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1. Introduction

The analysis of masonry vaults under both gravity loads and
horizontal seismic action is still an open issue that deserves great
consideration by specialized technicians.

Double curvature masonry structures in the form of arches,
bridges, cross vaults and cupolas constitute a considerable
percentage of the historical built heritage: for this reason, their
study – mainly based on graphical statics – goes back to the early
18th century. Among the others, the approaches based on 1D
equilibrium equations for the study of masonry domes and
proposed by Bouguer (1734), Coulomb (1773), Bossut (1778) and
Mascheroni (1785), are worth noting.

Anyway, what was clear from the beginning, was that non-
linearity appears very early on curved masonry elements, even in
presence of self-weight and with very low tensile stresses.
Taking into account such important feature, a considerable
improvement in the analysis of spherical domes was achieved
when Levy (1888) proposed a graphical analysis aimed at finding
the circle on which circumferential forces vanish. For an exhaustive
history of the theories of masonry vaults we refer the reader to the
comprehensive treatise by Benvenuto [1].

Exception made for some particular cases either where geomet-
ric and load symmetry may help in simplifying the problem or for
single curvature structures (arches), and despite the considerable
wide spreading of Finite Elements programs, it can be affirmed
that, at present the models available to practitioners for a fast
and reliable analysis of curved structural elements beyond the
elastic limit are a few, see for instance the indications provided
by Como [2], Paradiso and Tempesta [3], Mark et al. [4], Heyman
[5–7] and Huerta [8].

Limit analysis theorems associated with FEs, both in the static
and kinematic version, are still the most effective and widespread
procedure to estimate the collapse loads of one dimensional arches
[9–14]. In a similar way, cupolas may be treated as well, but only
under the quite restrictive condition of axi-symmetric loads
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Fig. 1. Top, plan and perspective view of the rectangular cross vault analyzed (dimensions in centimeters). Center, first and second boundary condition configurations BC1 &
BC2 without infill, FE discretization. Bottom, first and second boundary condition configurations BC1 & BC2 with infill.
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Fig. 2. Ground floor planar view with identification of the position of the vaults.
[14–17]. Exception made for some special cases, the extension of
automated approaches for complex geometries, general load con-
ditions, reinforced arches and structures interacting with the infill
still remains a challenging topic [18–22], despite experimentation
in the field is putting at disposal a huge amount of experiences and
evidences [23–25]. In absence of dedicated software, the most



Fig. 3. Existing state of damage. Diagonal cracks (top) and full detachment of the lateral ribbed arch (bottom).

Table 1
Rectangular cross vault in Lucca, mechanical properties adopted in the numerical simulations.

Masonry
E 1500 (MPa) Young Modulus
G 500 (MPa) Shear Modulus
c 1.2ft (MPa) Cohesion
ft 0.05–0.1–0.15–0.2 (MPa) Tensile strength
fce 1/3fcp (MPa) Compressive hardening/softening behavior
fcp 2.4 (MPa)
fcm 0.8fcp (MPa)
fcr 0.5fcp (MPa)
ep 5eel (–)
jm 10eel (–)
U 30 (�) Friction angle
Y 45 (�) Angle of the linearized compressive cap
Gf

I 0.005–0.010–0.015–0.020 (N/mm) Mode I fracture energy
Gf

II 4/5Gf
I (N/mm) Mode II fracture energy

Infill
E 750 (MPa)) Young Modulus
G E/2 (MPa) Shear Modulus
c 1.0ft (MPa) Cohesion
ft 0.01–0.015–0.02–0.025 (MPa) Tensile strength
U 37 (�) Friction angle
straightforward approach still remains the utilization of non-linear
FEs either already implemented in commercial codes [26,27] or
non commercial but conceived for isotropic materials, as for
instance concrete [21,22].
The authors have been active in this field from many years and
recently proposed several different approaches for a fast and reli-
able analysis up to collapse of masonry vaults which take into
account several distinctive aspects of the material, as orthotropy
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Fig. 4. Arch stress strain curves used in the non-standard FE approach proposed
and their approximation by means of linear-piecewise constant functions. (a):
tension, (b): comression and (c) shear.

Fig. 5. Photo of the infill clearly demonstrating the very low cohesion.
and finite ductility [28–33]. The models include (1) homogenized
limit analyses by means of both plate and shell [33] and 3D ele-
ments [31,32] and (2) incremental non-linear approach with rigid
wedge elements and homogenized non-linear interfaces [28,29].

An enhanced code [30] recently presented allows the possibility
to model FRP reinforcement strips and steel tie rods, to
quantitatively compare the situation before and after a rehabilita-
tion intervention conducted with either innovative or traditional
technology, thus implicitly selecting the most effective strategy
for structural upgrading and refurbishment.

Object of the present study is the structural analysis of a series
of existing masonry cross vaults constituting the roof system of
the ground floor of the former Caserma Lorenzini in Lucca, Italy,
at the moment subjected to a wide restoration intervention
within the so called PIUSS project, aimed at the urban renewal
of the area and at a change of destination use of the building,
which will host the Italian National Comics museum and a
nursery school.

The vaults system covers a large area with irregular shape by
means of rectangular modules of dimension roughly equal to
17.30 � 7.40 m, further constituted by a 4 rows and 3 columns
regular grid in plan of vaults. A single vault has a dimension in plan
equal to 3.13 � 4.33 m, see Fig. 1, whereas modules disposition is
as in Fig. 2.

