

Line Sampling procedure for extensive planetary protection analysis

<u>Matteo Romano</u>, Camilla Colombo, Jose Manuel Sanchez Perez KePASSA, Logroño, 24th-26th April 2019

Planetary protection

Motivations

- Interplanetary missions must satisfy planetary protection requirements¹
 - Impacts from spacecraft and mission-related debris increase the risk of biological contamination
 - Impact probability must be limited for sensible scientific targets (Mars, Europa, Enceladus)
 - The risk of backwards contamination to Earth must also be limited
- Sources of uncertainty must be considered during design phase
 - Uncertainty over the initial state at the launcher injection
 - Uncertainty over spacecraft design parameters (e.g. area/mass ratio)
 - Random errors in orbital manoeuvres
 - Random failures of spacecraft propulsion system

¹ G. Kminek, ESA planetary protection requirements, Technical Report ESSB-ST-U-001, European Space Agency, February 2012

KePASSA, Logroño, 24th-26th April 2019

Outline

- Introduction
 - Planetary protection
 - Current state and proposed approach
- New developments
 - Line Sampling
 - Additional techniques
 - Complete algorithm
- Planetary protection analysis
 - Test cases definition
 - Results
- Conclusions

Planetary protection

SNAPPshot (Suite for the Numerical Analysis of Planetary Protection)

SNAPPshot^{2,3}, developed at the University of Southampton under a study for the European Space Agency and now continued at Politecnico di Milano

- Monte Carlo approach for sampling and propagating the initial uncertainty
- High-order Runge-Kutta integration methods, with time step adaptation
- Analysis of close approaches and orbital resonances in the B-plane

² Letizia F., Colombo C., Van den Eynde J., Armellin R., Jehn R., *SNAPPSHOT: Suite for the numerical analysis of planetary protection*, ICATT 2016 ³ Colombo C., Letizia F., Van den Eynde J., *SNAPPSHOT: ESA planetary protection compliance verification software, Final report*, ESA contract, Jan 2016

Planetary protection

Proposed approach

Main goal: **improve the accuracy and the efficiency** of the planetary protection analysis

- Conventional verification using Monte Carlo (MC) method is computational expensive
 - Planetary protection requirements also include high confidence levels of the probability estimates
 - Generally probabilities to be verified are small
- Line Sampling method to sample the initial uncertainty in a more efficient way
 - Reduce number of required samples with respect to standard MC
 - Identifies boundaries of impact regions inside initial uncertainty dispersion
 - Efficient for analysis of a single event
- Algorithm extended to analyse more events
 - Recognition of close approach windows
 - Repeated LS applications

Result: a method which can be directly used in **mission design**, providing **additional information** about impact regions

Line Sampling

Working principle

The Line Sampling (LS) is a **Monte Carlo sampling** method that probes the uncertainty domain by using **lines** instead of random points

- The lines are used to identify the boundaries of the impact region inside the coordinate space
 - They follow a reference direction pointing toward the impact region
 - This can be done independently from the initial uncertainty and the probability estimation
- The estimation of impact probability is reduced to a number of 1D integrals along each line
 - The problem is normalised to a standard normal coordinate space
 - Analytical evaluation of integrals increases the accuracy of the probability estimation⁴

⁴Zio E., The Monte Carlo Simulation Method for System Reliability and Risk Analysis, 1st edn., Springer Series in Reliability Engineering, Springer-Verlag London (2013)

Correction of sampling direction

- Performance of LS depends on the sampling direction
 - Information on the impact region is available only after some pre-processing
 - Accuracy is highest when the sampling direction is (almost) orthogonal to the border of the impact region
 - Hypothesis: impact region with nearly rectilinear boundary
- Algorithm
 - 1. A preliminary sampling direction $\boldsymbol{\alpha}_{quess}$ is found from the Markov Chain
 - 2. A short Line Sampling is performed using a few initial samples
 - 3. The reference axes are rotated to an orthonormal bases aligned with α_{quess}
 - Impact region (c^k values) is approximated with a hyperplane using multilinear regression as

