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Abstract

A proposed mission extension for LISA Pathfinder involved redirecting the
probe to the Sun–Earth gravitational saddle point. Realistic models for both
space and ground segments were used to carry out a number of analyses for
trajectory design, orbit determination, and navigation cost. In this work,
we present the methods that allow assessing the feasibility of flying general
limited-control-authority spacecraft in highly nonlinear dynamics, and in par-
ticular of the proposed mission extension in a statistically reliable approach.
Solutions for transfers from the Sun–Earth L1 and L2 to the saddle point
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are shown, which feature very low ∆v consumption, from few centimeters
per second to 10 m/s. The analysis is then specialized to the case of LISA
Pathfinder, for which several solutions are presented. This work gives evi-
dence that LISA Pathfinder might have been able to fly-through the saddle
point, provided initial tracking errors within 10 km in each position compo-
nent and 0.1 m/s in each velocity component. A critical discussion on the
opportunistic mission extension is eventually made.

Keywords: Low-thrust trajectory; Optimal trajectory design; Radiometric
navigation; Lagrange point orbits; Gravitational saddle point; LISA
Pathfinder.

1. Introduction

Since the launch of the International Sun–Earth Explorer in 1978 (Far-
quhar et al., 1980), the number of Lagrange point orbits (LPO) missions
has increased over the last 15 years (Farquhar et al., 2004) and a further
growth is expected within the next years. The main reasons behind the in-
creasing interest in flying in highly nonlinear gravitational fields are due to
the unique features that can be extracted if these models are properly ex-
ploited. LPO, ballistic capture orbits, low-energy transfers, and invariant
manifolds are just mere examples of what can be done by using the natural
motion of a spacecraft with proper energies in these environments (Topputo
and Zhang, 2014). Beside generating orbits that cannot be designed in the
classic two-body model, low-energy multi-body models may allow for saving
considerable fractions of propellant, widening the launch windows, or increas-
ing the safety of close approaches, as in the case of ballistic capture (Belbruno
and Miller, 1993; Mingotti and Topputo, 2011; Topputo and Belbruno, 2015).
This means that even spacecraft with very limited thrust authority may be
able to accomplish orbital transfers that may seem unfeasible by far at a first
glance (Dei Tos, 2018).

Recently, a number of studies assessed the feasibility of leveraging the
highly nonlinear Sun–Earth–Moon environment to fly by the Sun–Earth grav-
itational saddle point (SP) region at affordable cost and duration (Trenkel
and Kemble, 2009; Trenkel et al., 2012; Fabacher et al., 2013; Cox and How-
ell, 2016; Topputo et al., 2018b). Saddle points are defined as those locations
in space where the net gravitational acceleration balances. Consequently,
the saddle points present clean, close-to-zero background acceleration envi-
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ronments where deviations from the General Relativity and Newton’s grav-
itational law can be measured. As such, saddle points are intriguing the
scientific community. More specifically, these regions represent a suitable
environment to test the MOdified Newtonian Dynamics (MOND) theory,
formulated by Milgrom (1983), and subsequently integrated in a relativistic
complete theory, labelled as Tensor-Vector-Scalar gravity (TeVeS), by Beken-
stein (2004). MOND is an alternative paradigm to Newtonian dynamics,
originally formulated to explain anomalies in galaxies radial velocities with-
out invoking non-baryonic dark matter. Figure 1 shows examples of MOND
rotation curve analysis for three galaxies of very different types (Milgrom,
2008). This theory predicts that in those locations where the gravitational
acceleration is below 10−10 m/s2, the standard Newtonian dynamics needs
to be modified (Milgrom, 1983). This may occur at the edge of galaxies,
but anomalous MOND/TeVeS gravity gradients greater than ≥ 10−13 s−2 are
also predicted within an elliptic bubble around the Sun–Earth saddle point
(Trenkel and Wealthy, 2014), which is more accessible.

Among these remarkable and yet unexplored points, the Sun–Earth SP,
located at a distance of approximately 258,800 km from the center of the
Earth along the Sun–Earth line and between the Sun and the Earth, seems
particularly appealing as it can be reached with ultra low-thrust missions, by
exploiting the nonlinearity of the vector field (Topputo et al., 2018c; Dei Tos
and Topputo, 2019). Nonetheless, 1) the high precision requirements in terms
of accurate SP targeting (miss-distance < 50 km in Bekenstein and Magueijo
(2006) and < 1 km in Galianni et al. (2012)), 2) the highly unstable dy-
namical environment, 3) the occurrence of solar conjunction (by definition of
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Fig. 3.— The observed and MOND rotation curves (in solid lines) for NGC 3657 (left), NGC 1560 (cnter),

and NGC 2903 (right). The first from Sanders (2006a), the last two from Sanders and McGaugh (2002).

Dotted and dashed lines are the Newtonian curves calculated for the different baryonic components (they

add in quadrature to give the full Newtonian curve). For NGC 3657 the dotted line is for stars and dashed

for the gas, with the reverse for the other two galaxies.

Figure 3 shows examples of MOND rotation curve analysis for three galaxies of very different types.

In the center is NGC 1560, a very low acceleration, gas dominated galaxy, that has a rising RC within the

observed baryons. To the left is NGC 3657, an intermediate case with similar contributions from the stars

and gas. To the right is NGC 2903, a high acceleration galaxy dominated by stars, with a declining RC

(after the inevitable initial rise). For NGC 1560, the MOND rotation curve is practically a prediction: since

stellar mass contributes very little the M/L fit parameter gives hardly any leverage. In addition, since the

accelerations are very small everywhere, the exact form of the interpolating function is immaterial. The

same is true for quite a number of low surface galaxies of this type. For the other two galaxies, and the

many others like them, the fit M/L parameter does have leverage, but a very limited one: We can view it,

for example, as determined by the very inner part of the RC, so that the rest of the RC shape and amplitude

becomes an exact, unavoidable prediction of MOND. To boot, the resulting best fit M/L values are not

completely free; they have to fall in the right ballpark dictated by population synthesis, as, indeed, they do

(e.g. Sanders & Verheijen 1998). Figs. 4, 5, 6 are mosaics of additional MOND RC results.