Generally, the vaults exhibit a visible state of degradation, with
frequent passing cracks on boundary and diagonal arches.

The analysis of a cross vault with a series of arches, com-
monly employed by practitioners [2–8], whilst very attractive
for its simplicity, remains theoretically questionable, because it
does not take into account the actual biaxial state of stress act-
ing on the crossing barrel vaults. As it is shown in the present
paper, sometimes it provides results not sufficiently in agree-
ment with more sophisticated analyses, as those used in this
paper, and is unable to reproduce some typical damage patters
that traditionally are observed on vaulted systems, as for
instance Sabouret’s cracks [19,21,22], which spread at the inter-
section between the vault and the boundary arches (as it occurs
in the present case study).

Another important aspect that has to be taken into account is to
quantitatively have an insight into the role played by the infill. As
well known, infill may have a beneficial role [28,34–37], but usu-
ally this aspect is taken into account in common software only in
an approximate way adding a fictitious stabilizing horizontal pres-
sure on the abutments. Cavicchi and Gambarotta [36,37] were
probably the first to rigorously take into account infill by means
of its discretization with plane triangular elements within a FE
upper bound limit analysis procedure. Such approach, extended
recently to 3D bridges [28], requires however dedicated software
not available on the market and a generalization to the 3D case
for masonry cross vaults.

In the present paper, different advanced numerical strategies
under different load, constrain and material properties conditions,
are adopted to analyze a typical cross vault belonging to the
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Fig. 6. Extrados FRP reinforcement, transversal section and planar view.
building under consideration. The analyses include limit and non-
linear static approaches conducted by means of non-commercial
software and a simplified approach by means of the subdivision
of the cross vault into single arches. To study the single arch, a
Matlab implementation of a software based on the evaluation of
the thrust line has been developed.

The vaults are analyzed before and after a rehabilitation inter-
vention made with carbon fibers, in order to evaluate (1) if the
structure is safe under vertical loads, (2) what is the increase of
the load bearing capacity due to the infill, (3) what is the efficacy
of the rehabilitation intervention and the associated increase of
the load bearing capacity obtained.

The paper is organized as follows: in Section 2 the geometry and
mechanical properties of the vaulted systems are presented, in Sec-
tion 3 the numerical models employed, previously developed by
the Authors, are briefly overviewed, finally in Section 4 the results
of the numerical simulations are presented and critically discussed
in detail.



2. Geometry and mechanical properties of the vaulted system

The vaults system covers a ground floor of a large building with
irregular shape in plan, see Fig. 2. In total, 108 single cross vaults
are present, disposed in interesting rectangular blocks constituted
by 4 rows and 3 columns of vaults. The 108 vaults are geometri-
cally almost identical, exception made for the constraint conditions
of the lateral vaults when compared with the central ones.

The dimension in plan of each single vault is 313 � 433 cm, see
Fig. 1. The vault is approximately 12 cm thick and is constituted by
a single brick along the thickness. Common traditional Italian clay
bricks are utilized (dimensions 12 � 5.5 � 25 mm3, thick-
ness � height � length) disposed with their height along the direc-
tion of the barrel vault with non-null curvature (blocks disposition
is as in Fig. 3). Four ribbing arches having thickness equal to 25 cm
are present, externally bounding the structure, whereas the cross
arches are not ribbed.

Exception made for some localized superficial detachment of
material in correspondence of the joints, a sufficient level of con-
servation is observed, as well as the visual quality of the material
under consideration.

Apart a quite classic damage pattern, represented by Sabouret’s
cracks, propagating parallel to geometric principal axes of the
vault, at the interface between the vault and the boundary arches,
unusual cracks along both diagonals are observed, see Fig. 3, prob-
ably a consequence of the absence of intrados ribbing arches.

According to Italian Code NTC 2008 [38], Chapter 8, and subse-
quent Explicative Notes 2009 [39], the mechanical properties to
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Fig. 7. (a) Straight decomposition of the vault into several single curvature arches [2,3]
elastic membrane forces flux [4].
assume for the masonry material depend on the so called knowl-
edge level LC, which is related to the so called Confidence Factor
Fc. The Italian code provides three different LCs, labeled from 1
to 3, related to the level of knowledge that one has on the mechan-
ical and geometrical properties of the structure. LC3 corresponds to
a very detailed survey, i.e. where also in-situ and laboratory tests
on extracted samples are performed, whereas LC1 is linked to the
less detailed survey, which includes visual inspection and geomet-
ric survey. For the case at hand, in absence of specific in-situ test
results, a LC1 level is assumed.

Fc is a coefficient that accounts for the level of knowledge
regarding the structure and the foundation system, from a geomet-
ric and mechanical point of view. It can be determined defining dif-
ferent partial confidence factors FCk (k = 1,4), on the base of some
numerical coefficients present in the Italian Code (Table 4.1 Italian
Line Guides). Due to the limited level of knowledge achieved in this
case, the highest confidence factor was used, FC = 1.35.

After visual inspections, values adopted for cohesion and
masonry elastic moduli are taken in agreement with Table C8A.2.1
Explicative Notes 2009 [39], assuming a masonry typology
constituted by clay bricks with very poor mechanical properties of
the joint and quite regular courses.

