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ABSTRACT

A semi-variational approach is followed in order to derive a set of ordinary differential linearized equations
for static analysis of axial structures under end loads. Both a finite element model of the cross-section and a roto-
translation model fit for slender beams are drawn. An eigengroblem is set up and faced looking at the load intensity
as a parametr: by increasing load, both central and extremity solutions evolve and a wavy undecaying mode is
reached at a lower bound for buckling loads. Simple examples relative to both global and local instability are
discussed, while the parametric analysis of a shell of revolution shows some unforeseen aspects correlanng to

experimental test results.

1. INTRODUCTION

If an elastic, shallow shell of revolution is acted
on by self-balanced static forces at a given cross-section,
it will respond with a deformation that decays moving
apart from the loaded section (according to De Saint
Venant's principle) and that is a combination of natural
modes of the shell itself, often referred to as extremity
solutions: circumferential waves on the shell cross-
section characterize the shape of such modes, see for
example Gol'denveizer (1961). Instead if the same shell
is loaded in axial compression, it will buckle at a given
load with an undecaying deformation once again with
circumferential waves. Therefore it is expected that
extremity solutions evolve naturally towards undecay-
ing modes while increasing the axial compression, or
possibly towards modes easy to snap-through into unde-
caying solutions.

This way of facing an instability phenomenon can
be generalized to some different buckling problems of a
wide class of structural elements, such as those depicted
in Fig. 1: beams, struts, tubes, stringers, flat and curved
sheets, longitudinally stiffened panels and shells, all
showing a definite direction and a constant Cross-sec-
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tion; that's why is this paper they are referred to as axial
structures. An elastic axial structure is fit for a semi-
variational analysis approach: following the displace-
ment method, if the displacement is approximated by a
discrete set of unknowns pertaining to the section by
means of suitable functions (either interpolating func-
tions as in the finite element method or appropriate
shapes as in Ritz's method), applying a variational
principle just to the section itself leads to an ordinary
differential equation set, the unknowns depending only
on the axial coordinate. A linearized analysis yields
homogeneous equations with constant coefficients in
several cases of practical interest, when elastic proper-
ties and pre-stress do not vary along the structure axis,
as in axial compression, panel shear and shell torsion: an
eigenproblem is therefore set up and static modes are
sought, looking at the pre-stress intensity as a parameter.
When this is null, the same elastic problem is found as
pointed out in linear beam analysis by Giavotto et al.
(1983, 1986), allowing for both central and extremity
solutions. For increasing load, wavy-decaying solutions
are in general found, with the wavy content continuosly
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growing and the decaying one lessening, until an unde-
caying wavy solution is achieved: thus alower bound for
linear buckling loads is found, while at the actual critical
load a solution will agree in wave length with extremity
boundary conditions. The same considerations apply as
well to overall beam buckling, the instability modes
being the natural evolution of central solutions.

Fig. 1 - Some typical axial structures

The main purpose of this paper is to setup a right
formulation of the problem to be of use in subsequent
search, and to show the behaviour of static modes in
some very simple and typical cases. The semi-vari-
ational approach is stated in section 2 going over the
topics of classical mechanics with an unusual and yet
straightforward vector notation. Then two displacement
models are examined: the general finite element model
(section 3) seems effective for application to cross-
sections of any shape and material properties, allowing
for anisotropy and unhomogeneity; the roto-translation
model (section 4) makes it possible to study the evolu-
tion of modes with end load transfer (central solutions),
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therefore giving the whole picture of static modes.
Whatever the displacement model, the derivation is
fully nonlinear and so it is ready for future work al-
though linearized equations are discussed in this paper.
The examples enclosed in section 5 are quite simple and
still contribute to explain the discussion.

Two advantages appear from such an approach to
stability problems. First, an investigative interest in the
development of buckling mechanisms. The eigensolu-
tion trend can give sonie insight even into the buckling
of a cylinder, that is a nonlinear phenomenon: perhaps
undecaying modes could be more effectively used in
interactive buckling analysis, a problem being now
faced with finite strips (see Benito, Sridharan (1985) and
Ali, Sridharan (1988)). Second, the relatively small size
of the problem in a computing process: the unknowns of
the ordinary differential. equations are the discrete de-
grees-of-freedom of one section; thus local buckling of
columns and shell buckling can be dealt with using

etailed models of the cross-section redardless to the
structure length. Such a possibility becomes valuable
when sections are not homogeneous as for composite
laminates: indeed the effectiveness of a semi-variational
approach to the analysis of composite axial structures
has been shown in several application fields by Giavotto
et al. (1979, 1983, 1986), Borri, Mantegazza {1985),
Borri, Merlini (1986) and Ghiringhelii, Sala (1986).

2. SEMI-VARIATIONAL APPROACH

The structural element we are concerned with is
an elastic prismatic solid generated by a mere translation
of its cross-section along its axis: material properties are
constant along the axial direction, although generally
anisotropic and unhomogeneous on the section; external
constraints, if any, are constant along one or more
generatrices. Such a body can be referred to as anelastic
axial structure. A coordinate system appropriate to
describe geometric and material properties is assumed:
it will in general be curvilinear on the section plane
(coordinates x! and x?, see Fig. 2) and rectangular with
respect to the structure axis (coordinate x%). A frame of
covariant base vectors g =x; anda reciprocal frame of
contravariant base vectors ¢ such that grg, = & (the
Kronecker symbol) are associated with each point with
position vector x: each {rame is not generally orthonor-
mal, nevertheless the conditions g,-g, =&, and ggt=5
hold true anywhere, g* = g, being a constant unit vector
.