4. Round systems

MOND analysis of globular clusters, dwarf spheroidals, elliptical galaxies, galaxy groups, galaxy cluster,

and even one case of a super cluster have been considered (see reviews in Sanders & McGaugh 2002, and

in Scarpa 2006). Here I shall concentrate only on galaxy clusters, which have not yet fully conformed to

MOND’s predictions.

Figure 1: The observed and MOND rotation curves (in solid lines) for NGC 3657 (left),
NGC 1560 (center), and NGC 2903 (right). The first from Sanders (2007), the last two
from Sanders and McGaugh (2002). Dotted and dashed lines are the Newtonian curves
calculated for the different baryonic components. Credits: Milgrom (2008).
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SP), and 4) the need to perform multiple passages (to exclude false positives
and have redundant measurements), represent strong constraints from the
operational point of view, even more so for a spacecraft with limited control
authority.

In this work, we develop efficient methodologies to design and navigate
highly-nonlinear, control-limited orbits flying by the Sun–Earth saddle point
and starting from Sun–Earth L1,2 LPO. The focus is on solutions with very
low ∆v budget (1–10 m/s), ultra low thrust (0.1–10 mN), and low/medium
resources spacecraft (200–2000 kg). Particular emphasis is put in the realiza-
tion of maneuvers of finite burn duration, as opposed to impulsive maneuvers.
This is because a 500 kg spacecraft equipped with cold gas thrusters able to
provide 1 mN maximum thrust, values representative of LISA Pathfinder
(LPF) at end of life (Landgraf et al., 2014), would require 5.78 days of con-
tinuous engine operation to impart a total ∆v of 1 m/s. Thus, the use of
impulsive maneuvers to control an ultra-low authority spacecraft may result
in large errors and, in the worst case scenario, non-feasibility of the maneuver.
It is then imperative to spread the impulsive ∆v to finite-burn arcs. Numer-
ical simulations show that converting impulsive maneuvers into finite burn
arcs produces a satisfactory level of accuracy in the roto-pulsating restricted
n-body problem (RPRnBP), a high-fidelity model stated in a synodic frame
(Gómez et al., 2002; Dei Tos and Topputo, 2017, 2019).

In a second step, we assess the feasibility of flying such trajectories in a
simulated environment. Radiometric measurements from an ESA/ESTRACK
ground station are used as input for a refined orbit determination analysis.
The flight dynamics cycle and operations are scheduled considering a wide
array of constraints both on the space and ground segments; e. g., eclipses
and occultations, impact of thruster outages, and attitude rates. The naviga-
tion cost is then estimated based on a linearized open-loop control strategy
to track the reference orbit. Finally, optimal transfer cost and navigation
cost of a set of transfers using LISA Pathfinder as test scenario are shown
to demonstrate feasibility of the mission extension to the Sun–Earth sad-
dle point. The methodologies described in this paper are implemented in
the state-of-the-art Ultra-Low Thrust Interplanetary Mission Analysis Tool
(ULTIMAT) developed at Politecnico di Milano, an engineering tool initiated
under ESA Contract, the aim of which is performing trajectory optimization
into highly nonlinear models, where the design is constrained from the very-
limited control authority (Topputo et al., 2018a).

The remainder of the paper is organized as follows. Section 2 illustrates
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the method to convert a series of impulsive maneuvers into a series of finite
thrust arcs in a high-fidelity restricted rotating n-body model. Then, Sec-
tion 3 describes techniques to assess the feasibility of computed trajectories
with an orthodox navigation analysis. The results obtained for the case of
LISA Pathfinder mission extension and for general LPO-to-SP transfers are
presented in Section 4. Finally, Section 5 draws critical conclusions and set
forward suggestions to fly very limited control authority spacecraft in highly
nonlinear environments.

2. Impulsive to finite-burn maneuver conversion

An automated method is described that converts a single impulsive ma-
neuver to a time optimal finite burn maneuver (FBM) for a thrust limited,
constant exhaust velocity rocket engine (ideal engine performances). The
equations of motion for a thrusting spacecraft are

Ẋ = f(t,X,ϑ, u, α, β) :=


ṙ = v

v̇ = g(t, r,v,ϑ) +
uTmax

m
γ(α, β)

ṁ = −uTmax

ce

(1)

where X = [r>,v>,m]> is the spacecraft state, made of position (r), ve-
locity (v), and mass (m); g is the acceleration field considered; t is the
time; ϑ is a vector of parameters; Tmax is the maximum available thrust;
ce = Isp g0 is the engine exhaust speed (where Isp is its specific impulse
and g0 the gravitational acceleration at sea level); u ∈ [0, 1] is the throttle
factor; γ(α, β) := [cos β cosα, cos β sinα, sin β]> is the thrust pointing direc-
tion, where α ∈ [0, 2π] is the thrust azimuth angle and β ∈ [−π/2, π/2] is
the thrust elevation angle, defined with respect to the same reference frame
Eqs. (1) are cast. Accordingly, the thrust vector yields T = uTmaxγ. The
control parameters are u(t), α(t), and β(t). In this work, we assume an ideal
engine with Tmax = const, ce = const.

