT b̈

]
+g∇Ω, (6)

where g = G(m1 + m2)/(n
2k3), primes indicate derivation with respect to

τ , and ∇Ω is the gradient of

Ω =
(1− µ)

‖ρ− ρ1‖
+

µ

‖ρ− ρ2‖
+
∑
j∈S∗

µ̂j
‖ρ− ρj‖

, (7)

with S∗ = S\{P1, P2} and µ̂j = mj/(m1 + m2). Mixed derivative notation
in (6) acknowledges that ephemeris data is numeric, discrete, and provided
for dimensional time. The vector Eq. (6) might be written per components,
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x′′ = b1 + b4x
′ + b5y

′ + b7x+ b9y + b8z + b13Ωx, (8a)

y′′ = b2 − b5x′ + b4y
′ + b6z

′ − b9x+ b10y + b11z + b13Ωy, (8b)

z′′ = b3 − b6y′ + b4z
′ + b8x− b11y + b12z + b13Ωz, (8c)

where subscripts of Ω denote partial derivation. The model coefficients are

b1 = − b̈ · e1
kn2

, b2 = − b̈ · e2
kn2

, b3 = − b̈ · e3
kn2

, b4 = − 2

n

k̇

k
,

b5 =
2

n
e2 · ė1, b6 =

2

n
e3 · ė2, b7 = − 1

n2
( k̈
k
− ė1 · ė1

)
, b8 =

1

n2
ė1 · ė3,

b9 =
1

n2
(
2
k̇

k
e2 · ė1 + e2 · ë1

)
, b10 = − 1

n2
( k̈
k
− ė2 · ė2

)
,

b11 =
1

n2
(
2
k̇

k
e3 · ė2 + e3 · ë2

)
, b12 = − 1

n2
( k̈
k
− ė3 · ė3

)
, b13 = g.

2.2. Circular restricted three-body problem

The CRTBP can be reproduced as a special case of the RPRnBP. In the
CRTBP the massless particle, P , is subject to the gravitational attractions
of the two primaries, P1 and P2, which revolve in circular orbits about their
centre of mass. This configuration is achieved when 1) k is constant (P1 and
P2 in circular orbits), 2) b is constant (fixed centre of mass), and 3) S∗ = ∅
(unperturbed CRTBP). It is easy to verify that these settings produce bi = 0,
i 6= {5, 7, 10, 13}, b7 = b10 = b13 = 1, and b5 = 2. Note that b13 = 1 stems
from the balance between gravitational and centrifugal forces.

We rewrite the equations of the CRTBP as (Szebehely, 1967)

ẍ− 2ẏ = Ω(3)
x , ÿ + 2ẋ = Ω(3)

y , z̈ = Ω(3)
z , (9)

where the three-body potential function can be expressed as

Ω(3) =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ), (10)

and r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x− 1 + µ)2 + y2 + z2. Eqs. (9)
consider the distance between primaries, their angular speed, and the sum
of their masses all equal to one. Moreover, P1 and P2 are located at (−µ, 0, 0)
and (1− µ, 0, 0), respectively.

The CRTBP possesses five equilibrium points, three of them located along
the x axis (collinear points), and the others at the vertex of two equilateral
triangles having the primaries distance as common base (triangular points).
Table 1 displays the location of the collinear points for three models consid-
ered in the present work.
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Table 1: Mass parameters and location of collinear points for the systems considered.

System Mass ratio Collinear points

P1 P2 µ L1 L2 L3 + 1

Sun Jupiter 9.53881157e-4 0.93236545 1.06883066 -3.97450e-4
Sun Earth 3.00348059e-6 0.99002659 1.01003412 -1.25145e-6

Earth Moon 1.21505843e-2 0.83691513 1.15568226 -5.06264e-3

3. Methodology

3.1. Statement of the problem

Let ϕnb(x0, t0; t) be the solution at time t of Eqs. (8) starting from
(x0, t0), and let γnb(x0) = {ϕnb(x0, t0; t) ∀t ≥ t0} be the related orbit. Anal-
ogously, let ϕ3b(x0, t0; t) and γ3b(x0) denote the flow and orbit of Eqs. (9),
respectively. By definition, γnb and γ3b are different. The extent of this
difference may depend upon the eccentricity of P1 and P2, the number of
bodies in S∗, and ultimately on t0 and x0. This divergence might be further
favoured by the chaotic nature of the problem at hand: within the same
model (CRTBP or RPRnBP) orbits are already sensitive to small variations
in the initial conditions and model parameters.