(") Throughout the paper latin indexes are intended to vary from 1 to 3,

while greek ones will be used on narrower ranges. Standard convention
of implicit summation for repeated indexes and the comma for partial
derivatives with respect to the coordinate directions are adopted.
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Fig. 2 - General reference frame for an axial structure

As the body deforms each point undergoes a
displacement s and its position becomes defined by a
new vector x' =x +s. The differential of the positi-
on vector dx = g dx’ (with contravariant components
dx = g -dx) changes in the deformed configuration to
vector dx' = Jdx: the linear operator J, i. e. the Jacobian
of the coordinate transformation x' = x'(x), is the so-
called deformation gradient or Jacobian of the deforma-
tion (Haber, 1984), and in a fully Lagrangian description
itis given by

= (g +s)(g) . (D

The difference between the squared differentials,
dx"dx' -dx-dx = dx-2edx, defines the strain symmetric
linear operator

e:_;(fj 1, 2)

where J" is the adjoint of J (3). Operator e transforms the
bas‘e vectors g, into vectors eg, of covariant components
= g (eg): scalars €, = e, are called the matrix
covanam elements of the operator e and are just the
covariant components of the Green strain tensor (%).
The local equilibrium equations on the lateral
surface and within the body can be written

f-Jon = 0 and F+(J<5),kg*=0, (3)

where fand F are the surface and volume densities (with
respect to the undeformed body) of external forces, n is

) The adjoint or transpose operatorfr of fis defined (Hestenes, 1986) by
the condition that, for any two vectors aand b, a- (fb) = (f:ra)-b: itis

seen that, for any two reciprocal frames g, and g~ frzgk(fgk)':
2, (7g") . An operator fis said to be symmetric or self-adjoint iffi=1

*) Other useful operators are the identity associated with two reciprocal
frames, g = g g = g’g - =1 (its matrix elements are the components of

j .
the metric tensor), and the displacement gradient s, = s . g’ . Hence the

/
deformation gradient reads J = 1 + 5 and the strain becomes defined as
e=172 (s/ +st

T
/ +s/ s/),
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the unitoutwards normal to the undeformed surface, and
o is the stress symmetric operator. The matrix contrav-
ariant elements ¢* = g/ - (og") of operator o are just the
contravariant components of the 2nd Piola-Kirchhoff
stress tensor: it is seen that g ((Jc) g" are the tensorial
derivatives along coordinate x” of the components of the
so-called 1st Piola-Kirchhoff or Piola-Lagrange stress
tensor.

Scalar product of balance equations by an arbi-
trary vector field, for example the virtual displacement
8s, and integration over the cross-section contour line C
and surface area A, yields a scalar condition equivalent
to Egs. (3) for the whole section,

j' 8- €-Jon)dC +jﬁs- F +U0),g9dA = 0

Function 8s ((Jc) gH = ((CJT) ds)- g* isnow integrated
by parts by means of the theorem of the divergence for
vector 6/'8s; as scalar product of vectors e, = = deg, by
6" = ogt, because of Egs. (1), (2) and symmetxy of o,
leads to

Se,-0* = (J'8s,) - &, “

it follows that;

jéss.fdmjas.mmi;f&-a&mxx-
¢ A dx A

- [Be-o"aa=0. 5)
A

=y

The left-hand side of Eq. (5) is nothing but the total
virtual work per unit length, with work of stress Jo*
acting on the section surface correctly appearing: thus
Eq. (5) is the equation of principle of virtual work for
finite displacements stated for an infinitesimal length of
structure. Within the context of a direct method, dis-
placement s is expressed as a function of a number of
free unknowns, depending on the specific structure
modelling: it is noted that this function can be nonlinear
with respect to the unknowns of the analysis, as it will be
shown later while dealing with a particular model.

To study possible configurations in the neighbor-
hood of an equilibrium configuration, a linearized ap-
proach is established. A necessary condition for the
equilibrium of a configuration s + ds is obtained by dif-
ferentiating Eq. (5): recalling Eq. (4), it follows

J‘(Ssmﬁ# dds - )dC +f(85~dF+dSS~F)dA
C A
d T 3 T
+FJ’(I §s-do’ +d (" 6s) g)dA
A

-[ e, de" +a0"ss, ) ahaa =0 .
; : (6
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Variation ds (%) represents a possible infinitesimal dis-
placement or a mode within the body of the axial
structure, that can be called a static mode: the actual
solution must of course match the boundary conditions
at the extremities. This approach includes both linear
solutions from the natural state (extremity modes and
central solutions under end loads) and linear buckling
modes arising at the onset of instability. With regard to
variations of external actions df, dF and stress do, they
must of course be related to unknown variations: elastic
constitutive laws provide a stress-strain differential re-
lation that can be written

" =1"'Dl de, | ©

where D is a symmetric array operator and L/ array op-
erators are used to select six independent strain compo-
nents (*). A choice for L/ could be

[ {g‘gr +g3gz'}
glgs'

gg + g
; { ) } ®
g gy

=1}

that separates transverse strain and stress components
from those facing on the section surface. Finally, Eq. (6)
depends on the actual external actions f and F and stress
o, and accounts for the finite displacement s reached
during the loading process, that can be computed via an
incremental analysis: in some problems however, as in
initial buckling, the reference configuration is charac-
terized by an infinitesimal displacement that can be
dropped from Eq. (6), giving a linear prebuckling state.

A semi-variational approachis suitably applied to
condition (6), with a direct method based on a discrete
model of the section surface, as for example the Kan-
torovich (1964) method: once displacement is expanded
using properly chosen functions of coordinates x'and x%,
a set of simultaneous ordinary differential equations can
be drawn, giving the static modes as a function of
coordinate 2. In the next sections the linear differential
equations fit for initial instability analysis will be de-
rived in two extreme and significant cases of displace-
ment expression; another model will be referred to inthe
examples.

