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1. Introduction

The recent Emilia earthquake sequence was characterized by
prevailing low-frequency contents and strong vertical components,
that are typical of near-fault seismic events. Therefore, structures
having natural periods greater than those of ordinary buildings,
such as precast reinforced concrete structures [1] and relatively
slender historical masonry constructions, i.e., churches, bell towers
and castles [2], suffered from severe damages. In this context,
industrial masonry chimneys deserve special attention. In fact,
the area along the Po river has historically been the seat of agricul-
tural transformation activities, flourished particularly between the
end of the 19th century and the beginning of the 20th century.
These plants were typically provided with steam boilers and chim-
neys, which of course were dismissed starting from the 1950s
when electric power replaced steam. As a matter of fact, industrial
chimneys nowadays characterize the landscape and belong to the
cultural heritage of this region. These structures were shown to
be particularly prone to the earthquake effects. A number of
masonry chimneys near Ferrara had been so severely damaged that
a complete demolishment became necessary for safety reasons.

The existing literature related to the numerical analysis of
chimneys is rather scarce. Some recent and insightful 3D nonlinear
analyses of a collapsed reinforced concrete chimney were pre-
sented in [3,4]. With regard to masonry chimneys, an interesting
state-of-the-art review of the construction methods and numerical
modeling techniques used for assessing the seismic vulnerability is
presented in [5]. In [6,7] a number of linear finite-element analysis
results were reported, including the effects due to temperature
gradients, wind loading and seismic action. In these papers, some
of the issues associated with restoration were also presented. In
the field of the analysis of earthquake-induced damages, the
higher-mode effects associated with high-frequency content
ground motions were pointed out in [8], whereas a typical first-
mode failure mechanism was discussed in [9]. Similar aspects were
emphasized in [10] using accurate nonlinear finite-element analy-
ses. For the chimney analyzed in that work, collapse was found to
be triggered by masonry cracking at the base. In [11], a critical
comparison between nonlinear static and dynamic analysis meth-
ods is presented with reference to a stone masonry minaret. With
regard to the structural characterization of masonry chimneys, an
experimentally-based model updating technique is developed in
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[12]. Provided that the experimental vibration mode shapes are
carefully identified, the obtained updated numerical model takes
account of the stiffness variations along the chimney shaft due to
possible damages and can profitably be used for assessing the
structural stability [13]. An experimentally-calibrated numerical
model is used in [14] to verify the effectiveness of the seismic
strengthening of an industrial masonry chimney using CFRP strips.

The present paper is devoted to the analysis of a 50 m tall
brickwork chimney located in Ferrara (Fig. 1a), i.e., about 30 and
40 km far from the epicenters of the first and second main shocks
of Emilia earthquake, respectively (Fig. 2). The chimney was built
at the beginning of the 20th century in the service of a sugar fac-
tory. Because of the atmospheric agents, the structure is affected
by a significant mortar deterioration from a height of approxi-
mately 35 m up to the top (Fig. 1b). After Emilia earthquake’s main
shocks, the chimney showed evident diagonal cracks at an altitude
of approximately 46 m (Fig. 3a and b). The principal objective of
this investigation is to evaluate the seismic vulnerability of the
chimney and to explain the causes of the observed damages. Both
linear and nonlinear static and dynamic finite-element models
were developed. In particular, modal pushover analysis [16]
including six lateral force distributions and nonlinear response his-
tory analysis using rigid triangular elements connected to one
another by means of specifically developed nonlinear interfaces
indicate a strong influence of the higher-mode contributions, in
conjunction with material deterioration.

2. Geometrical and mechanical survey

A preliminary survey campaign was aimed at evaluating the
chimney’s geometry. The thickness (t) was determined at 17 differ-
ent locations along the shaft by drilling through the masonry wall.
For the same cross sections, the outer diameter (£out) was esti-
mated from the measurement of the circumference length. These
estimates were confirmed by a 3D laser scanning of the chimney.
The results of the geometrical survey are reported in Table 1 in
ascending order of the vertical coordinate z originating from the
base. For z lying in the range 39–50 m, the masonry wall is consti-
tuted by one single course of blocks with a thickness of 0.22 m
(fourth column of Table 1). This part of the structure is affected
by a significant mortar degradation (Fig. 1b) and earthquake-
induced cracks (Fig. 3a and b).

A second survey campaign was carried out to estimate the com-
pressive strength of the masonry units and identify the constitu-
ents of the mortar. First, rebound hammer tests were conducted
on the outer surfaces of the blocks, showing a substantial response
homogeneity from the base to the top of the chimney. Then, six
Fig. 1. (a) Lateral view of the chimney; and (b
blocks were taken from the structure at z P 40 m (Fig. 3c). A total
of 34 compression tests on cubes with edge length of 50 mm
(Fig. 3d) obtained from the 6 blocks were conducted in accordance
with [17]. Before the tests, the specimens were air-dried to reduce
the uncertainties due to their moisture content. The resulting aver-
age mass density was approximately 1600 kg/m3. The mean value
of the compressive strength resulted to be 12 MPa. The failure sur-
faces were generally regular (Fig. 3e), indicating a low percentage
of voids. With regard to the mortar, chemical and diffractometric
analyses were carried out on three samples, two of which taken
at z = 2 m and the third at z = 45 m. The sand fraction resulted to
be quartz-rich and a high gypsum content was observed only for
the third sample. Taking account of both degradation and compo-
sition variations observed for the mortar, the choice of a mortar
strength class M2.5 (see [18]) appears to be reasonable. Hence,
on the basis of the mean compressive strength of the blocks
fbm = 12 MPa obtained from the tests, the Italian Building Code
[19] yields a mean compressive strength for the masonry approx-
imately equal to fm = 4.2 MPa. Although no in situ material testing
was performed, the described survey is believed to ensure a knowl-
edge level KL2 according to [20], leading to a confidence factor
CF = 1.2.