The CRTBP allows designing orbits of practical interest related to the
dynamics about the Lagrange points, yet the real-world motion is described
by the RPRnBP. There is then the need to refine three-body orbits into the
RPRnBP. However, since the CRTBP orbits are unique, their features shall
be preserved. The methodology, and ultimately the algorithm designed in
this work, has the primary objective to aid the transition between: a) orbits
designed within simplified models, and b) the real n-body world. By simpli-
fied model we mean the CRTBP, but also the elliptic restricted three-body
problem (ERTBP), the bicircular restricted four-body model (RFBP), and
any other simplification of the dynamics at hand (i. e., Hill approximation).
This is a step that is of paramount importance in the process of trajectory
design for two reasons:

1. the feasibility assessment of flying such orbits, failure probability checks,
the transfer navigation analysis, the precise manoeuvres scheduling
and actuation, the generation of top level requirements on ground sys-
tems, and essentially most of the mission operation phases must be
studied, tested and validated in the real dynamics, that is the solar
system n-body dynamics;
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2. the mission will eventually have to fly in the real scenario, thus the
nominal trajectory is by definition the one that exists in the real solar
system model.

In mathematical terms, our problem can be thus stated as follows.

Problem. Find a modified initial condition, x̂0, such that γnb(x̂0) retains
the dynamical (frequency content) and geometrical (orbital region) features
of γ3b(x0). In particular, if γ3b(x0) is an equilibrium point of the CRTBP,
x0 shall be corrected into x̂0 such that γnb(x̂0) is the dynamical substitute
of the equilibrium point. Similarly, if γ3b(x0) is a periodic orbit, γnb(x̂0)
shall be a quasi-periodic orbit with similar amplitude and harmonic content
as γ3b(x0).

The methodology developed to tackle this problem is based on three
parts:

1. Generation of an initial seed orbit;

2. Correction with modified multiple shooting;

3. Interpolation/extrapolation by Fourier analysis.

In Part 1, an initial seed orbit is generated. This can be either a CRTBP
orbit (at iteration zero) or an orbit resulting from Part 3. In Part 2, the
correction from CRTBP to RPRnBP is implemented via a modified multiple
shooting scheme. This is an iterative method (inner loop) that solves a Two-
Point Boundary Value Problem (TPBVP) with minimal corrections at each
step. In Part 3, a Fourier analysis is carried out. This is used either to have
a denser grid (interpolation) or to widen the time span (extrapolation). The
overall procedure above is iterative: time spans are progressively increased
until a desired duration is covered (Lian et al., 2013).

3.2. The modified multiple shooting

A TPBVP (Armellin and Topputo, 2006) consists in finding x(t), t ∈
[t0, tf ], such that

ẋ = f(x, t), h(x(t0),x(tf )) = 0. (11)

In the present context, the first equation is the state space representation of
Eqs. (8) (x is 6-dimensional); the function h specifies six boundary condi-
tions, which are needed to well-pose the problem (Bolle and Circi, 2012). In
multiple shooting, problem (11) is solved for a finite set of variables (Min-
gotti et al., 2012). The procedure is briefly recalled here for convenience.
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The solution is discretised over m grid points t0 = t1 < t2 < · · · < tm =
tf ; that is, sk = x(tk), k = 1, . . . ,m. This defines m−1 segments in which a
TPBVP is solved by enforcing continuity of the solutions at both ends. This
shortens the duration of the original problem, and thus reduces sensitivity.
Let the defect vector be

ζk = ϕnb(sk, tk; tk+1)− sk+1, k = 1, . . . ,m− 1. (12)

The problem is to determine the states sk such that

h(s1, sm) = 0, and ζk = 0, k = 1, . . . ,m− 1. (13)

In Eqs. (13) we have 6m unknowns (the states sk) and 6m equations (6
boundary conditions and 6(m − 1) defect constraints). This is the classic
multiple shooting method.

Hereafter the multiple shooting is modified to deal with free boundary
conditions. That is, the technique has to cope with the fact that no boundary
conditions are actually known (e.g., periodicity cannot be enforced in the
RPRnBP), and the sole requirement is to produce a continuous trajectory
that stays as close as possible to the initial seed. The problem cast in this
way possesses 6m degrees of freedom, and thus an optimisation procedure
is implemented to provide the 6 missing equations (Topputo, 2013).

Let s = (s1, s2, . . . , sm) be the vector of unknowns and let

c(s) = (ζ1(s1, s2), ζ2(s2, s3), . . . , ζm−1(sm−1, sm)) (14)

be the vector of defects. The zero of the function c(s) is sought while
minimising a scalar objective function f(s), which is defined later. The
problem is then stated as

min
s
f(s) subject to c(s) = 0. (15)

From the theory of Nonlinear Programming (Betts, 2010), problem (15) is
solved by finding the conditions that extremise the Lagrangian

L (s,λ) = f(s) + λ · c(s), (16)

where λ is the 6(m− 1)-dimensional vector of multipliers. Necessary condi-
tions for a minimum of L are

∇sL = g + J T
c λ = 0, ∇λL = c = 0, (17)
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where g is the gradient of the objective function, g = ∇sf(s), Jc is the
Jacobian of c,

Jc(s) =


Φ1 −I 0 0

0 Φ2 −I . . .
. . .