Elastic and inelastic material properties utilized in all the
analyses for the arches are reported in Table 1. With the lowest
knowledge level LC (confidence factor FC = 1.35), Italian code safely
requires to select in Table C8A.2.1, the lower bound values for
strength and the average between lower and upper bound for
elastic moduli.
) 
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. (b) Alternative non straight decomposition into arches following observed photo-



3. Brief overview of the numerical models utilized

Three distinct numerical approaches are utilized in the paper:
(1) a simplified approach by means of the analysis of a single vault
regarded as the assemblage of separated arches [2], (2) a homoge-
nized limit analysis conducted with 3D elements and [31–33] (3) a
non-linear homogenized procedure by means of a Quadratic Pro-
gramming procedure recently presented by the authors in [29].

It is interesting to comparatively evaluate the results provided
by the different approaches and to eventually identify univocally
the reasons at the base of the state of damage of the structures.

In what follows a very brief overview of the three distinct
procedures proposed is discussed, putting in evidence the simplifi-
cations introduced in the different procedures, limits of applicabil-
ity and weakness points.
Perimeter arch A 

Perimeter Arch B 

Fig. 8. Results from the traditional thrust lines analysis of the lateral elliptic arch
and the frontal circular arch.

Internal arch A Internal arch B

Fig. 9. Results from the traditional analysis, thrust lines of the internal arches,
Internal arch A & B.
3.1. Decomposition of the cross vaults into single curvature arches

A classic method to the simplified analysis of masonry cross
vaults is that proposed by Como [2], who suggested decomposing
the vault in many parallel arches, see Fig. 7-a. Each arch is then
analyzed determining the thrust line under the external loads
assigned, provided that the following hypotheses (Heyman [5–7])
are made for masonry: (1) the material is supposed unable to with-
stand tensile stresses, (2) an infinite compressive strength is
assumed and (3) shear sliding of contiguous blocks is not allowed.
Implicitly, the third hypothesis requires that each arch fails for the
formation of a sufficient number of flexural hinges forming an
active failure mechanism.

The approach neglects the mutual interaction between contigu-
ous arches and therefore may be considered as a ‘‘safe’’ procedure.
The arches along the diagonals, whilst not ribbed, are also consid-
ered and loaded by means of the reactions of the arches disposed in
plan along the edges. On each single arch, external loads (including
infill) and self-weight act.

The possibility to deal with the role played by the infill in the
stability of each single arch is still possible in an approximate
way, following the procedure used for instance within Ring soft-
ware by Gilbert and co-workers [40–42], who add a stabilizing hor-
izontal pressure depending on the infill weight multiplied by a
coefficient of horizontal retention Kh.

A second simplified approach proposed in the literature [14]
and derived from the observation of the internal stress distribution
during photo-elastic tests [4] is also considered. Such procedure is
based on an alternative decomposition that proved to perform well
especially for Gothic vaults with weak diagonal arches, see Fig. 7-b.

In such decomposition by means of non-straight arches, the
membrane is the critical member, while the diagonal arches (or
cross ribs) do not work. Thus the cross section combination is gen-
erally diagonal to the main axes of the vault, in a way to follow the
force trajectories.

It is worth noting however that, in the safety assessment used
within the PIUSS project, the first decomposition model (imple-
mented also in the commercial code Aedes [3]) was adopted and
no mention is given to the second approach, which is discussed
here only to have an insight into its real capability of providing rea-
sonable results in this particular case.
3.2. Homogenized limit and step-by-step non-linear analyses

In both the limit and step-by step non-linear models, a homog-
enization approach is used, meaning that the vault is modeled by
means of an orthotropic homogenized material obtained with a
mesoscopic approach similar to that proposed in [43–46], whereas
infill is modeled by means of an isotropic Mohr–Coulomb material
with tension cutoff and softening.

Both the limit and the non-linear analysis require a structural
implementation with discretization of masonry and infill with
six-noded rigid infinitely resistant wedge shaped elements.

In this way, all deformation is concentrated exclusively on
interfaces (modeled assuming either an isotropic frictional mate-
rial as for the backfill or by means of a homogenized orthotropic
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Fig. 10. Results from the traditional analysis, thrust lines of the internal arches and kinematic limit analysis, intermediate arch A & B.

Fig. 11. Results from the traditional analysis, diagonal arch.
material as in case of masonry), thus requiring a very limited
number of optimization variables. Kinematic variables for each
element are represented by three centroid velocities or
displacements (uE

x ;u
E
y , uE

z ) and three rotation rates or rotations

around centroid G (UE
x ;U

E
y , UE

z ).
To estimate inelastic deformations, it is necessary to evaluate

the jump of velocities or displacements (for respectively limit
and non-linear static analysis) on interfaces.

To do this, it is simply necessary to evaluate the displacement of
a point P of the interface thought belonging alternatively to M and
N, assuming that M and N are two wedge elements defining the
interface. After trivial algebra, the jump can be evaluated in the
global coordinates system as:

½UðPÞ� ¼ UG
M � UG

N þ RMðP � GMÞ � RNðP � GNÞ ð1Þ

where [U(P)] is the displacement jump in P, UG
I is the displacement

vector of element I centroid (point GI) and RI is a 3 � 3 rotation
matrix for element I containing rotations around centroid. Defined
a local frame of reference e1 � e2 � e3 with e3 normal to the
interface and e1 � e2 on the interface plane, denoting with Re the
rotation matrix with respect to the global coordinate system, jump
of displacements (1) may be written in the local system as
½eUðPÞ� ¼ Re½UðPÞ� where tilde indicates quantities evaluated in the
local system.