Within the impulsive maneuver paradigm, an maneuver produces instan-
taneous known variations of velocity and mass,

v+ = v− + ∆v, ∆m = m+ −m− = m−
(
e−‖∆v‖/ce − 1

)
, (2)

where (·)− and (·)+ indicates pre- and post-impulse quantities, respectively,
and ∆v is the instantaneous velocity change vector.
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An impulsive-to-finite-burn maneuver conversion produces a finite burn
solution whose final position and velocity are equal to the final position and
velocity of the original post-impulse trajectory at the time the finite burn ma-
neuver ends. The single impulsive maneuver may be part of a more complex
multi-impulse trajectory. The goal is to convert each impulse to a finite-burn
maneuver so that the resulting multi-finite-burn maneuver trajectory satis-
fies the mission requirements of the original impulsive trajectory. Thus, the
coast phases of the impulsive and finite burn trajectories are equal. In this
work, each impulsive maneuver is converted separately. It is assumed that
the end time of a finite burn maneuver is less than or equal to the start time
of the next finite burn maneuver that is used to replace the next impulsive
maneuver, if any.

The finite burn maneuver conversion for a single impulse is treated as a
pseudo-rendezvous problem where the target particle flies along the post-
impulse trajectory (Ocampo and Munoz, 2010). The conversion is carried
out in a time optimal sense. The time of the impulse is ti, and the state
on the finite burn trajectory is calculated in the epoch interval [t0, tf ], with
t0 < ti < tf . Referring to Figure 2, the pre-impulse ballistic trajectory is
defined as a continuous trajectory from t0 to tf (dashed line in Figure 2).
The post-impulse ballistic trajectory is defined by two continuous ballistic
arcs that have initial state ri, v+

i , m
+
i at ti (dashed-dotted line in Figure 2).

The first one is a backward propagated ballistic arc from ti to t0 and the
second one is a forward propagated ballistic arc from ti to tf . Refer to the
particles on the pre-impulse and post-impulse trajectories as the chase and
target particles, respectively. The impulse is to be replaced by a finite burn
maneuver with known control parameters history. Thus, the chase particle is
the spacecraft itself that flies along the pre-impulse trajectory and is required
to rendezvous with the target particle.

The problem of converting an impulsive maneuver to a finite-burn arc is
now formally stated.

Problem 1. Find {u(t), α(t), β(t), t0, tf} such that

r(t0) = r̄(t0), v(t0) = v̄(t0), r(tf ) = r∗(tf ), v(tf ) = v∗(tf ), (3)

where t0 and tf are the times when the finite burn starts and ends, respectively
(see Figure 2), r, v are the position and velocity vectors along the finite
burn arc, barred quantities (r̄, v̄) represent position and velocity along the
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Figure 2: Geometry of impulsive to finite burn maneuver pseudo-rendezvous.

pre-impulse trajectory, and starred quantities (r∗, v∗) represent position and
velocity along the post-impulse trajectory.

Problem 1 is applied to one impulsive maneuver, and can be readily gen-
eralized for n other impulses, provided they are dealt with separately.

2.1. Direct finite burn control model
To reduce the search space and transition to a simpler mathematical prob-

lem we make the following considerations valid for t ∈ [t0, tf ]:

1. For minimum time finite burn problem we have (Senent et al., 2005)

u = 1 =⇒ ‖T ‖ = Tmax. (4)

2. The thrust azimuth and elevation angles are approximated as cubic
polynomials of time with unknown coefficients {aj, bj}, i. e.,

α(t) =
3∑
j=0

aj
(t− ti)j

j!
, β(t) =

3∑
j=0

bj
(t− ti)j

j!
. (5)

Third-order polynomials centered at the impulsive maneuver epoch are
preferred over more refined interpolating techniques, such as Legendre-
Gauss or Gauss-Lobatto, because a straightforward physical interpre-
tation is given to the coefficients and the initial estimation favors con-
vergence (see Section 2.2.2.)
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These considerations (the first being an established result, and the second a
convenient approximation) translate the finite burn conversion problem into
finding 8 constant control parameters (coefficients of the cubic polynomials
representing the thrust spherical angles) and 2 engine switching epochs (on
and off). There are 10 decision variables per maneuver, collected in the vector

s = (t0, tf , a0, a1, a2, a3, b0, b1, b2, b3)>. (6)

Problem 2. Let the scaled duration of the finite-burn arc,

J(s) = k(tf − t0), (7)

represent the cost function, and let

l(s) =


r(tf )− r∗(tf )
v(tf )− v∗(tf )
r(t0)− r̄(t0)
v(t0)− v̄(t0)

 (8)

be the vector of constraints. Then, the approximated impulsive-to-finite-burn
conversion problem is formally stated as a constrained minimization:

min
s
J(s) s.t. l(s) = 0. (9)

In Eq. (7), k is a scaling parameter that weighs the importance of the fi-
nite burn duration with respect to the constraints satisfaction. (In this work
we set to k = 0.01.) Since the azimuth and elevation profiles for the thrust
are assigned a priori, this problem formulation leads by definition to a sub-
optimal solution. The minimization is solved with a standard NLP method,
by employing an active-set algorithm and explicit numerical integration. In-
tegrations are performed in a 2.9 GHz Intel Core i7 Unix machine where
a 7th/8th order variable step Runge–Kutta–Fehlberg scheme is implemented
within a Matlab mex file, with absolute and relative error tolerances equal
to 2.5× 10−14.

2.2. Initial estimate of decision variables
An estimate of the decision variables is provided automatically and is only

function of the impulsive maneuver. This estimate is used as initial guess
for the direct minimization of Problem 2. The FBM conversion uses all of
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the information available from the impulsive maneuver to estimate t0 and tf ,
along with the starting values of {aj, bj}. The result is a partially automated
method that generates a time sub-optimal finite burn solution without the
need to explicitly provide estimates for the start and end times, the starting
values of the thrust direction angles, and their time derivatives.