. . .
. . . 0

0
. . . Φm−1 −I

 , (18)

and Φk = ∇skϕ(sk, tk; tk+1) is the state transition matrix, k = 1, . . . ,m− 1.
System (17) has to be solved for (s,λ). Once an initial guess is provided,

(s(0),λ(0)), applying Newton’s method leads to solving iteratively[
HL J T

c

Jc 0

](
s(i+1) − s(i)

λ(i+1)

)
+

(
g(s(i))

c(s(i))

)
= 0, (19)

where the superscript indicate iterations, and HL is the Hessian:

HL = ∇s(g + J T
c λ) = ∇2

sf +

m−1∑
i=1

λi∇2
sci. (20)

Eqs. (19) are used to solve Problem described in Section 3.1. Enforcing
γnb to retain the characteristics of the initial CRTBP seed means minimising
the corrections applied by the modified multiple shooting. This is done by
choosing the cost function f to be a quadratic form of the constraints, i.e.,

f(s) =
1

2
c · Mc, (21)

where M (positive-defined matrix) weighs the components of the state.

3.3. Fourier interpolation and extrapolation

Ultimately, the Fourier analysis provides a powerful tool to approximate
a quasi-periodic function by means of the trigonometric series

Q(t) = A0 +

Nf∑
k=1

(
Ak cos

2πfkt

T
+Bk sin

2πfkt

T

)
, (22)

where {Ak}
Nf

k=0, {Bk}
Nf

k=1 are the 2Nf+1 interpolating coefficients, {fk}
Nf

k=1 is
the set of Nf frequencies to be retained, and T is the time interval amplitude.
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In this work an extrapolation becomes necessary in order to provide the
multiple shooting algorithm with a consistent initial guess when the time
interval is progressively increased. The interpolation/extrapolation is ap-
plied component-wise to the state vector (i. e., six times). Without loss of
generality, in the remainder the sole x component is considered. Given N
samples xj = x(tj) at discrete distinct times tj ∈ [0, T ], find the polynomial
Q(t) that best approximates the real-valued quasi-periodic function x(t).
The procedure consists of four steps:

(i) Fix the number of frequencies, Nf ;

(ii) Calculate the retained frequencies, fk, as the maxima of the Fourier
transform magnitude;

(iii) Compute the trigonometric amplitudes, Ak and Bk, through an un-
constrained optimisation;

(iv) Evaluate the interpolating polynomial over a larger time domain.

Step (i) is straightforward, based on several simulations we set Nf = 4.
In fact, this is a lower bound because the number of retained frequencies is
increased iteratively (maximum 13), until a tolerance in Step (iii) is met.
The maximum number of retained frequencies has been fixed equal to 13
after some numerical experiments. There is evidence that beyond this point
there is no significant improvement in the interpolated trajectory for all
cases analysed in this study. In other terms, the multiple shooting was able
to attain convergence for all cases in which Nf has reached values greater
(or equal) than 13. This should not surprise, because there are typically
no more than 10 independent values of the parameters for the best Fourier
analysis of the coordinates of the solar system bodies in the roto-pulsating
frame, as shown in Table 5 of Gómez et al. (2002b) for the Earth-Moon
system (this is true also for the Sun–Jupiter and Sun–Earth systems).

Let Fx(f) be the Fourier transform1 of x̂(t); the frequencies fk are then
calculated in Step (ii) as maxima of the Fourier transform magnitude as

fk | Fx(fk) = max |Fx(f)| for k = 1, . . . , Nf . (23)

To obtain x̂(t), the function x(t) is modified such that 1) it’s centred at
the libration point, in order to delete a fix bias in the input signal; 2) 10%
of points are removed from each end of the vector to limit any spurious
harmonic content due to the free boundaries; and 3) it is filtered with a
second order Hanning window function, H2

T (t) = 2/3[1 − cos (2πt/T )]2, to

1The Fourier transform is computed by means of the Matlab’s FFT algorithm.
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reduce the leakage effect (Gómez et al., 2002b). Because of the discrete
nature of the samples, two additional topological conditions must be verified:
xj has to be equally spaced in time, and it must contain a minimum number
of points (depending on the maximum frequency to be resolved and on
the size of the time domain), Nmin, to avoid aliasing. A denser grid is
generated by interpolation if the latter requirement is not satisfied. The
integration scheme is applied and then the outputs are interpolated at given
time instants.

In Step (iii) the trigonometric polynomial amplitudes are found by min-
imising the mean square deviation between Q(t) and x(t):

min
Ak,Bk

1

N

N∑
j=1

(
x(tj)−Q(tj)

)2
. (24)

Even though the interpolating polynomial is not necessarily equal to the
real trajectory at any sampling time, this strategy has been preferred to
a control point scheme because of the large difference between degrees of
freedom and samples number, N � 2Nf + 1. Fig. 2 shows an application of
this technique on a simple disturbed sinusoid signal.

t
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Q
x
(t

j
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t
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Figure 2: Fourier interpolation on x(t) = 0.5 cos(2πf1t) + 0.1 sin(2πf2t) exp (−3.5t/T ),
with f1 = 0.1 Hz, f2 = 1 Hz. The maximum of the Fourier transform is at 0.099 Hz, and
the optimisation is carried out for this single frequency. The resulting objective function is
J = 7e−4 on equally-spaced points. The control points are shown to graphically represent
how the objective function is computed.