I~
Il

(*y The second variation d8s obviously cancels if (and only if) displacement
is a linear function of the analysis unknowns.

. j ki .
() Because of symmetry of operators ¢ and @ it must be Dgt=Lg.
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3. FINITE ELEMENT MODEL

In many discrete structural models the displace-
ment vector field is assumed to be linearly dependent on
the analysis unknowns: this is typical of the most clas-
sical finite element representations, the displacement
being interpolated among a number of significant dis-
placements. A development of such a discrete model for
linear elastic analysis of anisotropic beam cross-sec-
tions was given by Giavotto et al. (1983), including the
extremity mode analysis; this section is devoted to the
application of condition (6) to models of this kind: in
such case the second variation dds is of course null.

Without loss of generality rectangular Cartesian
coordinates are referred to: therefore vector components
are easily worked on, and matrix notation will be adopt-
ed. An approximate displacement expansion can be for-
mally written as

{s} = NG, ) {u(x)) .

Independent components of stress and strain tensors
are conveniently grouped in columns

{0} - [GU 022 012 013 623 033 ]T
(e} =le, e, 2e, 2e, 2e, ¢,
and the elastic stress-strain relation (7) with (8) becomes

{do} = [D]{de} .

The linearized strajn-displacement differential relation-
ship takes the form,

{de) = [L]{ds, )+ [2}(ds) .

where [L] and [ 2] are operators of order 6x3 defined by

(oxr 0 0]
0 9/9x2 O
[le[O] o (] d/ax? 9/ox' O
I 0 0 9/ox!
0 0 9/9x2
0 0 0

By using the above formulae, condition (6), written for
a reference configuration with infinitesimal displace-
ment, becomes

T d T T, T {d“'})
O PN (L (VAR L
Su VM, +M, cl+Cy) [aw
e =0, ©
5u C2+Co Ke +KO‘ du
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where the prime indicates the derivative with respect to
axis x°, and the following integrals have been introduced

)
@) = [IVT" @rydc + " aFyaa
A

C

C, K

[Me Cf] __J[(UVfDﬁlm
-4 e A
NT0'33N NTO'BBN,B ]

(IN)TD@N)] A
(ZN)D @N) (2N )D (@N)

T
el
Co Ksd NIZ o“N N’Ta GaﬂNﬁ

Column {dP} refers to the loaded or constrained re-
gions, if any, of the section. Matrices [M ], [C] and [K ]
represent the elastic behaviour of the whole section with
respect to unknowns {du} and their derivatives {du'}
{clastic matrices), while (M, [C,] and [K,] are the
counterpart accounting for the actual stress (pre-stress
matrices). It is noted that the same Eq. (9) could be ob-
tained if general curvilinear coordinates were used on
the section plane, with only a different definition of the
matrices involved.

An equivalent form for condition (9) is,
{8u)T (@P) + (M +M _){du"}

-[(C,+C) - (C, +C )T -M' ){du')
- [K,+K-C_ Hdu}) =0 . (10)

Itisseen that coefficient matricesin Egs. (9) and (10) are
not in general constant, depending on the state of stress
along the structure: abeam loaded in shear is an example
of variable stress along x. If stress is constant along the
axis (as for example in axially loaded structures) and in
absence of surface and volume forces, the following
ordinary differential linear equations with constant
coefficients are obtained from Eq. (10),

(M, +uM J{du"} - [(C,-CT,) + WC -CT )] {du'}

- [K, + pK J{du} = {0}, (an

which are valid either without lateral constraints, either
with fixed lateral constraints provided the related de-
grees-of-freedom have been removed. Pre-stress matri-
ces in Egs. (11) are now intended to represent the stress
distribution on the section, while their magnitude is
controlied by a load parameter L.

Mostly, in initial instability analyses, functions
{u(x )} are given an expression satisfying end condi-

(®) Greek indexes are intended to range from 1 to 2.
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tions and a first order eigenvalue problem with respect
to w is set up, giving the critical buckling loads and
modes. Another way of looking at homogeneous Egs.
(11) is to seek possible eigensolutions of exponential
type {du} = {dU}exp(px®), thus drawing a second order
cigenvalue problem with respect to p (this being in
general complex), while p is treated as a parameter.
Indeed when p vanishes, Egs. (11) become those gov-
eming the linear elastic problem of axial structures,
already worked out in beam analysis by Giavotto et al.
(1983, 1986), and will undergo either polynomial or ex-
ponential solutions: the first ones group both rigid
motions and central solutions, viz. deformation modes
excited by end loads; the last ones, referred to as extrem-
ity solutions, are modes excited by locally self-balanced
Ioads and always decay along axis x°, i. e. Re(p) isnever
null. As pincreases these modes evolve and exponen-
tial solutions can be generally expected (evolution in
such way of central solutions will be discussed in the
next section). An instability criterion is now of'course
needed in order to ascertain when an eigensolution of
Egs. (11) can be a buckling mode: in any case for a
critical Joad to be caught, a solution must match the
actual end boundary conditions.

This way of facing Egs. (11) has some affinity
with the aeroelastic analysis of flutter, where the un-
knowns are function of time and relevant matrices are in
part constant and in part dependent on aerodynamic
forces, controlled by the airflow speed as a parameter.
The present conservative problem with symmetric and
skew-symmetric matrices is simpler, but the same insta-
bility criterion is likely to hold: when motion ceases to
be damped in time ({lutter) or when displacement shape
ceases 10 decay in space (present case) then instability
can occur. Yet it is the real part of eigenvalue p that
controls stability and, similarly to flutter analysis, the
knowledge of how eigensolutions vary with the load
parameter p seems to be worthwhile for a betier under-
standing of the instability mechanisms themselves.
Obviously the actual end conditions must be taken into
account, but in several cases their influence on the
valuation of critical loads is negligible: this happens
when the mode wave lengths are many times smaller
than the structure length, as for local buckling of col-
umns with slender sections.