3. Linear elastic analysis

3.1. Vibration frequencies and mode shapes

For the linear analyses, a finite element (FE) model of the chim-
ney was developed using two-node shear deformable beam ele-
ments of the STRAND7 element library [21]. In particular, 200
locking-free elements with circular hollow cross section and length
0.25 m were used. The section diameters and thicknesses were
given the values determined experimentally. For a review of the
locking-free properties of shear deformable beam elements see
for example [22]. A lumped formulation was adopted for the mass
matrix. Unit weight w and longitudinal and shear elastic moduli E
and G used in the analyses are reported in the first three columns
of Table 2 [19].

When all degrees of freedom for the node at the base are sup-
pressed (fixed-base case), there are six flexural mode shapes with
modal mass not lower than 5% (Fig. 4). The natural vibration fre-
quencies and the corresponding periods, effective modal masses
and modal participation factors for these modes are reported in
Table 3. In particular, modal participation factor Cn and effective
modal mass Mn

� for the nth mode are defined as [23]

Cn ¼ Ln=Mn ð1Þ
) mortar deterioration in the upper part.



Fig. 2. Satellite map [15] of the Italian region stricken by the 2012 earthquake sequence, showing the location of the chimney and the epicenters of the two main shocks.

Fig. 3. (a) Diagonal cracks observed after Emilia earthquake’s main shocks; (b) detail view of a crack; (c) block taken from the 0.22 m-thick part of the chimney; (d) cubic
specimen before and (e) after the compression test.

Table 1
Chimney’s geometry.

Investigated
section

Position along the vertical
axis, z (m)

Outer
diameter, /out

(m)

Wall
thickness, t
(m)

S1 1.5 6.50 1.82
S2 7.3 4.73 0.95
S3 10.6 4.62 0.95
S4 11.0 4.60 0.50
S5 11.6 4.58 0.28
S6 12.0 4.56 0.28
S7 16.0 4.42 0.28
S8 20.0 4.27 0.28
S9 25.0 4.09 0.28
S10 30.0 3.91 0.28
S11 35.0 3.73 0.28
S12 38.4 3.60 0.28
S13 39.2 3.59 0.22
S14 40.0 3.55 0.22
S15 45.0 3.36 0.22
S16 48.0 3.25 0.22
S17 50.0 3.18 0.22

Table 2
Material properties used in the linear analyses.

Specific
weight

Elastic moduli Compressive
strength

Shear strength
(cohesion)

w (kN/m3) E
(MPa)

G
(MPa)

fd (MPa) s0 (MPa)

18 1500 500 0.9 0, 0.1, 0.2
M�
n ¼ LnCn ¼ L2

n=Mn ð2Þ

where Ln ¼ /T
nMi, Mn = /n

TM/n and /n, M and i are the nth eigenvec-
tor, the global mass matrix and the influence vector, respectively.
Each element of vector i is equal to 1. It can be noted that the modal
mass of the first mode is only 22% of the total mass. The sum of the
six modal masses is approximately equal to 71% of the total mass.

For slender structures such as chimneys and towers, the soil-
structure interaction effects in the presence of earthquake loading
may be relevant [24] and their quantification should be based on
extensive in situ investigations [25]. To account for the effects of
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Fig. 4. Mode shapes corresponding to the natural frequencies reported in Table 3.

Table 3
Results of the frequency analysis considering and neglecting the soil-structure interaction (SSI) for the six mode shapes of Fig. 4.

Mode SSI not included SSI included Percentage difference

Frequency, fi (Hz) Period, Tn (s) Effective modal mass/total
mass, Mn

�/M (%)
Participation factor, Cn Frequency, fi,SSI (Hz) 100 � |fi,SSI � fi|/fi (%)

1 0.51 1.95 22.0 1.74 0.51 0.33
2 2.47 0.41 11.5 1.32 2.45 0.77
3 6.01 0.17 10.9 1.28 5.89 2.03
5 10.42 0.10 13.1 1.27 9.99 4.09
6 15.96 0.06 8.8 1.14 15.29 4.20
8 23.51 0.04 5.0 0.86 22.49 4.34

Total activated mass 71.3
the soil-structure interaction, the formulation outlined in [26] for
rigid massless foundations was adopted, leading to the following
general expression for the dynamic stiffness of the foundation:

Kd ¼ Ksðkþ ia0cÞ ð3Þ

where Ks is the static stiffness and the terms in parentheses include
the dynamic contribution. In Eq. (3), i is the imaginary unit, whereas
a0 = xR/Vs represents the nondimensional frequency, with x, R and
Vs being the angular frequency of the motion, the foundation radius
and the shear wave velocity in the soil, respectively. Finally, k and c
are frequency-dependent functions typically referred to as stiffness
and damping coefficient, respectively. With reference to the hori-
zontal (index ‘‘H’’) and rocking (index ‘‘R’’) modes of cylindrical
embedded foundations, neglecting the damping term, the dynamic
stiffnesses may be written as [27]

Kd
H ¼ Ks

HkH ¼ 8GRð1� hf =RÞ=ð2� mÞ ð4Þ

Kd
R ¼ Ks

RkR

¼ 8GR3½1þ 2:3hf =Rþ 0:58ðhf =RÞ3�
� ½1� 0:35a2

0=ð1þ a2
0Þ�=½3ð1� mÞ� ð5Þ

where G and m are shear modulus and Poisson’s ratio of the soil,
respectively, whereas hf represents the depth of embedment. For
this particular case only the rocking stiffness turns out to be
frequency-dependent (Eq. (5)). In fact, in Eq. (4), the stiffness
coefficient kH = 1 makes the horizontal stiffness coincide with the
corresponding static contribution. The soil underlying the chimney
may realistically be considered to be compact because of the sus-
tained vertical load. Hence, for the shear modulus, the value
G = 0.25 GPa was considered to be suitable. Moreover, by assuming
soil mass density and Poisson’s ratio to be given by q = 1950 kg/m3