Finally, the extrapolation of a new initial guess for the refinement proce-
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dure is performed in Step (iv) by evaluating Q(t) over a larger time domain:

x(i+1)(t̄) = Q(i)(t̄) where t̄ ∈ [0, T + ∆T ], (25)

where superscript indicates steps in the refinement procedure.
The use of the Fourier transform theory to extrapolate the trajectory

is justified by numerical experiments. In the orbits of interest, the com-
ponents of the state vector oscillate about equilibrium values that are in
general defined in the framework of the CRTBP. The dynamics and shape
of the oscillations depend on the relative strength of the perturbation, if
compared to the CRTBP gravitational effects. In this work, single compo-
nent interpolation has been preferred to dedicated three-dimensional inter-
polating techniques for position and velocity vectors. Although the latter
makes more sense from the physical perspective, it does not significantly
improve the algorithm performances, neither the speed-up of the interpola-
tion/extrapolation step.

3.4. Summary of the algorithm

A more detailed description of the whole iterative procedure requires the
introduction of some notation. Let T0 be the initial epoch, which should be
specified due to the nonautonomous nature of the n-body problem, ∆T the
time-span covered by a certain set of nodes, ∆T0 the time-span considered
for the initial guess provided by the CRTBP, and ∆T ∗ the final time-span
desired. N denotes the number of nodes, and Nmin the minimum number of
nodes required by the Fourier analysis to be consistent. During the process,
a factor γP is used to enlarge ∆T at each step, ∆T (i+1) = γP∆T (i). The
basic procedure for trajectories refinement in the n-body problem is shown
as flowchart in Fig. 3 and consists basically of the following steps.

Step 1 Generate a sequence of nodes as initial guess, x0, within the CRTBP
for Step 2 ;

Step 2 Fix the initial epoch, T0, and for a given time span ∆T , perform
the modified multiple shooting starting from x0;

Step 3 If N < Nmin, do a denser sampling using the sequence of nodes
obtained in Step 2 by numerical piecewise integration;

Step 4 At both ends of the resulting sequence, remove 10% of the nodes to
cope with the fact that no boundary conditions are specified;
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Step 5 Perform the Fourier analysis of the six state components of the
trajectory computed in Step 4. With the set of basic frequencies,

{fk}
Nf

k=1, compute the amplitudes of the trigonometric approximation
polynomial of the orbit by means of the optimisation in Eq. (24);

Step 6 Check the total time span condition: if ∆T ≥ ∆T ∗, go to Step 8,
otherwise, go to Step 7 ;

Step 7 Extrapolate the new set of nodes as initial guess for a larger time
span, ∆T = γP∆T , γP > 1, using the trigonometric polynomials
computed in Step 5 ; then go to Step 2 ;

Step 8 Stop.

Initial guess from the CRTBP
∆T = ∆T0

Modified multiple shooting

N > Nmin

Dense sampling

End nodes removal

Fourier analysis

∆T ≥ ∆T ∗ Stop

Node generation
∆T = γP∆T , γP > 1

No

Yes

Yes

No

Yes

Figure 3: Flowchart of the iterative algorithm for orbit refinement.
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Numerical implementation. All data processing and implementations were
performed using the commercial software Matlab. Serial calculations have
been carried out on a MacBookPro 2.9 GHz Intel Core i7 with 8 Gb of RAM;
whilst a hub of 64 (20 at 1400 MHz and 44 at 2300 MHz) AMD OpteronTM

Processors 6376 with 264 Gb of RAM1 ran the parallel computations. The
following are the main numerical features of the algorithms used for the
trajectories refinement.

• Chebyshev polynomial interpolation is used to get precise celestial
bodies state at specified epochs from DE430 JPL ephemeris2;

• Numerical integrations are performed with the suite ode113 (Shampine
and Reichelt, 1997), which implements a variable order, adaptive mul-
tistep Adams–Bashforth–Moulton method in a PECE3 mode (predict,
evaluate, correct, evaluate). Both absolute and relative error toler-
ances have been set to 3 · 10−14.

• The state transition matrices, Φk, have been calculated by means of
a forward finite-difference scheme, the driving factor for this choice
being the computational time. The small perturbation magnitude has
been set to δ = (|s| + 1)

√
eps, where s is the state component with

respect to which differentiation is carried out and eps is the smallest
floating point number.

• The optimisation has been carried out by means of the Matlab built-in
function fmincon, exploiting the interior-point algorithm; the multiple
shooting procedure is performed in a parallel fashion, due to its high
computational demand.

4. Results

4.1. Dynamical substitutes of collinear points

The solar system restricted n-body equations of motion are nonauto-
nomous, and therefore there are no relative equilibrium points in this model.