The analogy with the flutter analysis allows to ta-
ke advantage of the rich experience gained in numerical
acroelasticity. Among several methods, two techniques
are here quoted as promising with very complex ¢ross-
sections: the modal condensation and truncation, possi-
bly based on the modes at pu=0, and the sweep of a single
static mode versus the load parameter, see for instance
Cardani, Mantegazza (1978, 1979). Indeed such po-
werful techniques could be very useful when studying
modal interaction in a subsequent nonlinear analysis.
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4. ROTO-TRANSLATION MODEL

In the analysis of axial structures it is somewhat
usclul to resolve displacement s into a part which does
notdeform the cross-section and a residual part. The first
term is a roto-translation of the section and so depends
on six parameters, if no lateral constraints exist: it is not
in general a rigid displacement as these parameters vary
along the structure axis, but anyway it includes and can
completely describe any rigid motion; consequently the
residual part, that in a broad sense can be referred to as
section warping, always represents a deformation. Such
a displacement resolution proves very suitable in the
analysis of beam central solutions (Giavotto et al., 1983,
1986), but its usefulness seems poor in stability prob-
lems where warping is important and mostly compa-
rable in magnitude with roto-translation, as for local
buckling of thin-walled columns or shell buckling.

Nevertheless an interest exists in mere roto-trans-
lation displacement in some problems with insignificant
section warping, such as overall buckling of slender
beams with gross cross-section: when radii of gyration
are small in comparison with section dimensions, warp-
ing is generally so small with respect to roto-translation
that it can be neglected in a linear stability analysis.
More precisely we can say that at the onset of instability
two infinitely close equilibrium configurations s and
s+ds differ only by the roto-translational part, warping
remaining unchanged: the number of unknowns lowers
1o a few parameters (six in general) and a reduced
stability analysis is established as already pointed out by
Borri, Merlini (1986). Neglecting warping is of course
an approximation that must be sounded out on the
particular problem at hand, and yet a general formula-
tion based on roto-translational displacement variations
will be derived here and profitably compared with the
broader one stated above.

A nonlinear setting out enters into the field of
finite rotations to which great attention has been paid
during the past two decades: among several and
significant works, papers by Green, Naghdi (1970),
Bathe, Bolourchi (1979), Tang, Yeung and Chon
(1980), Argyris (1982), Maewal (1983), Shkutin (1985)
and Hodges (1987A, B) are here quoted. Following a
suggestion by Shkutin (1985), the nonlinear model in
1-Dfield of a straight slender beam is drawn here from
a 3-D macro-polar model consistently with the dis-
placement method: derivation runs plain mainly due to
the identification of two finite strain vector 1-D fields
via a well defined rotation-derivative operator, and the
definition of two work-conjugate stress integral vector
1-D fields. This way lengthy and troublesome compo-
nent expressions for strains are avoided, and concise
vectorial equations are written which keep valid for
rotations however large.
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A reference axis parallel to coordinate x* is cho-
seninorderto setupa Cosserat-type kinematic descrip-
tion: the position vector of a point is resolved into the
pole position x(x* ) on the axis plus the point position
y(x', x*) on the section; the covariant base vectors will
be g, = g (o0=1,2) and the unit vector g, = X, After
displacement, vectors x and y become x+ v and &y
respectively, where v(x*) is the pole translation and
operator ®(x%) is the section rotation. As @ represents a
proper orthogonal transformation (@' ®=1), itis defined
by three independent parameters: among the several
parametrization formulae proposed in literature (see
Hughes (1986), Hestenes (1986), and Hodges (1987A)),
the following one is chosen as the most appropriate for
present purposes, as already suggested by Borri, Merlini
(1986),

o (@x)

O =exp (@x)=1 +:2;1 ‘P' ,

n:

(12)

¢(x*) being the finite rotation vector (). Displacement
of a point is therefore given the form

s=v+{(P- Dy,

that is a nonlinear expression of the section free un-
knowns v and ¢: thus non-null terms depending on the
second variation dés must be expected.

Inorderto characterize section strain, the deriva-
tive operator @' is solved for the derivative rotation
vector @. Derivation follows from the orthogonality
property of ® as shown by Hughes (1986) and yields

N v
D = (VP \P_1+;m :
where W can be called the rotation-derivative operator
(®). A multiplicative macro-polar decomposition is now
easily introduced for the Jacobian operator (1) on the
basis of section rotation &, leading to the expression

(13)

J =01 +¢g),
where,

L=D('- (@ - Dg,),

e=g,g" = (x- yog

=0V . (14

7 . . . .
(") Rotation ¢ is more correctly expressed, with the language of geometric

algebra (Hestenes, 1986), as a function of a bivector, the rotation angle
9, dual of the rotation vector @ (& =i ¢, { being the dextral unit
pseudoscalar of the 3-D Euclidean space).