To solve the non-linear structural analysis problem, under some
general hypotheses holding for materials exhibiting an elasto-
plastic behavior, as for instance that the plasticity condition is
piecewise-linearized with r linearly elastic–plastic interacting
planes in the space of superimposed stress and strain components,
that the unloading of yielded stress-points does not occur and the
continuum is discretized into Finite Elements, the incremental
problem can be solved using the following quadratic programming
formulation:

max � 1
2 ðk

EÞT HE
kE þ ðkEÞTðNEÞT DEeE

n
subject to : kE � 0

eE
t ¼ eE þ eE

pl

rE ¼ DEeE
pl

8>>>>><>>>>>:
ð2Þ

where DE is the assembled elastic stiffness matrix, eE (eE
pl) is the

assembled elastic (plastic) part of the total strain vector eE
t , NE is

the shape functions matrix of the used Finite Element, kE is the plas-
tic multiplier vector, HE is the hardening matrix and rE the assem-
bled stress vector.

Within the FE model adopted, it can be shown that problem (2)
may be re-written for the problem at hand (rigid elements with
elastic–plastic interfaces) as follows:

min 1
2 ðk

þ � k�ÞT Kepðkþ � k�Þ þ UT
elKelUel

h i
� FT Uel

n
subject to : kþ P 0 k� P 0

(
ð3Þ

Assuming that the structural model has nin interfaces and nel ele-
ments, symbols in Eq. (3) have the following meaning:
1. 1 Kel is a 6nel � 6nel assembled matrix, collecting elastic stiffness

of each interface.
2. kþ and k� are two 10nin vectors of plastic multipliers, collecting

plastic multipliers of each non-linear spring (e.g. flexion, shear,
etc.).

3. Kep is a 10nin � 10nin assembled matrix built from diagonal
matrices of hardening moduli of the interfaces.

4. Uel is a 6nel vector collecting the displacements and rotations of
the elements.

5. F is a 6nel vector of external loads (forces and moments) applied
on element centroids.
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Fig. 12. Results from the second simplified approach (non-straight arches). (a) Arch 1. Left: deformed shape at failure and position of the plastic hinges at collapse. Right:
load–displacement curves compared with the service load present. (b) Arch 7. Left: deformed shape at failure and damage map distribution. Right: load–displacement curves
compared with the service load present.

Fig. 13. Arch without infill, BC1. Limit analysis and incremental software deformed shapes at collapse.



Fig. 14. Arch without infill, BC1. Normalized plastic dissipation patch.
Typically, the independent variable vector is represented by ele-
ment displacements Uel and plastic multiplier vectors kþ and k�.

At a structural level, within the non-linear code used, the qua-
dratic programming procedure adopted, see [28–30], requires an
approximation of the stress–strain curves by means of linear piece-
wise constant functions, to deal with elastic perfectly plastic mate-
rials on a sub-increment step and hence solve problem (3) in
incremental form.

Curves to approximate are obtained using a well established
elasto-plastic model, already utilized in [29], where the reader is
referred to for further details.

In the model, mortar is supposed obeying a Mohr–Coulomb fail-
ure criterion with tension cutoff and linearized cap in compression
(shape of the linearized compressive cap is denoted with symbol
W). In the non-linear model, the post-elastic behavior exhibits soft-
ening, ruled by distinct fracture energies, GI and GII, in tension and
shear. Compressive behavior is ruled by several stress values and
strain parameters, to reproduce consistently crushing. They are
stress fce at the elastic limit, peak compressive strength fcp corre-
sponding to a plastic strain parameter equal to ep, stress fcm at
crushing corresponding to a plastic strain parameter equal to jm

and residual stress fcr. Full details of the model can be found in
[29,30], where the reader is also referred to for a detailed descrip-
tion of the inelastic model in compression.

Mechanical properties adopted to simulate the behavior of the
masonry vaults under consideration are summarized in Table 1.
The resultant stress–strain behaviors in compression and ten-
sion and under shear with different levels of vertical pre-compres-
sion of the masonry material of Table 1 are represented in Fig. 4,
with the corresponding stepped function used at a structural level
to simulate the non-linear behavior of the vault.

When the limit analysis software is used, the material consid-
ered is rigid-plastic with associated flow rule, and only strength val-
ues reported in Table 1 are utilized. In particular, a Mohr–Coulomb
failure criterion with tension cutoff and linearized cap in compres-
sion, fully defined by tensile strength ft, cohesion c, friction angle U,
compressive strength fcp and shape of the linearized compressive
cap (identified by the angle W) are considered. To obtain collapse
loads and failure mechanisms for the structure at hand, the discret-
ized FE limit analysis problem is mathematically translated into
standard linear programming. In the framework of the upper bound
theorem of limit analysis, the objective function to minimize is rep-
resented by the total internal power dissipated minus the power
expended by the loads independent from the collapse multiplier.
Equality constraints are represented by associated plasticity flow
rules, boundary conditions and normalization of the external power
expended by the load multiplier, this latter condition allowing to
univocally identify the failure mechanism (in limit analysis, indeed,
only the shape of the failure mechanism may be determined).
Inequality constraints translate into mathematics the physical
requirement that plastic multipliers are non-negative. Within the
FE discretization by means of rigid elements, independent variables
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Fig. 15. Arch without infill, BC1. (a) Live loads corresponding to the collapse of the
vault at different values of mortar tensile strength and friction angle. (b) Pressure-
vertical displacement curves obtained with the non-linear code.