1This is the Copernicus workstation at the Department of Aerospace Science and Tech-
nology, Politecnico di Milano.

2The JPL planetary and lunar ephemerides are available via a secure ftp server on the
NASA and JPL ports at ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/.

3The ABM method uses the explicit Adams–Bashforth method as predictor, and the
implicit Adams–Moulton method as corrector.
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The combined effects of the major solar system bodies, as well as the gen-
erally elliptical motion of the primaries, prevent the Lagrangian points to
be relative equilibria. Nevertheless, when proper initial conditions are flown
under the n-body dynamics, special trajectories arise, that can be inter-
preted as dynamically substituting the libration points of the CRTBP. In
this sense, the dynamical substitutes of the equilibrium points are defined
as those solutions of the equations of motion that have as basic frequencies
only those of the perturbing bodies, while still remaining about the CRTBP
equilibria.

Using the numerical method described in the previous section, dynamical
substitutes of the three collinear libration points for the Sun–Jupiter, Earth–
Moon and Sun–Earth systems are computed. It must be remarked that, for
each point, these substitutes are not unique since they depend, for instance,
on the initial epoch at which they are computed. The initial epoch has
been fixed to MJD 0 in this paper (0h UT on January 1, 2000), and for all
the refinement procedures. The initial seeds used for the procedure are the
three equilibrium points of the CRTBP along a certain time interval. Dy-
namical substitutes of the Sun–Jupiter collinear points have been calculated
for 150 years; Earth–Moon ones for 5 years; and Sun–Earth’s for a period
of 20 years. This choice follows from rough considerations on the primaries
dynamics. In particular, timespans have been selected that cover most of
the relevant Sun–Jupiter, Earth–Moon, or Sun–Earth periods, respectively.
The Fourier analysis for the trigonometric approximation and extrapolation
polynomial was necessary, and has been used, only in the Sun–Earth case.
Indeed, this turned out to be the most difficult case the algorithm has han-
dled, due to the relatively high perturbation of the Moon. The dynamics of
Sun–Earth Lagrangian point orbits is indeed greatly affected by the pres-
ence of the Moon which modifies the phase space of this region due to its
vicinity. Furthermore, the Moon features a fast dynamics and introduces in
the RPRnBP high frequency terms which affect both dynamical substitutes
and quasi-periodic refined solutions. In this case, to attain the convergence
of the method and in order to span a large time interval, the procedure has
been started with ∆T0 = 2 years, ∆T ∗ = 20 years, and γP = 1.5.

The resulting orbits are shown in Figs. 4–6 for Sun–Jupiter, Earth–
Moon and Sun–Earth systems, respectively. The figures display dimensional
coordinates in the RPF. For the sake of clarity, and due to the large amount
of data, only the first 10 segments are shown, where a segment corresponds
to the primary revolution period (i. e., roughly 110 years for Sun–Jupiter,
1 year for Earth–Moon, and 10 years for Sun–Earth). These results are
in agreement with those obtained in Gómez et al. (2002b); Hou and Liu

16



-1000 -500 0 500 1000
x [Km]

-2000

0

2000
y 

[K
m

]

-1000 -500 0 500 1000
x [Km]

-200

-100

0

100

200

z 
[K

m
]

L1

-2000 0 2000
y [Km]

-200

-100

0

100

200

z 
[K

m
]

-2000 -1000 0 1000 2000
x [Km]

-5000

0

5000

y 
[K

m
]

-2000 -1000 0 1000 2000
x [Km]

-500

0

500

z 
[K

m
]

L2

-5000 0 5000
y [Km]

-500

0

500

z 
[K

m
]

-1 -0.5 0 0.5 1
x [Km] 105

-4

-2

0

2

4

y 
[K

m
]

105

-1 -0.5 0 0.5 1
x [Km] 105

-4000

-2000

0

2000

4000

z 
[K

m
]

L3

-4 -2 0 2 4
y [Km] 105

-4000

-2000

0

2000

4000

z 
[K

m
]

Figure 4: Dimensional coordinate projections of the dynamical substitutes of the L1 (top),
L2 (middle), and L3 (bottom) of the Sun–Jupiter system in the real ephemeris n-body
dynamics (only the first 110 years of the computed orbits are displayed).
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Figure 5: Dimensional coordinate projections of the dynamical substitutes of the L1 (top),
L2 (middle), and L3 (bottom) of the Earth–Moon system in the real ephemeris dynamics
(1 year of computed orbits is displayed).
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Figure 6: Dimensional coordinate projections of the dynamical substitutes of the L1 (top),
L2 (middle), and L3 (bottom) of the Sun–Earth system in the real ephemeris n-body
dynamics (only the first 10 years of the computed orbits are displayed).