2.2.1. Switching epochs estimate
For constant thrust, the mass equation (last one of Eq. (1)) can be solved

analytically, and it is used to predict a burn time,

∆t =
ce∆m

Tmax

, (10)

where ∆m is the mass consumption of the impulsive maneuver, according to
Eq. (2). Estimates of t0 and tf are such that the maneuver epoch, ti, is the
midpoint of the finite burn arc,

t0 = ti −
∆t

2
, tf = ti +

∆t

2
. (11)

2.2.2. Thrust angles estimate
The estimate for the thrust azimuth and elevation relies on the assumption

that the thrust direction vector and its first and second time derivatives,
γ, γ̇, γ̈, are equivalent to the impulsive maneuver direction and its first and
second time derivatives at ti, i. e.,

γ(ti) =
∆v

‖∆v‖
,

γ̇(ti) =
∆v̇

‖∆v‖
− ∆v ·∆v̇
‖∆v‖3

∆v,

γ̈(ti) =

(
3

(∆v ·∆v̇)2

‖∆v‖5
− ‖∆v̇‖

2 + ∆v ·∆v̈
‖∆v‖3

)
∆v − 2

∆v ·∆v̇
‖∆v‖3

∆v̇ +
∆v̈

‖∆v‖
,

(12)

where

∆v̇ := g(r,v+, ti)− g(r,v−, ti), ∆v̈ := Gr∆v +Gv∆g, (13)

and Gr = [∂g/∂r], Gv = [∂g/∂v] are the matrix of partial derivatives of the
dynamics right-hand side. Cosine direction vector and its constituent angles
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respect a well known, explicit, and unique relationship:

α(ti) = tan−1 γy
γx
, α̇(ti) =

γxγ̇y − γyγ̇x
γ2
x + γ2

y

,

α̈(ti) =
γxγ̈y − γyγ̈x
γ2
x + γ2

y

− 2
(γxγ̇x + γyγ̇y)(γxγ̇y − γyγ̇x)

(γ2
x + γ2

y)
2

,

β(ti) = tan−1 γz√
γ2
x + γ2

y

, β̇(ti) =
γ̇z√
γ2
x + γ2

y

,

β̈(ti) =
γ̈z√
γ2
x + γ2

y

− (γxγ̇x + γyγ̇y)γ̇z
(γ2
x + γ2

y)
3/2

,

(14)

where γx, γy, γz indicate the components of γ at ti along x, y, z, respectively.
The same applies for its first and second time derivatives.

By comparing the thrust angles of Eqs. (14) with the approximated angle
profiles in Eq. (5) (whose time derivatives are of straightforward computa-
tion), it is easy to compute the initial estimates for the first 6 coefficients of
the cubic polynomials:

a0 = α(ti), a1 = α̇(ti), a2 = α̈(ti) b0 = β(ti), b1 = β̇(ti), b2 = β̈(ti).
(15)

The remaining coefficients for the cubic part are initially set to unity, i. e., a3 =
b3 = 1, to trigger the cubic behavior in the sub-optimal solution. The direct

Algorithm 1 Direct to finite burn maneuver conversion.
Require: Specify dynamical model . See Eq. (1)

procedure FBM(∆v, ti,m−)
Estimate engine switch epochs . See Eqs. (10)–(11)
Compute thrust directions {γ(ti), γ̇(ti), γ̈(ti)} . See Eqs. (12)–(13)
Compute thrust angles {α, α̇, α̈, β, β̇, β̈} . See Eq. (14)
Estimate quadratic coefficients {a0, a1, a2, b0, b1, b2} . See Eq. (15)
Assign cubic coefficients to unity, a3 = b3 = 1
Solve minimization Problem 2 . See Eq. (9)
if Convergence is attained then

Save optimal decision variables in y∗

else
Mark impulsive maneuver as unfeasible

end if
end procedure
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optimization of a finite burn maneuver from a single known impulsive ma-
neuver is described in Algorithm 1. Note that the impulsive-to-finite-burn
maneuver conversion does not constrain the rate of change of the thrust
pointing angles. This means that the angular rates, output of Algorithm
1, must be later assessed for compliance with the capabilities of the LISA
Pathfinder attitude subsystem.

3. Navigation analysis

A navigation analysis is necessary to assess the feasibility of saddle point
transfers in a high-fidelity simulated scenario. For this purpose, a navigation
tool is specifically developed and implemented. Referring to Figure 3, the
navigation analysis is composed by a preliminary assessment and a navigation
assessment.

3.1. Preliminary assessment
The preliminary assessment performs a static analysis of transfers to the

Sun–Earth gravitational saddle point. Considering radiometric observations
(i. e., range and range rate) from a generic ground station (GS) on Earth,
we lay out the main requirements on the transfer geometry. A sensitivity
analysis is then performed to assess the transfer robustness against errors
in the maneuvers profile. Ultimately, visibility windows are evaluated. The
aim of the preliminary assessment is to prune out those transfers that are
not compliant with static requirements on navigation, while also providing
comprehensive geometrical information on the remaining transfers. The in-
formation is then used for dynamical analyses, e. g., orbit determination.

Navigation Tool

Preliminary
Assessment

Navigation
Assessment

Trajectory 
Design

Tuning 
parameters

Designed
transfers Feasible 

solutions

Navigation 
Assumptions/Requirements

Figure 3: Architecture of navigation tool.
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3.1.1. Relative geometry evaluation
Several geometrical configurations are investigated in order to identify

potential hazardous conditions for the spacecraft. LetR,RM RS, andRgs be
the spacecraft, Moon, Sun, and ground station position vectors with respect
to the Earth center, respectively. Then, the spacecraft range vector to the
ground station is ρ = R − Rgs, the Sun-Spacecraft-Earth angle is ψ, the
exclusion angle is φ, and the spacecraft elevation angle with respect to the
ground station is El. The geometry of the spacecraft transfer in the Sun–
Earth–Moon system is illustrated in Figure 4, where the relevant geometric
quantities are highlighted. Note that the exclusion angle is approximated
as the Sun-Earth-Spacecraft angle in this work, as opposed to the Sun-GS-
Spacecraft. The approximation holds valid in deep-space transfers, i. e., when
‖R‖ � ‖Rgs‖.