and m = 0.25, respectively, estimating the shear wave velocity with
the usual relation Vs = (G/q)0.5 and taking account of the geometric
quantities R = 3.75 m and hf/R = 1.8 yield the foundation stiffnesses
KH

d = 1.23 � 1010 N/m and KR
d = (4.25 � 1011) (9116.8 + 0.65x2)/

(9116.8 + x2) N m. For the purpose of comparison with the
fixed-base case, the rocking stiffness was approximated by the
weighted mean value KRm

d = 2.82 � 1011 N m, obtained using the
effective modal masses of Table 3 as the weights. The natural fre-
quencies for the mode shapes of Fig. 4 evaluated by including the
soil-structure interaction are reported in the sixth column of
Table 3. The minimum and maximum (absolute) values of the dif-
ference with respect to the fixed-base case are only 0.33% and
4.34%, and correspond to the fundamental and the eighth modes,
respectively (last column of Table 3). Hence, to a first approxima-
tion, the soil-structure interaction can be neglected in this special
situation and only the fixed-base case will then be considered in
the following.
3.2. Linear static analysis

In the framework of the linear seismic analysis of slender
structures belonging to the cultural heritage, the Italian Guideline
[28] allows for the use of the lateral force method [29]. Therefore,
a distribution of horizontal nodal forces proportional to mizi was
applied to the FE model described in the previous section, with mi

and zi being the mass and the height above the soil surface, respec-
tively, referred to the ith node of the mesh. The resultant of the
lateral force distribution was assumed to be Fh = 0.85Se(T1)W/(qg)
where Se(T1) is the ordinate of the elastic response spectrum given
by [19] in correspondence of the fundamental period T1 = 1.95 s



(Table 3), W is the self weight of the chimney, g is the standard
gravity and q = 2.8 is the behavior factor suggested by [28] in the
case of slender structures with sudden stiffness changes in eleva-
tion. Coefficient 0.85 accounts for the reduction in the effective
mass of the fundamental mode with respect to the low-rise build-
ings. The available estimates of the shear wave velocity indicate
an intermediate soil site class between ground types C and D, see
[19,29]. Furthermore, in accordance with the definition of the
return period for the seismic action reported in [19], a suitable
use class should be chosen for the chimney. In this case, the choice
of the use class is driven by the use classes of the buildings that rise
in the surrounding area, including both offices (use class II) and uni-
versity classrooms (use class III). Hence, with the purpose of a para-
metric analysis, ground types C and D and use classes II and III were
alternatively considered in evaluating Se(T1) (Table 4). However, for
the sake of brevity, only the results corresponding to use class II and
ground type C are presented in the following.

The ratio eLFM = MEd,LFM/NEd between the bending moment MEd,-
LFM obtained from the lateral force method and the axial load NEd is
reported in Fig. 5a versus z (dashed line). In the same figure, the
solid line represents the outer radius of the chimney. The distance
between the two curves attains its minimum for the cross section
located at approximately z = 11 m, corresponding to the change in
thickness from 0.5 m to 0.28 m (Table 1).
3.3. Modal response spectrum analysis

The modal response spectrum analysis was performed by
applying the Complete Quadratic Combination (CQC) rule to the
effects of the first 12 modes of vibration, including the six modes
of Fig. 4. The activated mass reaches, thereby, about 80% of the
overall mass. In analogy with the static analysis, a behavior factor
q = 2.8, use class II and ground type C were assumed. The ratio
Table 4
Seismic parameters used to define the horizontal-elastic acceleration response
spectra for the site [19].

Use class TR
a (years) ag

b/g F0
c TC

� d (s) Se

Ground type

C D

II 475 0.137 2.594 0.273 1.488 1.800
III 712 0.162 2.567 0.276 1.451 1.778

a TR = return period.
b ag = design ground acceleration on type A ground.
c F0 = maximum spectral amplification factor.
d TC

� = period defining the beginning of the constant velocity range of the
spectrum.

e S = soil factor.
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eRSM = MEd,RSM/NEd between the bending moment MEd,RSM obtained
from the response spectrum method and the axial load NEd is
reported in Fig. 5a versus z (dotted line). Because of the effects
due to the modes higher than the fundamental mode, eRSM tends
to approach the outer radius especially for z lying in the range
40–45 m and crosses the curve of the static analysis for z = 34 m.

3.4. ULS verification for bending and shear

Although the masonry compressive strength was estimated
from the mechanical survey, for the preliminary safety verification
for bending presented in this section the recommendations
reported in [19] for low-quality masonry and knowledge level
KL2 were followed. Then, the masonry compressive strength was
conservatively assumed to be fd = fm/(CFcm) = 0.9 MPa (Table 2),
with fm = 2.2 MPa and cm = 2 being the mean masonry compressive
strength and the partial safety factor provided by the Italian Build-
ing Code [19]. For no-tension beams, the moment resistance for the
generic cross section is usually evaluated as MRd = NEdh0, with NEd

and h0 being the local value of the axial load and the distance
between the cross section centroid and the point of application of
the compressive stress resultant, respectively. The distribution of
the compressive stresses over the cross section was approximated
by a stress block with effective strength equal to 0.85fd = 0.79 MPa
[19]. The depth of the stress block was evaluated by imposing the
equilibrium along the vertical direction. The bending moment dia-
grams MEd,LFM(z), MEd,RSM(z) obtained from the linear analyses are
compared in Fig. 5b with MRd(z). For z = 11 m, in accordance with
the maximum in the eccentricity plot of Fig. 5a, the value of MEd,LFM

given by the static analysis significantly exceeds the moment resis-
tance, indicating a failure mode by overturning at that section. The
Peak Ground Acceleration (PGA) leading the chimney to collapse is
approximately aULS = 0.08g, a value slightly lower than the PGA
attained during the Emilia earthquake’s main shocks. However,
the failure mode by overturning is not confirmed by the observed
damages at all (Fig. 3a and b). In contrast, the bending moment
obtained from the dynamic analysis is lower than the moment
resistance at any given z (Fig. 5b).