(2011); Lian et al. (2013) by means of other methods. As can be seen in
Figures 4–6, the sizes of the dynamical substitutes orbits are relatively small
if compared to the mean distance between the primaries. An exception is
the dynamical substitutes of the Sun–Earth system, which orbit at tens of
thousands of kilometres about the collinear points. This is probably due
to the fact that the Sun–Earth gravitational system has been considered,
instead of the Sun–(Earth+Moon) model. Table 2 displays the amplitude of
such orbits for each gravitational system and discriminating for the collinear
libration points. There is a patent increase of the dynamical substitute orbit
amplitude along with the decrease of Jacobi constant; that is, the orbit is
larger for higher energy content.

Table 2: Approximate amplitude [km] of dynamical substitutes orbits.

Sun–Jupiter Earth–Moon Sun–Earth

L1 6.137127e+3 0.6286745 1.5918748e+4
L2 12.561253e+3 2.0198146 3.0544518e+4
L3 634.893168e+3 240.7262349 4.390072e+4
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As far as the Earth–Moon case is concerned, though smaller, the orbit
of L1 moves in a more regular way (a torus-like shape) than the substi-
tutes of L2, which in some sense reflects the fact that dynamics around L2

point is more rich and complex. Quite the contrary, the totality of Sun–
Jupiter dynamical substitutes reveal a high chaotic behaviour, in particular
the path around L2 manifests the tendency to change orbital plane periodi-
cally. Last but not least, the Sun–Earth dynamical substitutes, relatively the
largest in amplitude, show a clear-cut quasi-periodic behaviour. The gravi-
tational system analysed in this work have been carefully selected. Indeed,
the Sun–Jupiter represents a good example low-perturbed gravitational sys-
tem, whereas the Sun–Earth system is a good example of higher pertur-
bations in the dynamics (mainly due to the Moon and Jupiter). Lastly,
The Earth–Moon represents a system with larger gravitational mass ratio,
large perturbations due to the Sun, and high frequency content due do its
faster angular rotation when compared to the other main planets in our
solar system.

The Fourier transform of the x component of the Earth–Moon L3 dy-
namical substitute is shown in Fig. 7. The largest contributions, at 0.9176
and 1.9270 adimensional frequencies, are ascribable to the Sun perturbation
(see Table 6 in Gómez et al. (2002b)).
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Figure 7: Fourier transform of the Earth–Moon L3 dynamical substitute, x component.
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The refinement algorithm eventually reintegrates the output trajectory
to check if consistency is attained with respect the piecewise solution. It
happened in the course of simulations, that the specified tolerance was ei-
ther too strict, or too loose. The effect was either a very slow, if at all,
convergence, or errors in the dynamics that, propagated forward, gave rise
to an orbit detaching the sought solution and allowed the massless particle
to move far away from the libration point, according to its Jacobi energy.
Another possible cause of error is the vicinity of the orbit to a bifurcation
phenomenon, ascribable for instance to the bifurcation of planar Lyapunov
orbit to the halo family. In rare cases, during the iterations the algorithm has
‘jumped’ between the two possible options and ended up refining a different
kind of orbit. This occurrence should not surprise, in fact also differential
corrections in the framework of CRTBP might produce a planar Lyapunov
orbit when seeking a small-amplitude halo one. Lastly, errors might come
from the overfitting of the data if the Fourier analysis and extrapolation
are done with very restrictive constraints. Namely, the approximated poly-
nomial will perfectly fit the discrete vector in the given domain, but will
have exponential increasing error for small displacement from the nominal
domain when extrapolating.

4.2. Periodic orbits

This section is devoted to the refinement of periodic orbits around both
L1 and L2 of the Sun–Jupiter, Earth–Moon and Sun–Earth gravitational
systems; which include halo, Lissajous, and planar Lyapunov orbits. In this
work the seeding orbits necessary to start the algorithm are calculated via
a third-order analytic first guess that is differentially corrected by means of
a Lindstedt-Poincaré method (Richardson, 1980) for the halo and Lyapunov
cases; while CRTBP linearised solutions are used as seeding for the Lissajous
orbits.

4.2.1. The halo family

Due to the symmetry of the CRTBP with respect to the xy plane, there
appear two families of halo orbits at the bifurcation. In the following, the
northern1 family orbits are refined in the n-body problem. Halo orbits can
be characterised by an amplitude parameter, Az. Different values of Az

univocally correspond to different energy levels, and thus to different values
of the Jacobi constant, CJ . Hence, given any of these two parameters, one
particular halo orbit is specified. Fig. 8 displays the refinement of three halo

1Maximum z-amplitude along the positive z direction.
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Figure 8: Initial CRTBP guess (top) and refinement (bottom) of halo orbits with Az = 0.01
(smallest orbit), Az = 0.03, and Az = 0.06 (largest orbit) of the Earth–Moon L1 libration
point. Only the first year is plotted here.

orbits about the Earth–Moon L1, associated to three different amplitudes,
Az = 0.01, 0.03, 0.06. Note that larger amplitude means larger orbital path,
and therefore smaller Jacobi energy, CJ . The refinement has been done for 4
years, but for the sake of presentation clarity, only the first year is graphed.
Fig. 9 shows a three-dimensional view of the refinement operated on two
halo orbits about L1 and L2 of Sun–Jupiter system, for a period of 50 years.
Both the CRTBP halo seeds have been calculated with a fixed amplitude of
Az = 0.01. Finally, in Fig. 10, two halo orbits about the Sun–Earth L2 point
are considered, whose amplitudes are Az = 0.002 and Az = 0.005. From
the obtained results and the presented figures, it is clear that the numerical
refinement procedure of a halo orbit produces a quasi-periodic one, where
the baseline shape and size are retained.