 $c_{R} = b_{1} + b_{2}\theta_{2}^{k,\perp} + b_{3}\theta_{3}^{k,\perp} + b_{4}\theta_{4}^{k,\perp} + \dots = [1 \ \theta^{k,\perp}] \cdot B$

- 5. The vector **B** orthogonal to hyperplane is set as new sampling direction
- 6. The main sampling is performed following the new direction

Close approach windows identification

Problem: identify **groups of close approaches** (CA windows) distributed in time

- Most of CAs appear to occur in groups clustered around the same epochs
- These groups are good candidates to look for impact regions with Markov Chains
- Identification method should be independent from body

Implemented solution: use information from recorded CAs

- 1. Each CA is recorded with associated SOI entry and exit epochs
- 2. Overlapping CA intervals are merged to identify larger intervals
- 3. CA windows are sorted according to the minimum distance from a planet to give priority to the most narrow CAs

8

Cesa CMPASS erc

Multi-event analysis

Problem:

identify different impact regions at different positions in the distribution and compute the overall impact probability

Implemented approach: use information about close approaches obtained during preliminary analysis

- 1. Preliminary MC sampling
 - Storing of close approach (CA) info (time, body, distance)
- 2. Identification of close approach windows based on epoch and body, sorted by minimum distance
- 3. Markov Chain for the selected close approach window
 - If impacts are detected, determination of sampling direction
- 4. Line Sampling
 - Optional: correction of sampling direction
- 5. Go back to 2. until all windows have been analysed
- 6. Compute total probability
- Pros: ideally complete sampling of the uncertainty over the whole time interval
- Cons: computationally heavy, not memory efficient

cesa CXMPASS erc

Multi-event analysis

Test cases

Definition

SOLO (launcher upper stage)

- Trajectory of launcher upper stage following injection into transfer orbit and separation
- Initial state from old launch option in October 2018
- Uncertainty expressed as covariance matrix over initial position and velocity

Mars Sample Return

- Return trajectory after Earth-avoidance manoeuvre
- Uncertainty expressed as covariance matrix over initial position and velocity

11

Cesa CXMPASS

Test cases

Cesa CMPASS erc

The results are analysed and compared in terms of

- Preliminary analysis
 - Number of initial samples
 - Number of recorded CAs
 - Number of CA windows
 - Number of impact regions found
- Line sampling phases vs. Monte Carlo
 - Number of sampling lines per LS phase N_{lines}
 or

Number of initial samples for MC

- Number of propagations per LS phase
- Probability estimate and variance
- Total number of propagations
- Total CPU time
- Comparison with MC

 $N_{samples}$ N_{prop} $\hat{P}(I), \hat{\sigma}$

Solo, launcher upper stage

Line Sampling

Markov chains:

• Tot. CPU time:

Impact regions: 1

Solo, launcher upper stage

* preliminary MC + Markov chain + LS

erc

Cesa CMPASS

Mars Sample Return, post-Earth encounter trajectory

Mars Sample Return, post-Earth encounter trajectory

Line Sampling

- Markov chains: 59 (max length: 1000 samples)
- Impact regions: 1
- Tot. propagations: 42897
- Tot. CPU time: 4.44 h

* preliminary MC + Markov chain + LS, ** all impact regions

Conclusions

Goals reached

- Identification of close approach windows
 - Independent from celestial body
 - Requires preliminary data
- Line Sampling applications in interesting regions
 - More efficient/accurate than standard MC
- Tool to obtain overall overview of the uncertainty distribution in interesting regions

Open points

- Computational efficiency and accuracy, depending on
 - confidence level for LS and preliminary MC
 - max length of Markov Chains
 - iterations and tolerances
- Computational time and memory management
 - Possible improvement: parallelisation
- Identification of CA windows depending on number of preliminary MC runs
- Generalisation of the algorithm

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS), and from the European Space Agency (ESA) though a Networking/Partnering Initiative (NPI).

Line Sampling procedure for extensive planetary protection analysis

<u>Matteo Romano</u>, matteo1.romano@polimi.it Camilla Colombo, camilla.colombo@polimi.it Jose Manuel Sanchez Perez, jose.manuel.sanchez.perez@esa.int