With regard to the safety verification for shear, in the absence of
a shear failure criterion by diagonal cracking suitable for slender
masonry members with annular cross section, the shear resistance
was estimated using a sliding shear failure criterion based on the
classical Coulomb friction law with friction coefficient l = 0.4
[18]. In particular, with the aim of a parametric analysis of the shear
resistance, three values of the masonry shear strength under zero
compressive stress, i.e., s0 = 0, 0.1 and 0.2 MPa, were alternatively
considered (Table 2). The limiting assumption of zero cohesion
seems to be reasonable for the cross sections at z P 35 m, affected
by a significant mortar degradation. To define the neutral axis
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depth, a linear distribution of the compressive stresses over the
cross section was assumed (see [18]). The resulting shear resistance
is given by VRd = lmt(s0 + 0.4rn)/cm, where lmt is the area of the part
of the cross section in compression; and rn = NEd/(lmt) is the mean
compressive stress over the area lmt. The shear force diagrams VEd,-
LFM(z), VEd,RSM(z) obtained from the linear analyses are compared in
Fig. 5c with VRd(z) evaluated for s0 = 0. In this case, although the two
methods yield in general different values of lmt for a given z, the
curve of the shear resistance turns out to be unique. For the lateral
force method, the condition VEd,LFM < VRd holds for all z (strictly
speaking, VRd cannot be defined for z lying in the range 10–25 m,
where bending failure occurs). In contrast, because of the higher
mode contributions, VEd,RSM exceeds VRd for z P 44 m, where the
compressive stresses are relatively low. The PGA associated with
the shear failure mechanism is approximately aULS = 0.05g. There-
fore, at least from a qualitative point of view, the dynamic analysis
seems to explain the observed damages. If the cohesion is assumed
to be s0 = 0.1 MPa, no shear failure is encountered.

4. Pushover analysis

4.1. Numerical model

The FE model adopted for the pushover analyses was imple-
mented in DIANA [30] using brick elements. A number of conver-
gence rate tests was conducted to define the mesh size. In
particular, 100 and 16 equal subdivisions along the chimney verti-
cal axis and in the planes of the cross sections, respectively, were
used, resulting in a total of 1600 brick elements. A preliminary fre-
quency analysis confirmed the results of the beam model described
above. The material nonlinearities were reproduced by means of a
multi-directional fixed crack model, belonging to the family of the
smeared crack constitutive laws [31]. Although this model is spe-
cifically suited for concrete, its use for reproducing the nonlinear
behavior of masonry was shown to be justified [9,32]. In this case,
in order to better approximate the earthquake resistance of the
chimney, the partial factor cm = 1 was used to define the masonry
strengths. Moreover, the compressive strength was estimated
using the mean value fm = 4.2 MPa obtained from the tests on the
masonry units, leading to fd = fm/CF = 3.5 MPa. The effects due to
cracking were taken into account by using a linear cutoff in the
biaxial stress field (r1, r2), a linear softening for the stress–strain
relationship in tension, and, finally, a reduction of the shear stiff-
ness through the shear retention factor b = 0.3. The model param-
eters are summarized in Table 5.

4.2. Analyses using classical force distributions

Four lateral load distributions commonly used in the pushover
analysis are plotted in Fig. 6a against z. Curve U1 is proportional
to the fundamental mode (mode M1 in Fig. 4); curve M is mass-
proportional; curve LIN was assumed to vary linearly from the base
to the top of the chimney; and, finally, curve CQC corresponds to
forces Fi proportional to (VEd,i � VEd,i+1) [33], with VEd,i and VEd,i+1

being the shear forces obtained from the response spectrum
method via CQC rule for the cross sections located at zi and zi+1

(i = 1, . . . ,n, with n = 100 number of subdivisions along the z-axis
Table 5
Material properties used in the pushover analyses.

Young’s modulus Poisson’s ratio Strengths

Compressive
E (MPa) m fc (MPa)

1500 0.15 3.5
used in the FE model). In particular, this force distribution is used
to reproduce the shear force diagram given by the linear dynamic
analysis. The lateral loads were reproduced by body forces applied
to the FE mesh. The corresponding plots of the total base shear ver-
sus the horizontal displacement of one of the nodes located at
z = 50 m are reported in Fig. 6b. As noticed recently in [11] with
regard to a 70 m-tall stone masonry minaret, the pushover curves
are strongly influenced by the choice of the lateral force distribu-
tion. As a matter of fact, using the mass-proportional load pattern
yields a maximum base shear force of 600 kN (i.e., about the 10% of
the self weight) slightly lower than twice and approximately equal
to five times the base shear forces obtained with load patterns CQC
and /1, respectively. Hence, distributions /1 and LIN, that yield
almost coincident pushover curves, resulted to be too conservative.
The crack patterns triggered by the four force distributions are
shown in Fig. 7a. The widest cracked zone is associated with distri-
bution CQC, but all damage patterns substantially indicate the
cracking originates at z = 7–11 m in correspondence of the first
two thickness changes (Table 1) and at those cross sections the
chimney collapses by prevailing bending failure. This type of dam-
age was not detected during the post-earthquake survey.