(*) Operators @ and ¥ are usually known in a more appropriate Torm for
computation, namely

@ =1+0¢7 (sing)px + ¢2 (1 - cosg) gxgx
Y=1+¢2(1-cos@)gx + g2 (1-¢? sing) gxox

where ¢ = Vg - @. Series expansion of trigonometric functions and
property (gx)* = -¢* (px)*2 for n>2, give formulae (12), (13). The
following properties are quoted:

O=1+¥ox=1+ox¥ , ¥=0V =¥ .
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The unsymmetric operatore will be called (local) stretch
as it is fully responsible for strain, since from Eq. (2)it
follows that (*)

1
€ :u-z—- (8+£T+£T£) ;

local stretch e again depends directly on two vectors X
and @ unique for the whole section, namely the section
strain vectors (whose components are shear, axial, flex-
ural and torsional deformations), and Egs. (14) provide
a finite nonlinear strain-displacement vectorial rela-
tionship (19). :

Although a linearized principle, written fora re-
ference configuration with infinitesimal displacement,
could now be worked out from Eq. (6) by proper trunca-
tion of operators ¢ and ¥ treading in Borri, Merlini
(1986) steps, a much more straightforward way will
be followed here. For simplicity sake no external forces
nor lateral constraints are considered: thereby the prin-
ciple of virtual work Eq. (5) can be stated as

d

— [ss @t +e)daa- [ 6.0 +edaa =0 |
de 4 A

and, 1f Eq. (13) isused to differentiate operator &, it can
be written

;1T 1
g oD 2] =0
having introduced the siress integrals defined as
t:J(M—s)«fdA ,
’ (16)

m = J'yx(l +€)¢§’3dA
A

Vectors t and m work for virtual strain vectors 8y and 3w
and so they are properly assumed as the stress resultant
and moment on the section (). It must be noted that the
“true” actions on the section balancing external loads
are the rotated vectors @t and ®m, namely the integrals
of the Piola-Lagrange stress vector Jg® over the rotated
section, while in analogy with micro-polar continua
(Atluri, 1984) vectors t and m can be said to be the inte-
grals of the Biot-Lure-type stress vector (1+¢)@®. As
strain vector variations can be easily brought to the form
%

dy=®%dv' + (g, + v )x¥de) ,

ag = O (¥dg),

) Transverse strain components £ o (o, B = 1, 2) are obviously null,
consistently with a section roto-translation.

(1" It can be seen that formulae (14) also derive from intrinsic definitions of
generalized strains of the beam axis, i.e. relative change in tangent vector
and curvature, as stated by Borri, Mantegazza (1985) for curved beams.

'} The moment too is more precisely a bivector, dual of vector m.
J P ¥

{'%) Note that @x = 7',
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Eq. (15) can also be written as

{ 5v }T {@t)’ } 17
¥op) L @m) +(g+v)xPt) T 0.

Due to arbitrariness of virtual variation of unknowns v
and g(operator ¥ is non-singular), Eq. (17) immedi-
ately gives the intrinsic balance equations for finite roto-
tranislation in terms of section force and moment (in
absence of external forces).

Linearization of Eq. (17) leads to

o)

S
@dt) -Dtxdw
@dm)'+ (g,+ v)XPdt-Ptxd g -Pmxd @)

(18)

Asinthe present case the elastic stress-strain relation @)
with (8) reads +

=0 . v

de’ =L’DL’(1 + €)ds, ,

definitions (16) give the following nonlinear symmet-
ric differential stress-strain integral relation:

{ dt
dm| <
T T
f{ 1} (0 +oL’D20 +&+ 6™ { 1 } dA {dx }
FARAS yX dm

When displacement of the reference configuration is in-
finitesimal, Eq. (18) becomes

(8 )" -((E +Ilfdn '+ GEE +1T] -T) (dm}) =0, (19)

where columns

) = ()
" @) = v +g3Xd9’} = {dr'}-G" (dr)
dg

group the linearized variations of the unknown and
strain vectors, and the array operators are defined by

e e (i a0 <[23]

.

t x mx
where now pre-stress vectors (16) are evaluated with

operator 1+¢ replaced by the unity.
In condition (19) the most important of the two

pre-stress operators IT and I is by far the second one,

’
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which depends on integral veciors t and m. Operator 11
depends on the distribution of axial stress ¢*, which is
mostly srnaller than material elastic moduli enclosed in
D by several orders of magnitude, and therefore it van-
ishes when adding to elastic operator £ (). Indeed
operator IT is found to be responsible for finite strains
(as it derives from operator 1+¢ in integrals (16)) and it
can be neglected in a reduced stability analysis, Pre-
stress operator Xis skew-symmetric, but it corresponds
to a symmetric geometric stifiness operator, asitis seen
by differentiating Eq. (15). As regards to ¢lastic opera-
tor £, which allows for anisotropy and unhomogene-
ity, itcanbe seenthatitdiffers from the sectionstiffness
found in linear beam theory, as proposed by Giavotto et
al. (1983, 1986), because of the different displacement
expansion assumed: note that if the correct stiffness is
used for £ in Eq. (19) a better approximation of the
elastic behaviour may be expected, as warping vari-
ations are implicitly solved into section strain vari-
ations.

If operator Ilis neglected, the ordinary differen-
tial equations

E{dn'} - (WZE*-G)E{dn} = {0} (20

are derived from Eq. (19}, having introduced the load
parameter u to quantify pre-stress. In the following, vec-
tors t and m, and thenoperator 2, are assumed 1o be con-
stant (**). Obviously Egs. (20) are satisfied by any rigid
displacement dv + dgx(x’g, +y), I. . with parameters
{dr} =(1+x* G"){dr } ;
indeed this formulais a general solution of the second
order differential set with {dr} as unknowns deriving

from Egs. (20), and it allows lowering the derivative
rank to the first one with {dn} as unknowns. Besides,

Eqgs. (20) are satisfied if
{dn} = E* exp(WIE™- G)*) E {dn,)} .

When pre-stress is null (u=0) the general solution be-
comes

(dn) = (1-2* E'GE){(dn,} ,

and corresponds to the beam cubic central solutions
(Giavotto, 1986)

(dr} x(xw?(xﬁzg‘(mfﬁm

1 a3 q.
<= 6VG'EGE) {dn,)

() Yixceptions are offered by operators £ defeciive of some principal stiff-

ness, as for example in wires o in thin-walled beams with open sections.