A Fourier analysis of the refined halo-type orbit about Sun–Earth L2,
whose x component is depicted in Fig. 11, shows that the main single halo
frequency is maintained. In addition, since the refined orbit is now quasi-
periodic, other frequencies appear. In particular, the frequency correspond-
ing to Mercury and the Moon are highlighted. Note that the perturbative
effects of other massive planets are present, but cannot be resolved by the
Fourier transform due to the limited total period (11 years).
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There is a common trend that the frequencies follow when the time do-
main is progressively increased. For shorter amount of time the frequencies
corresponding to the maxima of the Fourier transform span the whole avail-
able spectrum because there is typically one high peak, if compared to the
others that are more spread out and with similar values. These frequen-
cies tend to absorb part of the signal captured later on by other frequencies
when the time domain is increased. Specifically, when the time domain is
increased clearer and well-separated peaks appear; the chosen frequencies
assume then values that concentrate around those peaks and provide a bet-
ter picture of the harmonic content of the refined orbit dynamics. Fig. 12
shows this trend.

4.2.2. The Lissajous family

Lissajous orbits appear in the linearised CRTBP when the stable and
unstable parts of the central manifold are set to zero (Alessi et al., 2010).
These orbits feature different in-plane and out-of-plane frequencies, that
solely depend on the primaries and on the Lagrange point selection. For the
collinear points at xLj , the square of the Lissajous frequencies simply yield:

λ =

√
c2

(9

4
c2 − 2

)
−
(c2

2
− 1
)
, c2 = |xLj + µ|3 + |xLj − 1 + µ|3. (26)

Two amplitude/phase pairs, for the in-plane and the out-of-plane dy-
namics, are sufficient to fully characterise a Lissajous orbit. In this work
Lissajous have been initialised with equal amplitudes and null phases, Ax =
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tion is performed. The data of the figure corresponds to the refinement of Sun–Earth L2

halo orbit.

Az = 10−5 (dimensionless units) and ϕ = ψ = 0 (see Alessi et al. (2010) for
more details).

Fig. 13 displays the refinement of three L1 Lissajous orbits in three dif-
ferent gravitational systems. The refinement has been carried out for ten
primaries complete revolutions; however, only a portion of the trajectories
within the RPRnBP is shown for clarity of presentation. The regularity of
the refined Lissajous clearly depends on the mass parameter. Indeed, the
Sun–Jupiter refined orbit stays very close to its linear counterpart.

The resulting trajectories have been identified to be Lissajous through
a Fourier analysis. The main in-plane and out-of-plane frequencies of the
refined solutions must match, within a certain threshold, the linear Lissajous
frequencies in order to label these orbits as refined Lissajous. Fig. 14 shows
the Fourier transform magnitude of the in-plane and out-of-plane motion for
the Sun–Jupiter case. Although spurious frequencies appear as result of the
gravitational attraction of other celestial bodies, the Lissajous frequencies
of the linear CRTBP are retained. Numerical values, listed in Table 3, do
not seem to have a predictable trend nor any correlation with the Lissajous
Jacobi energy for the tested cases.

All the refined Lissajous trajectories have converged towards slightly
smaller amplitudes, and therefore higher Jacobi energy. What is more, the
Lissajous trajectories of the Sun–Earth case (second row of Fig. 13) present
two anomalies:
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Figure 13: Refinement of L1 Lissajous orbits for the Earth–Moon (top), Sun–Earth (mid-
dle), and Sun–Jupiter system (bottom) in the RPRnBP. For clarity sake, roughly 220
days, 330 days and 95 years of computed orbit are displayed, respectively. The in-plane,
Ax, and out-of-plane amplitudes, Az, are equal to 10−5 adimensional units, that is 3.8
Km, 1500 Km, and 7800 Km for the Earth–Moon, Sun–Earth, and Sun–Jupiter systems,
respectively.

(i) The frequency corresponding to the largest Fourier transform magni-
tude coincides with the lunar harmonic motion as seen from the Sun–
Earth synodic frame, f = 1.97477 (frequency dimensionless units),
whereas the Lissajous dynamics stems from the second main frequency;

(ii) The refined Lissajous is actually orbiting around a point that is shifted
towards the Sun (in the opposite direction for the L2 case) with respect
to the actual libration point of the Sun–Earth system.