4.3. Modal pushover analysis

The modal pushover analysis (MPA) was introduced in [16] for
multistorey framed structures to improve the pushover methods
based on force distributions proportional to one single mode of
vibration. In that work it was shown that for elastic buildings the
MPA procedure coincides with the modal response spectrum
method. The basic idea of MPA is to combine (using for example
the SRSS rule) the results of N pushover analyses, the nth of which
is based on the invariant force distribution proportional to sn

� = M/n,
with /n being the nth elastic mode shape. The choice of the number N
should obviously be governed by the amount of activated mass. In
the nth analysis, the structure is pushed to the top displacement

utn0 ¼ Cn/tnDn ð6Þ

where Cn is defined by Eq. (1), /tn is the component of eigenvector
/n corresponding to the monitored node on the top, and Dn repre-
sents the peak response for the nth mode SDOF system, obtained
from the inelastic response spectrum. Indicating with ln = Dnu/Dny
Ultimate tensile strain Shear retention factor

Tensile
ft (MPa) et (‰) b

0.1 0.33 0.3
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Fig. 7. Damage patterns obtained from (a) pushover analyses using traditional force distributions and (b) modal pushover analysis.
the ductility, i.e., the ratio between ultimate and yielding responses
of the nth mode SDOF system, and with qn = Ane/Any the nth behav-
ior factor, with Any and Ane being the maximum pseudo-accelera-
tions for the inelastic and the equivalent elastic systems,
respectively, the peak response Dn may be written as [23]

Dn ¼ ðln=qnÞðT�n=2pÞ2An ð7Þ

In Eq. (7), T�n ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
Ln=k�n

p
is the elastic period of vibration of the nth

inelastic system, whereas kn
� indicates its elastic stiffness. Although

the superposition of uncoupled modal responses has no physical
meaning in MDOF inelastic systems, the MPA procedure was shown
to perform significantly better than traditional pushover procedures
in evaluating story drifts, plastic hinge rotations [34] and member
forces [35] for framed structures. Then, in [36,37], the MPA method
was extended to the 3D analysis of tall frames including two com-
ponents of the ground motion. In the case of high-rise cantilevers
made of no-tension materials, the MPA is not able to capture the
change of the dynamic behavior occurring during the seismic event
and can lead to underestimates of the roof lateral displacements
[11]. An adaptive pushover method [38] could in theory be used
to improve the analysis (see for example [39]), but at the cost of a
higher, and often impractical, computational effort. In the present
work, the MPA procedure was essentially used to estimate the
behavior factor to be introduced into the linear analyses and evalu-
ate the influence of the higher modes on the seismic damage. Six
force distributions of the shape sn

� = M/n were used (Fig. 8a), where
vectors /n (n = 1, 2, 3, 5, 6, 8) are the vibration mode shapes shown
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Fig. 8. (a) Lateral load patterns used for the MPA; (b) peak responses for the six SDOF
pushover curves for the MPA and corresponding target displacements (symbols �).
in Fig. 4. Because of the irregular mass distribution, load profiles s3
�

and s5
�, s6
�, s8
� have their maximum located at z = 7 and 11 m, respec-

tively. Anyway, these profiles significantly stress the chimney in the
interval z = 38–43 m. The peak responses Dn obtained from Eq. (7)
substantially resulted to be coincident with those obtained from
the elastic response spectrum in correspondence of the periods
Tn
�. These displacements are put in evidence in Fig. 8b on the elastic

displacement response spectrum given by [19]. The six pushover
curves are reported in Fig. 8c, where symbols � refer to the target
displacements utn0 given by Eq. (6). With the exception of the
curves associated with modes 1 and 2, the target displacements
lie on the elastic branch of the curves. Hence, the behavior factors
for modes 3, 5, 6 and 8 are equal to unity. For the first two modes
the factors q1 = 1.16 and q2 = 1.31 were found. The weighted mean
value of the behavior factor, with the effective modal masses being
the weights, is q = 1.1, in line with the value q = 1.5 recommended
in [40] for new masonry chimneys. Then, the above-presented lin-
ear analyses should be updated in view of a significantly low dissi-
pative capacity of the chimney.

For a given z, bending moment MEd and shear force VEd were
obtained from the MPA by integrating the FE computed stresses
over the cross section. Moreover, a stress block with effective
strength fd = 3.5 MPa and zero tensile strength were adopted
to estimate the moment resistance MRd. Finally, the relation
VRd = lmt(s0 + 0.4rn) was used to approximate the shear resistance.
Eccentricity e = MEd/NEd, bending moment and shear force are com-
pared in Fig. 9a–c with outer radius, bending resistance and shear
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Fig. 9. Modal pushover analysis (MPA) results: (a) eccentricity (e) compared with the outer radius of the chimney (rout); (b) FE computed bending moment diagram (MEd) and
moment resistance (MRd); and (c) FE computed shear force diagram (VEd) and shear resistance (VRd) for zero cohesion (s0 = 0).
resistance for zero cohesion (s0 = 0), respectively. For
28 m 6 z < 46 m, e > rout (Fig. 9a) and MEd > MRd (Fig. 9b). Moreover,
for z P 42 m, VEd > VRd (Fig. 9c). By assuming s0 = 0.1 MPa, the
shear failure takes place for z P 45 m. Therefore, the MPA indicates
the chimney is possibly going to collapse in bending at cross sec-
tions located at z values significantly higher than predicted by
the lateral force method and confirms the shear failure mechanism
may be crucial for z > 40 m. These aspects are emphasized by the
crack patterns reported in Fig. 7b.
5. Nonlinear response history analysis

A nonlinear response history analysis (RHA) is definitely the
most appropriate non-standard numerical procedure to evaluate
the actual behavior of a masonry structure during earthquake exci-
tation. Unfortunately, at present, no commercially available soft-
ware is suitable for reproducing the various constitutive aspects
of masonry in the dynamic field. Hence, in the present paper, a
numerical model using two-dimensional triangular finite elements
specifically developed for the RHA of masonry structures was
implemented (Fig. 10). This approach is particularly suited for
macro-scale applications where the nonlinear and damaging mate-
rial response must be defined with satisfactory accuracy using a
rather coarse discretization. For comparison purposes, a nonlinear
1D (beam) model of the chimney was also implemented using a
commercial software package [21].
5.1. Numerical model

To reproduce the actual geometry (Table 1, Fig. 11a and b),
diameter and thickness of the chimney were approximated by
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Fig. 10. Rigid triangular element used for the nonlinear dynamic analyses: (a) global opt
elements; and (c) normal and tangential springs at nodes P1 and P2 used to define the n
piecewise constant functions, yielding 6 different segments with
constant annular cross section. These segments were discretized
using the three-node elements of Fig. 10. A preliminary conver-
gence rate test was carried out to define the number of subdivi-
sions within the 6 cross sections. The finite element thicknesses
were defined by minimizing the difference between the cross sec-
tional second moment of area for each segment of the numerical
model and the mean value of the second moment of area for the
cross sections of the corresponding actual chimney segment
(Table 6). The resulting FE mesh, containing 1562 triangular ele-
ments, is shown in Fig. 11c and d. In particular, 24 and 20 subdivi-
sions were used for the cross sections of segments C1 and C2 and
for those of segments C3 to C6, respectively.