Table 1 summarizes the main requirements on relevant geometrical param-
eters. The Spacecraft-to-Earth distance is constrained to prevent transfers
involving very large distances, which may trigger issues for communications,
and the Spacecraft-to-Earth/Moon distances are constrained to avoid close
encounters with either celestial bodies. The minimum distance with respect
to either Earth or Moon is equal to 10, 000 km, while the spacecraft cannot
go further than 2 million km from the Earth.

Generally, in long transfers eclipses due to Moon and/or Earth and Moon
occultations may occur. Depth and duration of each eclipse mainly depend

Figure 4: Geometry of the tracking problem.
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Table 1: Requirements on relative geometry.

Parameter Requirement

Earth distance ‖R‖ ∈ [104, 2× 106] km
Spacecraft-Moon range ‖RM −R‖ > 104 km
Earth/Moon eclipses To be avoided when possible
Moon occultations To be avoided when possible
Solar conjunctions φ > 0.5 deg

GS visibility El > Elmin = 10 deg
Antenna pointing angle ψ ∈ [0, π] rad

on the trajectory and are typically difficult to predict, although a lower dis-
tance from the ecliptic plane, and thus to the Moon orbit plane, increases the
probability of eclipse occurrences. In this work, transfers with long and deep
eclipses are penalized because they may pose severe restrictions to the space-
craft operability. On the other hand, prolonged occultation duration causes
interferences in the probe-to-ground stations communication link, which can
limit the number or affect the quality of radiometric measurements.

Solar conjunctions are expected to occur close to SP passages, where the
exclusion angle approaches zero. A requirement is placed on solar conjunc-
tions to limit the amount of deteriorated radiometric data which in turn may
degrade the spacecraft knowledge accuracy (Yarnoz et al., 2006). Referring
to Figure 4, the exclusion angle is thus constrained to be φ > 0.5 deg.

The elevation angle profile with respect to one or multiple ground stations
identifies the trajectory portions where the GS sensor mounting constraints
are satisfied and the spacecraft is in visible conditions. The requirement for
visibility is a minimum elevation above the horizon in the ground station
topocentric frame, i. e., El > Elmin. Typically, Elmin depends on the specific
ground station characteristics. In this work, a conservative value of Elmin =
10 deg is used for all GS.

The Sun-Spacecraft-Earth angle (ψ in Figure 4) profile may be directly
related to the antenna pointing effort if the antenna is gimbaled, or the
antenna misalignment if the antenna is rigidly attached to the spacecraft.
To avoid large deviations from the nominal antenna pointing angle, thus
limiting the need of large attitude control maneuvers, the Sun-Spacecraft-

13



Earth angle shall be bounded in ψmin < ψ < ψmax, where ψmin and ψmax

depend on the probe specific structural configuration.

3.1.2. Solution robustness
Due to the nonlinearity of the vector field and the severe requirements

on the SP passage (Hees et al., 2016; Galianni et al., 2012; Bekenstein and
Magueijo, 2006; Topputo et al., 2018b), even small errors can jeopardize the
designed transfer and eventually undermine the probability of an encounter
with the SP. Therefore, an analysis of the solution sensitivity to maneu-
vering errors is of paramount importance for the identification and pruning
of those transfers characterized by high sensitivity, for which large control
efforts would likely be required.

Monte Carlo analyses are performed by propagating the nominal initial
conditions with a set of noisy control profiles with uncertainties on magni-
tude, direction, duration, and timing of the nominal finite burn maneuvers.
The resulting samples statistics provides quantitative information on the sad-
dle point reachability. This process is intended as a design sensitivity analy-
sis, and the effects of errors due to other processes, such as the measurement
acquisition process, orbit determination process, etc., are not considered.

3.1.3. Visibility windows
Coverage, or visibility, windows depend on the observed object trajectory

and on the ground station characteristics (e. g., geographical coordinates,
mounting mechanism). A coverage window is assumed here as an un-thrusted
portion of the trajectory, not affected by solar conjunctions nor Moon occul-
tations, and in which both elevation and pointing constraints of the ground
station are satisfied.

Let ∆tc be the coverage duration, i. e., the time interval in which the space-
craft is visible from the selected GS, and let ∆ts be the temporal separation
between two consecutive coverage windows. In this work, a coverage win-
dow is identified when the coverage duration is between ∆tcmin

= 3 hours (to
avoid having too short windows) and ∆tcmax = 8 hours (to limit ground oper-
ation costs). Multiple coverage windows in a short duration neither reflects
operative conditions where the selected ground station could be unavailable
for scheduling reasons or technical problems nor typically leads to significant
improvements in the orbit knowledge (Bowell et al., 2002). Thus, temporally
close windows with ∆ts < 7 days are also discarded.
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Additional criteria are not considered here and may be added to simulate
the existence of other operative constraints, e. g., simultaneous radiometric
measurements from multiple GS shall be minimized to avoid data overlap-
ping. Once one or multiple ground stations are selected, information on cov-
erage window is then used to generate the radiometric data and ultimately
simulate the estimation process.

3.2. Navigation assessment
The navigation assessment is devoted to the simulation of the radiometric

data acquisition process, the computation, through a covariance analysis, of
the achievable state knowledge, and the estimation of the required correction
maneuvers.

3.2.1. Measurement model
The equations of motion and the measurement model provide the basic

framework for describing the motion of a satellite with respect to a ground
station. Observation data is expressed as

z = h(P ,X,C) + ε, (16)

where z = (z1, . . . , zn) denotes a n-dimensional vector of measurements per-
formed at times t1, . . . , tn, h is the numerical model for the observations
as function of the vector of processes P , the state X at epoch t (see Eq.
(1)), and the vector of considered parameters C; ε ∼ (0, I) is a zero-mean
randomly distributed vector that accounts for the difference between actual
and modeled observations due to measurements error (Montenbruck and Gill,
2000). The vector C comprises parameters that are supposed to be uncertain
but are not adjusted as part of the estimation process. The vector ε includes
effects due to Earth orientation noises, clock instabilities, signal delays due
to transmission media, thermal noises, and it is prewhitened to have unit
covariance matrix.