Fig. 16. Arch without infill, BC2. Limit analysis and incremental software deformed
shapes at collapse.
are represented by element centroid velocities, rotation rates
around centroid and plastic multipliers at the interface between
adjoining elements.

As already pointed out, Table 1, elastic moduli and values of
compressive and tensile strength are taken in general agreement
with the Italian code [38,39]. For other quantities at failure or
describing the post-peak behavior, there aren’t specific indications
available. In particular, the evaluation of the relation between cohe-
sion and tensile strength is still an open research issue, depending
on several concurring factors, as mortar quality and masonry tex-
ture. Similar considerations hold for the shape of the cap in com-
pression. For this reason, reference is made to existing literature
in this field [43–46]. The same procedure is followed for the choice
of Mode I and Mode II fracture energies and for the evaluation of
the softening behavior in compression [28,29,45]. Friction angle
adopted is again in general agreement with NTC 2008 [38].
4. Numerical simulations

Several numerical simulations are conducted with the afore-
mentioned approaches, varying (1) boundary conditions, (2) infill
modeling, (3) materials mechanical properties and (4) presence
of FRP strips as reinforcement.

� Boundary conditions

The application of realistic boundary conditions to a single vault
extracted from the context is not an easy task and is crucial for a
deep understanding of the structural behavior under increasing
vertical loads. As a matter of fact, the high number of vaults to deal
with (108), makes impossible a detailed analysis of each specific
case extracted from the context, with the application of ad-hoc
boundary conditions present case by case in reality. To conflict
with such a need, it is worth noting that sometimes boundary con-
ditions are very different and quite specific; indeed, some of the
vaults rest on load-bearing walls, some others on columns, in other



Fig. 17. Arch without infill, BC2. Normalized plastic dissipation patch.
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Fig. 18. Arch without infill, BC2. (a) Live loads corresponding to the collapse of the
vault at different values of mortar tensile strength and friction angle. (b) Pressure-
vertical displacement curves obtained with the non-linear code.
cases columns are strengthened with tie-rods, disposed either on
single or both directions. As a consequence, it appears clear that
each cross vault would require the study of ad hoc boundary and
load conditions, specific for each relevant case. Considering that
the effort needed in this case would be prohibitive, the alternative
strategy used here – also followed when traditional methods of
decomposition into arches are adopted – is the application of ‘‘ide-
alized’’ boundary conditions, representative of the ‘‘average’’ situa-
tion encountered in practice. Such choice is more methodological
than practical and is focused at analyzing a single vault extracted
from the context (i.e. without considering the thrust forces of the
vaults and arches on the eventually present supporting pillars
and walls). The final aim is to put at disposal a set of information
that may be considered ‘‘general’’, to promote a unique strengthen-
ing intervention scheme that, independently from specificities, is
applicable in any case.

In this context, two boundary conditions are studied in detail,
hereafter labeled as BC1 and BC2, realistically reproducing what
occurs in practice on average. The former boundary condition sys-
tem, BC1, simulates well the behavior of a central vault under
increasing vertical loads, whereas the latter, BC2, reproduced what
occurs for a lateral vault.

In particular, for the first configuration (central vault), all but-
tresses and the boundary arches are constrained not to translate
in the horizontal direction perpendicular to the edge, whereas for
the second configuration (external vault) the elements belonging
to one edge (i.e. one boundary arch and two buttresses) are
allowed to move also perpendicularly to the edge, as shown sche-
matically in Fig. 1.

When dealing with the simplified approach, the distinction
between the two boundary conditions may not be done.

� Loads

Before any consideration involving horizontal actions, a safety
assessment of the structures under vertical loads is required. Loads
considered in the analyses are masonry (18 kN/m3), infill
(18 kN/m3), and floors self weight (3.4 kN/m2). A further arbitrary
distributed load equal to 0.4 kN/m2 is also applied, in agreement
with Italian code, in order to take into account the incidence of
non-carrying separation walls at the first floor. Within the limit
analysis approach it is interesting to evaluate what is the



Fig. 19. Arch with infill, BC1. Limit analysis and incremental software deformed shapes at collapse.
maximum distributed live load that can be carried by the structure
up to collapse. On the contrary, thrust lines are evaluated with a
variable load (C1 category for the Italian code) equal to 3 kN/m2.

� Infill effect

The role played by the infill is accounted for both in an approx-
imate (i.e. adding a stabilizing horizontal pressure following an
earth pressure model) or rigorous way modeling backfill by means
of wedge elements obeying a Mohr–Coulomb failure criterion,
characterized by moderately high friction angle and very low cohe-
sion. However, it should be noted that the completion of infill in
the vaults of buildings were generally built with less care than in
the case of masonry bridges and therefore the mechanical param-
eters could be worse and more uncertain.