The finite elements (Fig. 10) were assumed to be rigid and were
connected with one another by means of deformable interfaces
[41–43]. The interface deformability was reproduced by means of
nonlinear normal and tangential springs located at the nodes of
the FE mesh (Fig. 10c). Using this approach, full nonlinear analyses
of anisotropic materials may be handled by setting ad-hoc inter-
face constitutive laws. In this work, in order to reduce the compu-
tational effort, the normal and tangential spring stiffnesses were
considered to be uncoupled. Nevertheless, in previously published
works (see [43]), this choice was proved to yield accurate predic-
tions of the failure modes.

5.2. Micro-mechanical modeling and homogenization problem

The constitutive laws used for reproducing the behavior of
masonry at the macro-scale were defined by solving a homogeniza-
tion problem at the micro-scale. In particular, a Representative Ele-
ment of Volume (REV) constituted by 1 brick and 4 fourths, and by
the relevant mortar joints, was considered (Fig. 12). The REV was
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Fig. 11. FE approximations adopted for the RHA: (a) side view and (b) vertical section of the actual chimney; (c) side view of the model using 1562 triangular elements
connected through nonlinear interfaces (2D model); (d) segments and corresponding cross sections defined in the 2D model; and (e) side view of the model using 21
nonlinear beam elements (1D model). Blue rectangles in the cross sections of (d) represent the thicknesses of the triangular finite elements. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Values of the second moment of area for the 6 cross sections of Fig. 11d compared with the real values.

Second moment of area of the annular cross section (m4) Segment

C1 C2 C3 C4 C5 C6

Actual geometrya 84.38 20.78 7.73 5.92 4.43 2.24
FE model 86.29 21.81 7.94 6.09 4.41 2.30

a Mean values within the chimney segments shown in Fig. 11d.
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meshed using 24 three-node elastic triangular elements connected
with one another by means of nonlinear interfaces. Two different
types of interface were used, i.e., interfaces connecting elements
that belong to the same brick (referred to as brick interfaces in
Fig. 12), and interfaces connecting elements that belong to different
bricks through the mortar joint (referred to as mortar interfaces in
Fig. 12). Actually, the nonlinear behavior of the REV is ruled by the
mortar interfaces, that typically show limiting strengths lower than
those of the brick interfaces. The elastic domain of the (mortar)
interfaces was considered to be bounded by a composite yield
surface that includes tension, shear and compression failure. A
multi-surface plasticity model was used, with both tension and
compression softening. Finally, the REV was alternatively subjected
to in-plane normal and tangential stress distributions, that were
applied incrementally. The solutions to these incremental boundary
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value problems define the nonlinear behavior of the REV. Full details
of the procedure may be found in [44,45], where the reader is
referred to for further information. Only a brief description of the
non-standard yield surfaces adopted for tension and shear behavior
of the interfaces is reported hereinafter, whereas, with regard to the
nonlinear behavior of the interfaces in compression, the formulation
proposed by Lourenço and Rots [46] was adopted.

For both tension and shear failure modes, an associated flow
rule was used. With regard to the tension failure mode, the yield
function was assumed to be of the following form:

f1ðr;j1Þ ¼ r� ftðj1Þ ð8Þ

with r = [r, s]T being the vector collecting the in-plane stress com-
ponents acting on the REV, i.e., the normal stress r and the shear
stress s. Parameter ft in Eq. (8) indicates the normal stress
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Table 8
Seismic events selected for the RHA.

Event Label Year Magnitude Duration (s)

Irpinia (Italy) IR 1980 6.9 85
Niigata (Japan) NI 2004 6.3 83
Christchurch (New Zealand) CH 2011 6.2 40
Emilia (Italy) ER 2012 5.8 40
Emilia (Italy), Casaglia station CA 2012 5.8 40
corresponding to the attainment of the yield surface in tension.
According to the available experimental results on Mode-I failure
[46], an exponential softening law was assumed for ft, yielding
the equation:

ftðj1Þ ¼ ft0 exp �j1ft0=GI
f

� �
ð9Þ

with ft0 and Gf
I being initial tensile strength of the interface and

Mode-I fracture energy, respectively. With regard to the shear fail-
ure mode, the yield function was assumed to be of the following
form:

f2ðr;j2Þ ¼ jsj þ r tan /ðj2Þ � cðj2Þ ð10Þ

Functions c and tan/ in Eq. (10), that represent cohesion and fric-
tion coefficient corresponding to the attainment of the yield surface
in shear, are given by the following expressions:

cðj2Þ ¼ c0 expð�j2c0=GII
f Þ ð11Þ

tan /ðj2Þ ¼ tan /0 þ ðtan /r � tan /0Þðc0 � cÞ=c0 ð12Þ

with tan/0, tan/r, c0, and Gf
II being initial and residual friction coef-

ficients, initial cohesion and Mode-II fracture energy, respectively.
Parameters j1 and j2 in Eqs. (8)–(12) are non-negative scalars
used to define the equivalent plastic strain in the multi-surface
plasticity model [46]. In the numerical simulations, the relation
tan/r/tan/0 = 1 was used.