(**y Hence balance equations entail £ = ¢ Bgy viz. null shear forces.
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As p increases the general solution {dn}, and conse-
quently the displacement {dr}, will be of exponential
type whenever operator pZE'-G  is non-singular, as
it can generally be expected (eventually non-pure ex-
ponential if the above operator has multiple
eigenvalues and non-independent eigenvectors). Thus
roto-translational exponential solutions are the natural
evolution of central solutions for varying load parame-
ter, and the same instability criterion can be applied as
discussed when dealing with Egs. (11).

Now, recalling the above displacement iesolu-
tion, it can be seen that solutions here derived are the
roto-translational modes (warping has been neglected)
among the whole eigensolution set allowed by the more
general formulation Egs. (11): thus in a sense they play
here an analogous r6le as rigid motions do in flutier
analysis. Therefore when seeking exponential solu-
tions of the general problem Egs. (11), a number of
modes (six for laterally unconstrained structures) have
to be expected being the natural evolution of central
solutions. This distinction of possible instability modes
according to their derivation is perhaps the right way to
classify beam instabilities as being global or local,
despite the fact that global modes can often show a
significant generalized warping of the section. In fact
the behaviour of eigenvalues p with respect to the load
parameter uis in general quite different for global and
local modes, as shown by classical investigations and
data available about buckling loads of thin-walled
struts: a significant example is offered in a paver by
Williams (1974). «

5. EXAMPLES

The following examples deal with some of the
most classical initial buckling problems: the aim is
here to quickly obtain analytical solutions and discuss
their trend with increasing load. Therefore isotropic
material is considered and the simplest models are
adopted to handle the actually significant unknowns.

The first example refers to the primary overall
buckling problem and shows an application of the roto-
translation model giving aninsight into the evolutionof
central solutions. The other two examples refer to panel
and shell instabilities and show some typical trends in
local buckling. In order to be concise, the linear model
adopted in these two examples is burrowed from the
well-known shallow shell theory (**). For an isotropic

{(**) A nonlinear model based on a polar kinematic description of the shell
and involving finite rotations has been developed in a similar way as the
slender bearn model: it gives the same linearized equations as the
classical shallow shell theory and will be used in planned nonlinear
investigations.

111



and homogeneous circular cylinder of radius r, thick-
ness /4, Young modulus E, Poisson ratio v, referred to
intrinsic rectangular Cartesian coordinates with a dex-
tral base frame and vector g  pointing outwards, the
middle surface differential equations (see for instance
Dikmen, 1982) give rise to the following linearized
semi-variational hybrid principle fora prebuckling state
in axial compression,

1

0
1 B
B@W 3y +20W s +aW 535 )+7 B yy-t7aw 5

1 1
‘,:'dW,33 7 @ + 20y + dfy3)

where w is the displacement normal to the surface, S the
Airy membrane-stress function, t22=f’33, t”:f’22 and
P=r=f the specific membrane forces, and B =
ER*/12(1-v?) the shell flexural rigidity.

5.1 The Euler rod

For a slender beam referred to a centroidal ortho-
gonal frame and symmetric with respect to x' x*-plane,
the following equations pertaining to in-plane stability
under axial load are derived from Eq. (19),

[GA1 0 Hj"; } 0 ﬁHdXm}_{O} 22)
0 EL! G, A -t7 01 do,) ~ L0

with strain components

()£ )

©, 0,

as unknowns. GA, and EJ, are the shear and bending
rigidities of the section; terms due to operator T1 have
been neglected and consistently the axial force £ will be
neglected in front of rigidity GA -

Egs. (22) allow for arigid displacement variation

{d\/‘1 } vy, +x3d(p20}
de, | oy ’
and when =0 they are satisfied by the linear solution
{ dy, } (Dl } '
do,| {da)zo —x3(GAl/E]2)a'x10
Under axial load #, searching for a solution of type

lio}= i} o
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leads to an eigenproblem which gives (1¢)

p=tJOEL

Real and imaginary parts of eigenvalues p are plotted
versus compressive load - in Fig. 3; while p is always
real when in traction, for any compressive load
eigenvalues are merely imaginary: this means that £ =0
isalowerbound forthe buckling load of any compressed
rod.

dYtyo My =0

" i
=-.002 -.001 8] .001 -002 L 003

tVEA

Fig. 3 - Eigenvalue-load plot for an axially compressed rod

The actual eigenvalue (hence the critical buck-
ling load) depends on the boundary conditions, as unde-
caying modes for £<0 must develop along the beam
according to end constraints. If the half-wave Iength A

is used instead of p ("),

p=xin/A A= TEL/?
the general solution of Eqgs. (22) can be written as
v = dvig + APy, + dvi c0sLY A+ dvygsin (e W)

d,=0,

Boundary compatibility determines A: for example for
a simply supported beam at x*=0 and x*=/ it results

do,=dv, dw, = dv]

A=dn . d =gy sinmd ),

n being any positive integer value. Hence for such
a compressed beam a series of instability modes is
possible with different wave lengths and eigenvalues

(") Eigenvalues and eigenvectors have been approximated for FIGA, <<1
and P/pGA, <<1. The same result would be obtained if the shear defor-
mation was neglected.

(") In the following, some caution is required to distinguish between com-
penent indexes and power exponents.
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p=%inn/f: the corresponding loads will be -#=
EJ (nn/f)*, and the actual critical load is found for n=1.

Itis seen that plotof A (i. e. Z for n=1) versus -£ results
in the classical Euler buckling curve.