However, the infill, as clearly shown by Fig. 5 and as observed
by the authors with a direct in-situ inspection, is mainly composed
of pebbles, fragments of brick and other rubbles. Sometimes a huge
amount of lime is also present. It appears therefore rather suitable
to model it assuming the same mechanical properties of a cohe-
sion-less material.

In both cases, the increase of the load bearing capacity
obtained by means of the installation of extrados FRP strips, as
recommended within the planned restoration intervention, is
numerically estimated.
� Vault mechanical properties

A comprehensive numerical sensitivity analysis is conducted
varying in a wide range mortar joints tensile strength and friction
angle. Values recommended by the Italian Code are progressively
decreased and increased up to 4 times their original value for the
cohesion and 1.5 times for the friction angle.

Mechanical properties of mortar and brick are assumed as in
Table 1 and the corresponding homogenized behavior is summa-
rized in Fig. 4.

� Effect of the reinforcement

Two different strategies of reinforcement, at the extrados
(labeled with the symbol ER) or at the intrados (IR) with innova-
tive materials are planned, depending if the first floor is accessi-
ble or not. When the first floor is accessible, extrados
reinforcement as in Fig. 6 is adopted. In case the first floor is
not accessible, an intrados strengthening with GFRP grids is pro-
posed. The first intervention is aimed at precluding the formation
of extrados hinges and close Sabouret’s cracks; nonetheless, its
efficacy appears may vanish in case the backfill is fully restored.
As a matter of fact, the installation of the strips requires removing
completely the backfill, which has to be re-positioned after the
strengthening intervention with the same mechanical properties.



Fig. 20. Arch with infill, BC1. Normalized plastic dissipation patch.
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Fig. 21. Arch with infill, BC1. Live loads corresponding to the collapse of the vault at
different values of infill tensile strength and arch tensile strength equal to 0.05 and
0.1 MPa.
When this last hypothesis does not hold and a perturbation into
infill strength is introduced, a decrease (or generally a variation)
of the beneficial role played by the infill may result. In addition,
the disposition of the diagonal reinforcement appears rather inef-
ficient against the propagation of intrados cracks, which appears
one of major causes of degradation of the structures under
consideration.

5. Results and discussion

In the present Section, the results of the comparative analysis
performed with the traditional decomposition method [2], first
and second approach, the full 3D homogenized limit and non-
linear code are reported and discussed in detail.

The results of the analyses conducted by means of the simpli-
fied decomposition (first approach, straight arches and thrust
lines) are reported from Figs. 8–11.

As can be noted from Fig. 8, the shorter perimeter arch (hereaf-
ter labeled as arch A) is substantially safe under vertical loads,
being the thrust line all internal to the transversal section (no ten-
sion material hypothesis). When dealing with the larger perimeter
arch (labeled as arch B), having an elliptic shape, the thrust line
still remains within the thickness of the wall, but very near to
the extrados in correspondence of the buttresses. Under a no ten-
sion material model assumption, while the safety of the arch is not
compromised, it is expected the formation of a hinge in this posi-
tion, with cracks formation.

For internal arches, it is found that both small arches A and B
are safe, Fig. 9, whereas for the intermediate arches, Fig. 10, the



Fig. 22. Arch with infill, BC2. Limit analysis and incremental software deformed shapes at collapse.
thrust lines exit for the arch thickness in several points, both for A
and B configurations. A kinematic limit analysis is conducted in
these cases with a Matlab implementation of a code dealing with
1DOF structures, with results similar to those obtained with the
program Ring [40], also considering the stabilizing effect by means
of a linear horizontal confining pressure, as indicated in Fig. 10. The
formula utilized for the evaluation of the passive pressure of the
infill is rp = r0mKp, where Kp = (1 + sinu)/(1 + sinu) and u indicates
the infill internal friction angle, assumed according to specialized
literature in this field equal to 30�.

By means of the kinematic analysis, the value of the collapse
multiplier associated to the vertical distributed loads (floor weight
and live load) is k = 0.33, with formation of a plastic hinge at 33�.

Considering the stabilizing contribution of the infill (horizontal
pressure), the collapse multiplier is extremely high (k = 8.7) and
the plastic hinge slightly changes its position (35�).

Arches along the diagonals are analyzed in Fig. 11, assuming a
distribution of concentrated vertical and horizontal loads deter-
mined knowing the reactions found previously for the internal
and external arches.

Observing the corresponding thrust line, found assuming for the
diagonal arches, which are without ribs, a linear elastic material.
It can be deduced that they are unsafe in several regions (base,
middle eight, top), thus implicitly justifying the formation of the
diagonal cracks observed in reality.

The results obtained with the second simplified approach (non-
straight arches) are reported in Fig. 12. To obtain the results shown
in Fig. 12, a damage plasticity model embedded into the commer-
cial code DIANA v7.3 was used, being not possible an analysis of
the arches with variable thickness within the approach utilized
for straight arches. A very low tensile strength (0.05 MPa) obeying
a Drucker–Prager failure criterion (friction angle equal to 30�) and
compression peak strength equal to 2.4 MPa were assumed. Only
results obtained for Arch 1 and Arch 7 (Fig. 7-b) are reported for
the sake of conciseness: authors experienced, indeed, that the
remaining arches exhibited an intermediate behavior.