5.3. Interface constitutive models

The solution to the homogenization problem leads to define the
governing stress–strain relationships for the mortar interfaces. In
particular, the blue curves in Fig. 13a and b refer to the homoge-
nized behavior in tension for horizontal and vertical interfaces,
respectively. Moreover, the blue curves in Fig. 13c and d refer to
the interface homogenized behavior in compression and in shear
for different value of the compression stress, respectively. In the
same figures, the black curves represent the multi-linear approxi-
mations used in the numerical simulations [44]. The qualitative
constitutive models are reported in Fig. 13e–g for the sake of clar-
ity. In particular, the interface behavior in tension (Fig. 13e) shows
an initial elastic branch with cracking strength ft, followed by a lin-
ear softening branch. The interface behavior in compression
(Fig. 13f) shows an initial elastic branch up to fce, a linear hardening
branch with crushing strength fcp, and a linear softening branch.
Finally, the interface behavior in shear (Fig. 13g) is characterized
by linear elastic and softening branches, followed by a horizontal
segment corresponding to the residual cohesion. The maximum
and residual shear strengths, both depending on the acting com-
pression stress, are given by sp = c0 – r tan/ and sr = cr0 � r tan/r,
respectively, with cr0 being the residual cohesion. Three indepen-
dent uniaxial damage models were incorporated into the constitu-
tive laws of Fig. 13e–g, leading to unloading and re-loading paths
with slope lower than those corresponding to the undamaged
material. In particular, the elastic moduli were assumed to deteri-
orate through the classical relation Kdam = (1 � Dk)K, with K
and Dk < 1 being initial modulus and damage parameter, respec-
tively, for tension, compression or shear behavior. The parameters
Table 7
Material properties defining the interface constitutive laws of Fig. 13e–g used for the RHA w
with the beam model.

Young’s modulus Tension Compression

E (MPa) ft (MPa) eu fce (MPa) fcp (MPa)

1500 0.1 7.5ee 3.0 3.5
of the interface constitutive models used in the RHA are summa-
rized in Table 7. In particular, with regard to the crushing strength,
the value fcp = 3.5 MPa was adopted as in the pushover analyses.

5.4. Beam model

Because of their relatively reduced computational effort, the
numerical models using beam finite elements are the most com-
mon tools for the RHA of structures. With regard to slender
masonry structures, both linear elastic beam elements connected
by means of nonlinear joints [47] and nonlinear beam elements
characterized by a smeared cracking model with exponential ten-
sion softening and constant shear retention [11] were used in the
literature. In the present paper, a beam model of the chimney was
implemented in STRAND7 [21] using 21 two-node beam elements
(Fig. 11e). To reproduce the cyclic behavior of the structure, a mod-
ified Takeda hysteretic law [48] was assigned to the elements (see
also [49]). Moreover, bending moment–curvature relationships
suitable for the beam-element cross sections were defined using
the solution to the homogenization problem for tension and
compression modes (Fig. 14). The mechanical properties adopted
for tension and compression behavior of the beam model were
the same as for the 2D model (Table 7). Anyway, the beam models
do not allow for taking possible shear failure modes of masonry into
due account.
ith the 2D model. Tension and compression properties were also adopted for the RHA

Shear

ep eu G (MPa) c0 (MPa) / = /r cr

3.0ee 4.5ee 660 0.1 30� 0



5.5. Input ground motions

The axial symmetry of the chimney allow for the use of a single
component of the horizontal ground motion. Five couples of hori-
zontal and vertical real acceleration records were used for the RHA
of the model with two-dimensional finite elements. Year of occur-
rence, magnitude and recording duration of the seismic events,
along with the labels used in the following to identify them, are
reported in Table 8. Four of these couples, scaled to obtain compat-
ibility with horizontal and vertical elastic response spectra pro-
vided by [19] for use class II and ground type C, were selected
using REXEL [50]. In particular, the fourth couple corresponds to
the second main shock of Emilia earthquake, and was recorded
in proximity of the epicenter, about 40 km far from Ferrara.
Because of the relative position of Ferrara with respect to the epi-
center (Fig. 2), the horizontal component of interest was assumed
to be that with east–west orientation. Finally, the fifth couple of
accelerograms, corresponding to the same event as the fourth,
was recorded by the station located in Casaglia, about 5 km far
from Ferrara in the direction of the epicenter, and was used in
the simulations without scaling. Even in this case, the horizontal
component was east–west oriented. With regard to the beam
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Fig. 16. Deformed shapes of the chimney at the end of the simulations for the model w
upper part of the structure for the five seismic events of Table 8.
model, only the horizontal components of the seismic events of
Table 8 were used.

5.6. Numerical results

The response histories in term of lateral displacement for a
node located on the top of the chimney are reported in Fig. 15a
and b for the 2D and the beam models, respectively. The four spec-
trum-compatible accelerograms obtained from IR, NI, CH and ER
earthquakes gave rise, for the two models, to almost the same
mean value of the residual displacement, i.e. 0.17 m for the 2D
model and 0.18 m for the beam model. Nevertheless, the standard
deviation of the residual displacement obtained from the 2D
model, equal to approximately 0.02 m, is only 37% of that obtained
from the beam model. The maximum residual displacement corre-
spond to NI earthquake for the 2D model and to CH earthquake for
the beam model. The residual displacement predicted by the 2D
model for CA earthquake, equal to approximately 0.05 m, is close
to the out-of-straightness of 0.06 m measured after Emilia earth-
quake’s main shocks with 3D laser scanning technique. Conversely,
the beam model underestimates the residual displacement
produced by CA earthquake by 67%. The inability of the beam
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Fig. 17. Damage in shear at the end of the simulations for the model with rigid triangular elements and nonlinear interfaces. Global view and detail of the upper part of the
structure for the five seismic events of Table 8.

Fig. 18. Damage in compression at the end of the simulations for the model with rigid triangular elements and nonlinear interfaces. Global view and detail of the upper part
of the structure for the five seismic events of Table 8.