The practical solution of the orbit estimation problem is complicated by
the fact that h is a highly nonlinear function of its arguments. The measure-
ment model is then used in its simplified first-order Taylor expansion around
a reference (P ,X,C)ref . Without loss of generality, we assume here that the
processes and the consider parameters are small quantities with an expected
value of zero, i. e., P ref = 0 and Cref = 0. Linearization of Eq. (16) yields

y = Hpp+Hxx+Hcc+ ε, (17)
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where y = z − h(P ref ,Xref ,Cref) denotes the difference between the actual
observations and the observations predicted from the reference trajectory,
lower-case Latin letters are the difference between the argument and the ref-
erence, p = P − P ref , x = X −Xref , and c = C − Cref , respectively, and
Hq = [∂h/∂q]|(P ,X,C)ref with q = {p,x, c} is the Jacobian of the measure-
ment model with respect to its arguments. In the following, q will be used
interchangeably for p, x, and c.

Note that, in the absence of real telemetry data, the actual measurements
in z are simulated and stored offline and later retrieved during the orbit esti-
mation. Radiometric data for range and range-rate is simulated by defining
two dedicated versions of measurement model,

ρ =
√
ρTρ, ρ̇ =

ρTη

ρ
, (18)

where ρ is the range measurement and ρ̇ is the range-rate measurement, and
η = V − V gs is the relative velocity of the spacecraft with respect to the
ground station. Table 2 reports the typical frequencies and errors achievable
using current ground stations technologies.

Table 2: Range and Doppler measurements assumptions (Landgraf et al., 2014).

Parameter Value

Range frequency once per pass
Range noise (1σ) 20 m

Range bias 20 m
Doppler frequency once every 10 min
Doppler noise (1σ) 0.03 mm/s

Doppler bias 0 mm/s

3.2.2. Error sources
Numerous effects are incorporated in the estimation process to compen-

sate for differences between the numerical and actual environment, leading
to a more realistic feasibility evaluation of the designed trajectories and a
more conservative estimation of the state covariance matrix. Besides mea-
surements errors, the estimation process is refined with the inclusion of a)
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systematic/bias errors, through a consider covariance approach and b) cor-
related process noises, modeled as Gauss–Markov processes, also known as
exponentially correlated random variables (ECRV). A Gauss–Markov process
obeys Langevin differential equation (Tapley et al., 2004),

ξ̇(t) = −βξ(t) + w(t), (19)

where ξ(t) is the ECRV, w(t) is zero-mean white Gaussian noise with variance
σ2, and β = 1/τ , with τ as the correlation time.

The consider parameters vector includes ground station location biases,
assumed equal to 30 cm in equatorial plane error and 1 m out of equatorial
plane error, and systematic errors in the measurement modeling of range and
range-rate e. g., due to system calibration errors (refer to Table 2). Thus,
C ∈ R(3∗ngs+2)×1, where ngs is the number of ground station used to perform
the observations. Table 3 shows the Gauss–Markov processes, P ∈ R9×1,
considered in this work.

Table 3: Gauss–Markov processes.

Noise source Standard deviation,
√
σ2 Correlation time, τ

Solar radiation pressure 10% of the nominal force
along same direction 1 day

Thrust misalignment 1% in magnitude and 0.5
deg in pointing angles 1 day

Residual accelerations 10−11 km/s2 in all direc-
tions 1 day

3.2.3. Orbit estimation
A covariance analysis is conducted to determine the achievable level of

accuracy in the spacecraft position and velocity knowledge along the entire
transfer (Modenini et al., 2017). In this paper, a square root information filter
(SRIF) is adopted for the orbit determination (OD). The SRIF is preferred
to other common filtering techniques, for instance extended and unscented
Kalman filters, due to its numerical robustness (Montenbruck and Gill, 2000).
The SRIF processes a single vector of measurements at a time and yields
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sequential state estimates at the measurement times. The orbit estimation
process consists of two main steps: the time update and the measurement
update. The procedure of time and measurement updates is carried out
until the desired number of observations is processed. Let P denote the
covariance matrix of a random variable, then its inverse is the information
matrix, Λ = P−1. In the SRIF, the square root of the information matrix R
is operated on for time and measurement updates, rather than the covariance
matrix, where P = R−1R−T (Tapley et al., 2004).

The trajectory to be analyzed is split into a series of coast and propelled
legs. Compatibly with the definition of visibility window given in Section
3.1.3, measurements can not be taken during engine operation and orbit
estimation is only performed within the coast legs. Each coast leg is fur-
ther divided into mapping intervals of 12 hours and the solution state and
control are discretized to match the fix-step mapping time. The navigation
assessment routine loops through the map intervals and sequentially checks
if observations are available within the current map interval. In case obser-
vations are available, the square root information filter is applied after the
measurements are retrieved and pseudo-measurement are generated based on
the current state. In the time intervals when no observations are available,
the estimated state and covariance are propagated forward with the discrete
form of the equations of motion:

pk+1 = Mk+1pk +wk,

xk+1 = Φpk+1
pk + Φxk+1

xk + Φck+1
ck,

ck+1 = ck,

(20)

where subscripts k and k+1 relate to quantities evaluated at discrete times tk
and tk+1, respectively, Mk+1 = e(tk+1−tk)/τI9 is the process transition matrix
(solution of Eq. (19)), wk is the process noise, Φqk+1

for q = {p, x, c} is the
state transition matrix mapping deviation in the argument q to the state
x from epochs tk to tk+1. In this work, Φp is computed with a numerical
quadrature at each step of the estimation process, Φx is retrieved by means
of linear interpolation based on the state transition matrix of the reference
trajectory (calculated offline by integrating the variational equations together
with the main motion), and Φc is zero because the consider parameters only
affects the measurement model and not the equations of motion. The process
noise has mean w̄ and covariance Qw = Qp(I9 −MTM) = R−1

w R−T
w , where

Qp is the variance of the Gauss–Markov processes (see Table 3) defined in
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Figure 5: Layout of the trajectory subdivision for navigation assessment.

the reference frame where Eq. (20) is cast and I9 is the identity matrix of
dimension 9. Figure 5 highlights the coverage windows with respect to the
division of the transfer into legs and mapping intervals, while the navigation
assessment procedure is described in Algorithm 2.