This is true for both L1 and L2 refined Lissajous. These effects are conjec-
tured to be caused by the strong perturbation of the Moon on the satellite
dynamics along the LPO. This hypothesis is also confirmed by the Fourier
analysis, highlighting the major contribution of the Moon.
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Figure 14: Fourier transform magnitude of the in-plane (left) and out-of-plane (right)
motion for the Sun–Jupiter L1 refined Lissajous orbit. Peaks correspond to the main
signal frequencies according to Fourier analysis, while the dashed-dotted black vertical
lines correspond to the linear Lissajous frequencies.

Table 3: Difference between the Lissajous linear and refined frequencies for several test
cases (primaries and libration point selection).

|∆f | × 10−3
EM SE SJ

L1 L2 L1 L2 L1 L2

x, y 3.71 11.26 1.85 6.70 0.47 22.3
z 0.86 14.10 5.52 3.22 4.52 4.11

4.2.3. The planar Lyapunov family

The planar Lyapunov orbit is located on the xy plane, giving an in-plane
motion boundary to the Lissajous orbits. (The vertical Lyapunov orbit,
which has zero in-plane motion, sets an out-of-plane limit for the Lissajous
ones of the same energy.) In this work, planar Lyapunov orbits are objects
of the refinement procedure. In particular, Fig. 15 displays the refinement
of two planar Lyapunov orbits emanating from the first libration point,
L1, of Sun–Jupiter system. The seed orbits, calculated in the CRTBP, are
characterised by two distinct values of Jacobi constant, that is CJ = 3.02 and
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CJ = 3.039. The iterative procedure has been started (for both orbits) with
∆T0 = 4, ∆T ∗ = 20 (unity of measurement is year), and γP = 1.3. With
these parameters, 7 iterations are sufficient to reach the final desired time.
For either of the two Lyapunov families, orbits with different amplitudes
are associated to different energy levels (values of the Jacobi constant); as
expected, the orbit with higher CJ has smaller amplitude.
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Figure 15: Initial CRTBP guess (top) and 20-year numerical refinement (bottom) of planar
Lyapunov orbits with CJ = 3.039 (smallest orbit), and CJ = 3.02 (largest orbit) of the
Sun–Jupiter L1 libration point (notice the very small z component).

5. Conclusions

In this paper an automatic procedure has been developed, able to re-
fine general trajectories into the real solar system ephemeris model. The
transition between simplified and refined trajectory is of essential relevance
in the trajectory design phases. The need of having an algorithm capable
of this is dual. Firstly, the feasibility assessment of flying such orbits, the
transfer navigation analysis, and essentially most of the mission operation
phases must be studied, tested and validated in the real solar system dy-
namics. Secondly, the mission will eventually be flown in the real scenario,
thus the nominal trajectory is by definition the one that exists in the real
solar system model.

This problem has been studied from an engineering standpoint: the
seeding orbits were calculated and designed first in a simplified gravita-
tion model; then they were refined in the n-body problem by means of
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the proposed algorithm. Special emphasis has been put in the circular re-
stricted three-body problem, however other simplified models might be used
to provide seeding trajectories (e. g., ERTBP or bicircular RFBP). Writing
the n-body problem as perturbation of the simpler CRTBP has allowed a
convenient and efficient application of a multiple shooting strategy for the
refinement procedure. The TPBVB has been transcribed into a parameter
optimisation problem and solved as a standard NLP problem, where the
dynamics has been viewed as a constraint. The shooting part has been ad-
dressed by means of a dedicated parallel computing strategy. Results have
been sought for the dynamical substitutes of several three-body systems.
Compared to previous works the refinement algorithm features a different
approach for the interpolation/extrapolation step and the Fourier analysis.
This has shown that the multiple shooting step is able to converge also with
a less accurate, from the harmonic content perspective, seeding.

Three different space applicative scenarios have been investigated: the
Earth–Moon, the Sun–Earth, and the Sun–Jupiter systems. The latter re-
vealed the easiest to disclose because of its mass preponderance in the so-
lar system, making it minimally affected by perturbations. The analysed
cases numerically demonstrate and show that quasi-periodic orbits exist in
the neighbourhood of the unstable collinear points in the complete gravita-
tional model. Solutions of the Earth–Moon system have been benchmarked
with the ones existing in the present literature. Furthermore, successful ap-
plication to different gravitational systems has proved the robustness of the
algorithm and has displayed how its convergence properties does not depend
on the particular mass ratio of the system, thus potentially applicable to a
large variety of dynamical problems of this kind.

These orbits can be exploited by a space mission in the real scenario.
The results obtained in this work make the algorithm very appealing and
potentially applicable for real space applications. Finally, this methodology
might also be applied to the refinement of propelled trajectories.
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Gómez, G., Masdemont, J.J., Mondelo, J.M., 2003. Dynamical substitutes
of the libration points for simplified Solar System models. World Scientific.
chapter 17. pp. 373–397. doi:10.1142/9789812704849_0017.
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