Fig. 19. Damage in tension at the end of the simulations for the model with rigid triangular elements and nonlinear interfaces. Global view and detail of the upper part of the
structure for the five seismic events of Table 8.



Fig. 20. Deformed shapes of the chimney at the end of the simulations for the model with nonlinear beam elements: lateral displacements of the centroidal axis of the
structure for the five seismic events of Table 8.
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Fig. 21. Top horizontal displacement time history obtained by applying to the 2D
model two equal CA accelerograms (CA and CAII) in succession.
model of predicting possible shear failure mechanisms can explain
the discrepancy between the two models only partially. It is
believed that another important source of difference lies in the
Fig. 22. Damage level attained after the second CA earthquake (CAII): (a) final d
effect of the vertical component of the ground motion, that was
taken into account in the 2D model, but was ignored in the beam
model. In fact, this component was relatively much more impor-
tant for nonscaled CA earthquake than for all other spectrum-com-
patible earthquakes. It is worth underlining that the vertical
component of the ground motion leads to increased second-order
effects when acts downward and may be detrimental for the fric-
tion-dependent component of the shear resistance when acts
upward. The deformed shapes at the end of the simulations using
the 2D model are reported in Fig. 16. They systematically show a
collapse mode of the upper part of the structure (z = 42–50 m),
associated with the formation of diagonal cracks. Depending on
the specific accelerogram applied, the portion of the structure
involved by severe damage is more or less pronounced. This
appears to be a typical behavior linked with the peculiar character-
istics of the signal in comparison with the natural frequencies of
the structure. The analysis using CA ground motion put in evidence
the formation of cracks starting from the section at z = 46.5 m,
quite close to the altitude of the observed cracks (Fig. 3a and b).
The origin of the cracks is clarified by the damage patterns shown
in Figs. 17–19, referred to shear, compression and tension failure
modes, respectively. In particular, the diagonal cracks appear to
be triggered by a prevailing shear failure mode (Fig. 17), locally
eformed shape, and damage in (b) shear, (c) compression, and (d) tension.



associated with masonry crushing (Fig. 18) and sometimes com-
bined with the tension mode (Fig. 19).

The beam model (Fig. 20) shows a collapse mode of the inter-
mediate/upper part of the chimney (z = 28–50 m), ruled, as
expected, by dominantly flexural plastic hinges which rarely occur
in practice.

Finally, the seismic response of the damaged structure was
assessed using the 2D model. In particular, at the end of the
response history obtained for CA earthquake, a second CA earth-
quake (CAII) was applied to the chimney. This new analysis,
accounting for the damages occurred during the first ground
motion, was aimed at investigating the effects of another ground
motion of equal intensity. The results in terms of top horizontal
displacement are reported in Fig. 21, where the green curve,
already shown in Fig. 15a, and the black curve refer to the first
and second CA earthquakes, respectively. During CAII ground
motion, the influence of the current damage level is significant,
leading the horizontal displacement to increase almost linearly
up to a new residual displacement equal to approximately 0.2 m.
The final deformed shape and the damage maps associated with
shear, compression and tension behavior are reported in Fig. 22,
showing a strong deterioration with respect to the damage level
shown in Figs. 16–19 for the first CA earthquake. In particular,
the shear failure mode highlighted by the first ground motion,
seems to trigger, during the second earthquake, an overturning
mode of the upper part of the chimney (Fig. 22a), with three evi-
dent horizontal cracks on the tension side (Fig. 22d) and crushing
of masonry on the compression side (Fig. 22c).
6. Conclusions

A 50 m-high masonry chimney damaged by the 2012 Emilia
earthquake was analyzed using static and dynamic analysis tech-
niques. With regard to the static analyses, the lateral force method
yielded an unrealistically high vulnerability to overturning at
z = 11 m. This failure mode was confirmed by the pushover analy-
ses using traditional force distributions. Conversely, response spec-
trum method (RSM) and modal pushover analysis (MPA) including
up to six modes led to a shear failure mechanism for z P 42 m that
substantially complies with the observed damages. These analyses
confirmed that considering all modes with effective modal mass
larger or equal to approximately 5% is essential to reproduce the
seismic response of tall structures. The behavior factor q = 1.1 esti-
mated from the MPA indicates a very low dissipative capacity. In
these conditions, the MPA tends to coincide with the RSM, which
seems then to be a reasonable analysis tool for the fast vulnerabil-
ity assessment of the meaningful case study presented.

With regard to the dynamic analyses, a 2D model of the chim-
ney was developed using three-node rigid elements connected by
means of nonlinear interfaces. The responses to four spectrum-
compatible accelerograms confirmed that the shear failure mecha-
nism is generally crucial for the cross sections at z P 42 m. More-
over, the response to the ground motion recorded during the
second Emilia earthquake’s main shock indicates a significant
influence of the vertical seismic component and was shown to be
characterized by a damage pattern and a residual lateral displace-
ment very close to those observed. For the same ground motion,
the response history analysis with a more simple beam model pre-
dicted a dominantly flexural failure mechanism for z P 43 m, that
does not comply with the observed damages. To investigate the
effects due to a new seismic event on the earthquake-damaged
structure, the 2D model was subjected to two equal ground
motions corresponding to the second Emilia earthquake’s main
shock applied in succession. The analysis highlighted the formation
of three horizontal cracks on the tension side of the upper part of
the chimney, associated with crushing of masonry on the compres-
sion side.

The mechanical survey conducted after the Emilia sequence
undoubtedly is incomplete and an in situ characterization of the
material properties has already been planned for the near future,
together with an accurate calibration of soil-structure interaction
parameters through procedures of dynamic identification. Further
analyses should probably include the effects of the torsional modes
of vibration of the chimney, neglected in this study. In order to rap-
idly reopen the buildings in the surrounding area, the upper, dam-
aged 10 m of the chimney were recently disassembled for security
reasons in view of the next reassembling.
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