Let [Rp, bp]k, [Rx, bx]k, and [Rc, bc]k be the a priori information arrays at
time tk for p, x, and c, respectively, such that bqk = Rqkqk with q̄k = qk+χqk ,
where qk is the true value and E

[
χqk
]

= 0, E
[
χqkχ

T
qk

]
= Pqk = R−1

qk
R−T
qk

;
then the covariance matrix for the processes, state, and consider parameters
read

Pk =

Pp 0
SPc0 Px

(SPc)
T Pc


k

= R−1
k R−T

k , with Rk =

Rx RT
px Rxc

Rpx Rp Rpc

RT
pc RT

pc Rc


k

, (21)

where Sk = [∂x/∂c]k is the sensitivity matrix and Pc = cTc is the diagonal
covariance matrix of the consider parameters. Note that due the dynamics
of ck+1, Pc is also constant. Assume also that at time tk an observation is
made such that

yk =
[
Hp Hx Hc

]
k

px
c


k

+ εk. (22)

Then, the SRIF time update for the arguments p, x, and c is given by
R∗p R∗pp R∗px R∗pc
0 R̄p R̄px R̄pc

0 0 R̄x R̄xc

0 0 0 R̄c


k+1


pk
pk+1

xk+1

ck+1

 =


b∗p
b̄p
b̄x
b̄c


k+1

, (23)

19



Algorithm 2 Navigation assessment algorithm.
Require: ULTIMAT, SPICE, guidance and preliminary assessment candidate solution ν
1: procedure Navigation Assessment(ν)
2: Define navigation settings
3: Load object parameters
4: Load ground station parameters
5: Generate measurement time stamp for each GS
6: Nondimensionalize quantities
7: function Initialization
8: Initialize the number of states, processes, and consider parameters
9: Initialize the sensitivity matrix
10: Assign the consider parameters covariance
11: Build the a priori covariance matrix
12: Assign the measurement noise matrix
13: end function
14: function Estimation
15: Find trajectory legs, defined between low thrust arcs and coast arcs
16: Retrieve initial conditions for candidate solution from SPICE kernel, x0

17: for i← 1, nL do . Loop through nL trajectory legs
18: Discretize solution to match fix-step mapping time
19: for k ← 1, nM do . Loop through nM map points within ith leg
20: if ∃ measurement in [tk, tk+1] then
21: Retrieve observations data of reference
22: Generate the pseudo-measurement
23: Apply square root information filter . See Algorithm 3
24: Get filter estimates and covariance at current time ti
25: Store SRIF output for post-processing
26: end if
27: if ti 6= tk+1 then
28: Propagate state and covariance until end of current map interval
29: Update initial conditions for next map interval
30: end if
31: end for (k)
32: end for (i)
33: Save and post-process estimation results for candidate solution ν
34: end function
35: end procedure

where the time update of the information array (indicated with barred quan-
tities in Eq. (23)) is computed by applying a series of orthogonal Givens
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transformation (Givens, 1958) such that

T̄k


−RwMk+1 Rw 0 0 0

Rp −RpxΦ
−1
xk+1

Φpk+1
0 RpxΦ

−1
xk+1

Rpc bp
−RxΦ

−1
xk+1

Φpk+1
0 RxΦ

−1
xk+1

Rxc bx
0 0 0 Rc bc


k

=


R∗p R∗pp R∗px R∗pc b∗p
0 R̄p R̄px R̄pc b̄p
0 0 R̄x R̄xc b̄x
0 0 0 R̄c b̄c


k+1

,

(24)
and T̄k is the Givens transformation matrix that upper triangularize the
information matrix. Starred quantities that are generated as part of the time
update are typically used for smoothing (Tapley et al., 2004) and are not used
in this paper. Similarly, the SRIF measurement update is the solution ofRp Rpx Rpc

0 Rx Rxc

0 0 Rc


k+1

px
c


k+1

=

bpbx
bc


k+1

, (25)

where the measurement update of the information matrix is computed by
applying a series of orthogonal Givens transformation (Givens, 1958) such
that

Tk


R̄p R̄px R̄pc b̄p
0 R̄x R̄xc b̄x
0 0 R̄c b̄c
Hp Hx Hc y


k

=


Rp Rpx Rpc bp
0 Rx Rxc bx
0 0 Rc bc
0 0 0 e


k

, (26)

Tk is the Givens transformation matrix that upper triangularize the informa-
tion matrix, and e is the vector of residuals. Eqs. (23)–(26) are sequentially
applied until the desired number of observations is processed, where the in-
formation arrays and variables updates from the measurement update step
are used in the next time update step. The SRIF is described in Algorithm 3.
After the time and measurement updates, the state and covariance estimates
yield:

Xest = X + x,

P
(as)
est = P (as) + SPcS

T,
(27)

whereXest is the estimate of the state, P (as)
est is the estimate of the covariance

matrix of the augmented state, i. e., including both process and state but not
the consider parameters, x is found with back substitution on Eq. (25) and
the measurement update of the sensitivity matrix is

S = −
[
Rx 0
Rpx Rp

]−1 [
Rxc

Rpc

]
. (28)
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Algorithm 3 Square root information filter algorithm.
1: function SRIF(t,X,C, P, S)
2: Compute square root information matrix . See Eq. (21)
3: Compute information arrays [R̄p, b̄p], [R̄x, b̄x], and [R̄p, b̄c]
4: for j ← 1, nO do . Loop through number of observations, nO
5: Retrieve Φx from current to measurement epoch by interpolation
6: Compute Φp with a numerical quadrature
7: Retrieve process noise and covariance Qw