5.2 Simply-supported flat panel in axial compres-
sion

For a simply-supported thin plate of width b in
uniform axial compression, the shell flexural behaviour
becomes uncoupled from the inplane one and principle
(21) can be written

b

[ 80 B9y + 21w 1 + ) 1P 1) dx?= 0
0
The Fourier expansion
dw =Y dw, sin(nm?/b)
m =1

satisfies the side constraints and yields the following
uncoupled equations

Gy dw)" + Win® - 2Xopmm) dw! +dw =0

m=1,2,...0) ,
the load parameter p being defined as for
Py B (hy
12(1-vH b

Seeking exponential solutions

aw, =dw,_expmnrp, x¥b) (m=1,2,...)
gives the characteristic equations
P -2(1-w/20D)p2 +1 =0 m=1,2,...2),

showing that p_is real for u<0, complex for O<u<dm?
and imaginary for p>4m?® As the interest is for the
lowest critical load, the sole first cigensolution with
half-wave shape on the cross-section will be studied and
hereinafter m=1 will be understood. Plot of eigenvalues

p= iyt awr

is given in Fig.4 versus the load parameter ju; when in
traction eigensolutions decay and so do the extremity
solutions (u=0); under compressive stress eigenvalues
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become complex showing a wave-shaped decaying so-
lution; Re(p) decreases for increasing p and vanishes for
p=4 (the lower bound of any buckling load) therefrom
leaving undecaying eigensolutions.

By resorting to the half-wave length A,

p=*ib/h , A=b \/u/2-1 + @2-n1

w
T

jr_i—
iw
|
i

\
N
~
\\\ S
o -
—— S~ 4
—1 k " \\: B
1 1 i1 1 1 1

O a
—-t7/_nEh (hY
# 1201+ )

Fig. 4 - Eigenvaluc-load plot for a simply-supported axially compressed
panel.

itisnoted that two different wave lengths are associated
with any value of p>4, namely A and %A, and con-
versely it results u=(A/b + b/A)*. Of course the actually
possible eigenvalue depends onthe end constraints: for
instance a simply supported panel of length /will require
A=//n, with n any positive integer, and the actual buck-
ling load will be found for n such that pu=(nb//+ {nb)?
is minimum. It is seen that plotting of nd/b (i.e. Z/b)
versus u fordifferent values of » gives the well-known
buckling curves of the flat panel.

Results obtained about the static modes of panel
and Euler rod can be compared in Fig. S, relative to a
slender square tube analyzed with a rough uncoupled
model. For column lengths />16b overall buckling
occurs at u=(32b/4)2<4, while the wall mode keeps de-
caying. For loads p>4 the column will buckle locally
as the steep eigenvalue slope can show: indeed within
anarrow range of p (4+4.5), half-wave lengths between
bN2 and b2 can freely develop in the tube walls and
therefore local buckling will occur for any column

length />bN2.
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Fig. 5 - Eigenvalue-load plot for an axially compressed square tube.

p=-t

5.3 Circular cylindrical shell in axial compression

Although the critical buckling load predicted
via a linearized theory is not of practical interest for
shallow shells of revolution, as real cylinders buckle
well below that load (see for instance Bushnell, 1981),
nevertheless the evolution of static modes while increas-
ing compression can show some interesting features
related to the actual shell behaviour.

Fourier expansion over the circumference of the
unknowns in Eq. (21),

d\’V - i3

{df }zbzrmz:’o ({Ehbzrqu }cos(mxz/r)+
{ b }sm (mx:"/r))
Ehb* rdf..
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leads to a series of uncoupled problems governed by the

ordinary differential equations
1 ] dW oy 2“.'2]’12 1 dwtm "
orf { } +[ ory
[ daf,, L2 df .
(23)

’14 dwrm _ 0 _ . _
+[ —n4] [df;m} = {O} (t=cs5;m=0,1.2,... )

Here b is the square root of the shell slendemess pa-
rameter, a number <<1 defined by

2 hir

R —
,/12(1-\;2)

n=bm is a normalized circumferential frequency, and
the load parameter p is defiped as for

Eh

.,/3(1 V%)

Each equation set (23) allows exponential solutions like

= (‘r‘)— - W2ERb.

@, “\ar exp (px’/br
and yields the eigenproblem
2 20
&)+ 1 aw 0
p proed
2 24 ’
1 (* S| (aF 0

with characteristic equation

2-712 2
+ 2u(pp

Roots of Eq. (24) give the eigenvalue-load plot
shown in Fig. 6 for a few different circumferential fre-
quencies n. The plot pattern evolves remarkably while
increasing the wave number m: it is seen that the axisym-
metric mode (m=0) and the chessboard modes withn<.5
become undecaying (Re(p)=0) for u=1 (the exact linear
multimode buckling load), while more wavy modes
show a higher critical load. At pu=1, eigenvalues of
modes with n=0 and n=.5 are respectively

and p('s)zii/Z,

24

2_’124
P ) +1=0
P

Py = *i

and entail a chessboard shape with square buckles of
size A=2nrb and an axisymmetric one with half-wave
length nrb=2/2. Combination of two modes gives the
classical diamond pattern with equation

v =bF (W (o) SMQTX VAW 5, sin(x/\) sin(rx/L))
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It is noted that two distinct modes exist with the ~ haviour: in an expansion of specific stresses,
same wave number. Although their eigenvectors

&

n /A z
{dW} N { 1/ | ) Ao Ao
ar -t 1-;12 ar® =Ehb22( dtfn cos(mxr) + dfii sin(mxz/r))
m=0
%

s

are conjugate for u<1, they are quite different in diffu-

ar -dt B
sion characteristics and therefore in membrane-like be-

cm

=__t33 Eh _b__
a /3(7—-«/2) r

an axially compressed cylindrical shell, for different circumferential frequencies 7

Fig. 6 - Eigenvalue-load plot for
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the coefficient functions are of type
2

ar,, '

33
dty, [= \-n® [dF exp(pxifor) ,
a2 np

showing that the amplitudes of the alternating stretch
and shear along the circumference are different for the
two modes. The relevant components of the tangent
displacement are found to be (%)

{ } =br Z({ } oos (nxyr) +
30m
+ {dvmﬂ }sin(nvﬂ/r)
de.sm ’

with coefficients of type
By | [nI@ APV
dv, - 2 2., 2

im pl@ -m)/p-(1+v)]

dF exp (px¥br) .