As can be noted from Fig. 12-a, where the deformed shape at
collapse with a graphical indication of formed plastic hinges and
load displacement curve are represented, Arch 1 is safe under the
design live load acting. In addition, it can be observed that failure
is due to a rather clear formation of flexural plastic hinges (red
symbols) at the crown and in an intermediate position. Rather evi-
dent shear sliding (blue symbols) is also present in correspondence
of the abutments.

When dealing with Arch 7 (results are summarized in Fig. 12-b),
the load carrying capacity is largely insufficient when compared



Fig. 23. Arch with infill, BC2. Normalized plastic dissipation patch.
with the acting live load. In addition, failure of the arch occurs for a
diffused crushing in correspondence of the abutments and plastic
hinges at the crown spreading laterally, with a clear diffusion of
the tensile cracks.

From a detailed analysis of results summarized in Fig. 12, again
it can be affirmed that even the second approach (analogously to
what occurs for the first simplified procedure) does not appear
fully reliable, providing largely unsafe results (Arch 7) under acting
service loads.
The results of the analyses conducted with the full 3D FE
models are reported from Figs. 13–18, assuming not to discretize
the infill with six-noded wedge elements and different materials.
The mesh used for the numerical simulations is depicted
in Fig. 1.

In particular, from Figs. 13–15 the results obtained with the first
boundary condition hypothesis (BC1) are summarized, whereas
from Figs. 16–18 the same results are replicated for the second
boundary condition (BC2). In both cases, infill is not modeled.



0.012 0.014 0.016 0.018 0.02 0.022 0.024
100

120

140

160

180

200

220

infill tensile strength f
t
 [MPa]

co
lla

ps
e 

pr
es

su
re

 λ
 [

kg
/m

2 ]

BC2 with infill 3D elements

with infill, arch f
t
=0.05

without infill, arch f
t
=0.05

with infill, arch f
t
=0.1

without infill, arch f
t
=0.1

Fig. 24. Arch with infill, BC2. Live loads corresponding to the collapse of the vault at
different values of infill tensile strength and arch tensile strength equal to 0.05 and
0.1 MPa.
As it is possible to notice from both deformed shapes at collapse
and power dissipation patch (Figs. 13 and 14 for BC1 and Figs. 16
and 17 for BC2), the full detachment of the perimeter arches is
observed in both cases, with a quite clear shear collapse of one of
the external short arches in case of BC2, due to the possible out-
of-plane movement allowed for the particular boundary condition
imposed.

Thanks to the very limited computational cost required by both
limit analysis and non-linear incremental code, mechanical prop-
erties of the masonry are varied in a wide range. In particular, four
different values for the tensile strength (0.05, 0.10, 0.15 and
0.20 MPa) and two values of the friction angle (20�, 30�) are
assumed in the simulations.

Values of cohesion are assumed always equal to 1.2ft and hence,
in the simulations, they take values equal to 0.06, 0.12, 0.18 and
Fig. 25. Extrados reinforcement, arch without infill, BC1. Limit an
0.24 MPa respectively. Compression strength is always kept equal
to 2.4 MPa.

It is worth noting here that, for regular masonry with clay bricks
and mortar with weak mechanical properties, with a level of
knowledge LC1 and confidence factor Fc = 1.35, Italian code NTC
2008 [38] imposes to assume a cohesion for masonry equal to
0.06 MPa and a compressive strength equal to 2.4 MPa (lower
bound values of the interval).

In both the limit analysis and the non-linear incremental model,
for both boundary conditions, it is possible to take into account the
stabilizing role played by the infill adding in the model a horizontal
pressure, dependent on the load multiplier (more precisely on
dead and live loads). Safely, it is assumed arbitrarily that the infill
applies to the structure a horizontal pressure with coefficient Kh

kept equal to 1.
Collapse loads found with both procedures under BC1 and BC2

hypotheses are depicted in Figs. 15 and 18 respectively. It is worth
noting that the maximum live load which can be applied to the
structure without the activation of a failure mechanism is quite
low. This is especially true for BC2, where one boundary arch can
fail with out-of-plane movements.

It is interesting to notice that, in Fig. 15, the results of two sets
of simulations assuming diagonal arches with zero tensile strength
are represented. For the sake of conciseness, only the case with
friction angle equal to 20� is investigated. The hypothesis of zero
strength in tension for diagonal arches appears quite realistic, since
the vault is not ribbed and there is a clearly visible interlocking
deficiency where perpendicular bricks meet, Fig. 3. In Fig. 3,
indeed, it is possible to notice that the interconnection between
vault quadrants is exclusively secured by mortar (sometimes not
anymore present due to degradation phenomena). Results of the
simulations assuming a no-tension material for diagonal arches
agree rather well with intuition. As shown by Fig. 15, collapse
pressures obtained assuming that diagonal arches behave as a
no-tension material are slightly lower than those evaluated with
finite strength. The difference is negligible for small masonry
tensile strengths (i.e. when a reasonable approximation of a
no-tension material is assumed for masonry), but becomes more
relevant for increased values of ft, with a percentage difference
alysis and incremental software deformed shapes at collapse.



Fig. 26. Extrados reinforcement, arch without infill, BC1. Normalized plastic dissipation patch.
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Fig. 27. Extrados reinforcement, arch without infill, BC1. Live loads corresponding
to the collapse of the vault at different values of mortar tensile strength and friction
angle.
on the estimated collapse pressure of around 5% for ft equal to
0.2 MPa. Similar results, not reported for the sake of conciseness,
are obtained for BC2 case.

From simulations results, the following considerations may be
drawn: (1) as expected BC2 is less safe than BC1, (2) the stabilizing
role played by the backfill results into an increase of the collapse
live pressure of about 70 kg/m2 for very low tensile strength of
the arches and of about 30–40 kg/m2 for more resistant masonry
(3) the vault loaded with a live load equal to 300 kg/m2 is near
its collapse state and may require a strengthening intervention.
When dealing with the discretization of the backfill into Finite
Elements, which definitely is the most appropriate modeling strat-
egy to adopt, the mesh depicted in Fig. 1 is utilized.

Within the sensitivity analyses carried on, mechanical proper-
ties of the backfill are assumed obeying a Mohr Coulomb failure
criterion with very low cohesion (from 0.010 to 0.025 MPa) and a
moderately high friction angle equal to 37�. Results of the numer-
ical analysis for BC1 are summarized in Figs. 19–21 and for BC2 in
Figs. 22–24 respectively. Deformed shapes show a quite different
behavior of the vault when compared to the simulations without
backfill. Again Sabouret’s cracks are visible in both BC’s cases but
here a flexural deformation of the vault in its central part is expe-
rienced, with clearly visible openings along diagonal arches, not
present in the model without backfill. Plastic dissipation patches
represented in Fig. 20 (BC1) and Fig. 23 (BC2) confirm the forma-
tion of cracks along diagonals and at the interface between ribbed
perpendicular arches and vault.

The deformed shapes obtained increasing mortar tensile
strength are qualitatively similar to those reported in Fig. 19
(BC1) and Fig. 22 (BC2), which correspond to the lower tensile
strength investigated (0.05 MPa) and a friction angle equal
to 20�.

The introduction of FRP strips at the extrados proved to increase
the collapse loads in both configurations. The results of the simu-
lations are summarized from Figs. 25–27 for BC1 configuration
(following the order of the figures, respectively the deformed
shape at collapse, power dissipation patch and collapse load are
depicted) and from Figs. 28–30 for BC2.

In particular, analyzing the collapse loads of the structure in
presence and absence of reinforcement at different values of
masonry tensile strength, as shown by the diagrams in Fig. 27
(BC1) and Fig. 30 (BC2), it is possible to notice a quite regular
increase of the load bearing capacity of the structure (increase up



Fig. 28. Extrados reinforcement, arch without infill, BC2. Limit analysis and
incremental software deformed shapes at collapse.

Fig. 29. Extrados reinforcement, arch without infill, BC2. Normalized plastic
dissipation patch.
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Fig. 30. Extrados reinforcement, arch without infill, BC2. Live loads corresponding
to the collapse of the vault at different values of mortar tensile strength and friction
angle.
to almost 30% for very low tensile strength and to around 15% for

masonry with good mechanical properties), which however
remains insufficient for BC2 with masonry having low tensile
strength (collapse pressure < 200 kg/m2). The failure mechanism
remains substantially unchanged with respect to the unreinforced
case, exception made for a slight closure of the diagonal cracks,
where delamination of the strip occurs.

In the models analyzed with reinforcement, the infill is not
taken into account (only the corresponding gravity load is modeled
as distributed vertical pressure) in order to consider the most
critical situation for the structure and also to partially take
into account that the removal of the infill and its subsequent
re-placement could visibly alter the stabilizing role of the infill.

It is worth noting, indeed, that the major drawback of installing
strips at the extrados is the removal of the infill and its subse-
quence reallocation over the installed strengthening. This could
considerably alter the beneficial capacity of the infill to carry and
distribute external loads, making the numerical evaluation of the
maximum collapse load quite questionable.
6. Conclusions

An existing masonry cross vault typology showing dangerous
deterioration and diffused crack patterns has been analyzed
numerically with different advanced procedures, including non-
linear FEs and limit analysis. A 3D discretization by means of rigid
infinitely resistant wedges where all the non-linearity is concen-
trated on interfaces between adjoining elements has been used.
Two different boundary conditions and the presence of the infill
have been taken into account, performing analyses at different val-
ues of masonry strength, eventually modeling the infill behaving as
a frictional material with very small cohesion.

From simulations results, it has been found that the approach
commonly used in practice to study cross vaults by means of the
assemblage of single arches is not always reliable, providing failure
loads and mechanisms sometimes different from the real ones.



Some discrepancies are found also with the decomposition into
non straight arches, an alternative simplified procedure particu-
larly suited for gothic vaults. Similarly to what occurs for masonry
arch bridges, simulations address that the role played by the infill
is rather important, providing a useful stabilizing effect. Neverthe-
less, the completion of the infill in the vaults was generally done, in
the past, with less care than that used for bridges. Therefore, it is
reasonable to say that the mechanical parameters adopted could
be overestimated and more uncertainties are present in the deter-
mination of the collapse loads.

A final set of simulations is performed reinforcing the vaults at
the extrados with FRP strips, as suggested in the real rehabilitation
intervention, Fig. 6. Whilst it is found numerically that FRP has a
relevant role in increasing the load bearing capacity, some doubts
arise in the practical execution of the intervention, which requires
the total removal of the infill and its subsequence reallocation,
with effects hardily predictable.
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