The eigenvalue analysis based on the instability
criteria stated above just confirms the results of the
classical linear theory (linear bifurcation). However,
some interesting insight comes out from studying the
eigenvalue moduli for u<1. As shown in Fig. 7, any
wavy shape with n<1 has an eigenvalue modulus Ipi that
decreases forincreasing t, crossing the unit value, while
the axisymmetric shape has a constant eigenvalue

7//72:2

(pl

T
Ny

Fig. 7 - Eigenvalue modulus vs load prameter for an axially compressed
cylindrical shell

(**) These formulac have been derived within a parallel formulation fully

based on the displacement method, that matches the analysis of
Gol'denveizer (1961) for p = 0.
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modulus Ipl=1 (the flat panel behaves the same way). By
solving Eq. (24) for p (areal value), the load parameter
can be expressed as a function of the eigenvalue
modulus as follows,

IpP- Ip P +n’\2
2n p P

Plot of Eq. (25) versus 1/n* is given in Fig. 8 for
a narrow range of Ip! close to the unity. While for low
values of 1/n? the same modulus as the axisymmetric
mode is attained at rather definite and relatively high
loads, for higher 1/n? , moduli close to the unity occur
on a wider and lower load range. A new instability
criterion can perhaps be now suggested: indeed it can be
thought that a decaying chessboard mode with an
eigenvalue modulus lower than the axisymmetric mode
is in a favourable position for an energy exchange
between the modes themselves, leading to the onset of
an undecaying compound mode (diamond shape with
not necessarily square buckles, as experimental evi-
dence shows). Moreover, the well known imperfection-
sensitivity of shells in load-carrying capability (grow-
ing with the slenderness1/b?) is in a sense accounted for
by the loss of definiteness of the curve of Fig. 8 for
increasing 1/n%. As a matter of fact, these considerations
seem (o agree encouragingly with experimental buck-
ling results: a comparison with the data gathered by
Kollar, Duldcska (1984) is given in Fig. 9, where Eq.
(25) for Ipl close to the unity is plotted versus the
slenderness 1/b* for some different wave numbers

p=1- (25)

&‘\s |p‘;99 ____
2 NN it
\\\ \\1
~ \
101\\\\ e — ]
o I~~
0 5 10 15 20

Fig. 8 - Load causing an eigenvalue modulus close to the unity vs the
circumferential frequency
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Fig. 9 - Load-slendemess plot for eigenvalue moduli close to the unity and comparison with experimental buckling results by several authors (ref. Kollar,

Duldcska, 1984). Ratio #/h computed for v=1/3

6. CONCLUSIONS

To summarize, the subject of this paper is the
study of the possible adjacent configurations (lincar
static modes) of the body of an axial structure, while
varying a pre-stress parameter that controls the end load
intensity: either the modes related to end load transfer
(central solutions) or the decaying extremity solutions
evolve and in general become the undecaying modes of
linear buckling. The actual configuration will depend on
the end conditions in hand. Therefore, in a sense the
present analysis links two separate and well-known
fields, and offers a new approach to the stability prob-
lem.

A possible application is a parametric analysis for
computing local buckling critical loads of stringers and
stiffened panels made of composite laminates. The
finite element model is ready for implementation within
acomputing code able to give the extremity solutions of
anisotropic cross-sections, like the one developed by
Giavotto et al. (1983). The effectiveness of such a
model relies on the possibility of a detailed representa-
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e

tion of complex sections, no further unknowns being
involved.

Moreover, the trend of eigenvalues and eigenvec-
tors can give an insight even into the behaviour of
imperfection-sensitive structures, as the last example
shows. This subject is worthy of further investigation,
including experimental work: buckling tests on circular
cylinders with an imposed extremity mode are planned.
At the same time an analytical search is starting on
nonlinear modal interaction, possibly based on the
decaying solutions. In this field appropriate structural
models are needed, and it is believed that models based
on a macro-polar kinematic description are the right
ones for thin-walled axial structures and shallow shells,
leading 10 quite simple nonlinear equations as it is
shown in this paper for the slender beam. Indeed, when
one or two dimensions are very shallow, the parame-
ters of an average roto-translation across the structure
shallowness can suitably be assumed as primary dis-
placement unknowns: rotations must of course be care-
fully handled in order to correctly describe the geomet-
ric stiffening effect of pre-stress in wave-shaped modes.
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Sulla base di un approccio semivariazionale, s derivano le equazioni differenziali ordinarie linearizzate per
I analisi statica delle strutture assiali caricate agli estremi, impiegando sia un modello ad elementi finiti della
sezione trasversale, sia un modello polare per travi snelle. Ne deriva un problema agli autovalori che viene
affrontato considerando I intensita del carico come un parametro. all’ aumentare di questo, siale soluzioni centrali
che quelle di estremitd evolvono verso modi che si propagano con legge sinusoidale lungo I'asse (modi di
instabilita). Vengono discussi due semplici esempi di instabilita globale e locale, mentre dall’ analisi parametrica
di un cilindro sottile si rilevano alcuni aspetti significativi correlati ai risultati sperimentali.
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