8: Retrieve the reference pseudo-measurement and generate a current observation
9: Compute Jacobian of measurement model with central finite difference scheme
10: Pre-whiten the measurement with factorization of the noise covariance
11: Perform the SRIF time update . See Eqs. (23)–(24)
12: Perform the SRIF measurement update . See Eqs. (25)–(26)
13: Compute the state and covariance estimates . See Eq. (27)
14: Update current time for next iteration
15: end for (j)
16: end function

3.2.4. Saddle point passage confidence
Given the 1σ knowledge at the SP passage epoch, the 95% confidence el-

lipsoid associated with the position uncertainty of the satellite is recovered
using principal axes decomposition and exploiting the fact that the sum of
squared Gaussian variables is distributed according to the chi-square distribu-
tion. Then, a final evaluation of the intersection area between the confidence
ellipsoid and the spherical tolerance volume around the SP allows determin-
ing whether the spacecraft flies by the SP region with the required level of
confidence.

3.2.5. Estimation of correction maneuvers
The overall navigation cost, necessary to keep the spacecraft on the nom-

inal path, is estimated through the selection of a dedicated guidance and/or
control strategy. Closed-loop control laws trigger maneuvers to track the ref-
erence guidance, whereas closed-loop guidance laws trigger maneuvers that
globally updates the spacecraft trajectory to meet mission requirements and
target state. Maneuvers are computed either when the state knowledge ex-
ceeds a certain threshold, or at prescribed time stamps (for example defined
by the flight dynamics team on ground). Many control/guidance laws ex-
ist based, for instance, on the control of the full state vector, the velocity
components, or just the unstable components (Bryson, 1975), linearization
around reference path, applications of generalized Zero-Effort-Miss/Zero-
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Effort-Velocity feedback guidance (Guo et al., 2013), etc.
A commonly used guidance method for interplanetary navigation is the

differential guidance (Crassidis and Markley, 2003; Park and Scheeres, 2006).
This formulation is based on the idea of using two impulsive maneuvers to
cancel both the final position and velocity deviations. To the first-order
approximation, deviations from the nominal state can be propagated with
the state transition matrix (STM),(

δrj+1

δvj+1

)
=

[
Φrr Φrv

Φvr Φvv

]{(
δrj
δvj

)
+

(
0

∆vj

)}
+

(
0

∆vj+1

)
, (29)

where subscripts correlate to epoch, δr and δv are the position and veloc-
ity deviation, respectively, Φrr, Φrv, Φvr, and Φvv are the 3-by-3 blocks of
Φ(tj, tj+1), that is the STM from tj to tj+1 associated to the nominal solu-
tion, and ∆vj and ∆vj+1 are the navigation correction maneuvers at epoch
tj and tj+1. The linear system in Eq. (29) can be solved explicitly once the
STM matrix is available. However, the second ∆vj+1 is usually not applied
in practice, since at the time of arrival at the final point a new maneuver can
be calculated in a receding horizon approach. Based on this, the approach
can be slightly modified including only one maneuver, which is obtained from
the minimization of the deviations from the nominal state in a least square
residuals sense. Eq. (29) is altered as(

δrj+1

δvj+1

)
=

[
Φrr Φrv

Φvr Φvv

]{(
δrj
δvj

)
+

(
0

∆vj

)}
, (30)

Then, the correction maneuver ∆vj is determined such that the magnitude
of the perturbation at time tj+1 is minimum, i. e.,

J = ||δrj+1||2 + q||δvj+1||2, (31)

where q adjusts dimensions. A straightforward application of variations anal-
ysis to Eq. (31) leads to

∆vj = −
(
ΦT
rvΦrv + qΦT

vvΦvv

)−1 (
ΦT
rvΦrr + qΦT

vvΦvr

)
δrj − δvj. (32)

The control law in Eq. (32) is applied whenever OD is performed. A latency
interval of 2 days is considered between the epoch of the last measurement
update within a coverage window and the application of the correction ma-
neuvers to ensure enough time for flight dynamics operations and a couple
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of uplink opportunities. The described process is repeated at intermediate
points until the end of the trajectory is reached.

A Monte Carlo simulation is set up to evaluate the total ∆v required, for
different levels of confidence. In particular, starting from an initial distribu-
tion with mean µ0 and covariance P0, a set of samples xi0 is generated. The
samples are propagated forward, up to the first correction epoch t1, where
the maneuver ∆v1 is determined with Eq. (32). The procedure is repeated
until the end of the transfer. The estimation of the total navigation cost is
then obtained as the sum of all maneuvers, ∆v =

∑N
j=1 ‖∆vj‖.

Some assumptions for the computation and implementation of trajectory
correction maneuvers (TCM) are implicitly introduced, which is worth clari-
fying. The TCM are derived from the reference trajectories rather than from
the reconstructed ones, which means the OD process is not considered in the
loop. Nonetheless, for a well-behaved OD process, the distance between esti-
mated and deviated trajectories is bounded. Furthermore, TCM are modeled
in terms of ∆vj, even if they have to be performed using the finite-thrust
propulsion system available on board. This error is recovered a posteriori by
re-evaluating the feasibility of the TCM with finite thrust durations (com-
puted using actual spacecraft mass and thrust levels at tj). Finally, TCM are
assumed free of uncertainties. Numerical simulations resulted in maneuvers
with very small magnitude, and their uncertainties can be thus neglected
in first approximation. The decrease in accuracy and optimality of a linear
control approach, when compared to more detailed closed-loop control laws,
is motivated by the better numerical efficiency in terms of computational
speed. The method presented here to compute the navigation cost yields an
estimation of the actual cost needed to fly a pre-computed trajectory. De-
spite the high-fidelity nature of the present analysis, a slight variation of this
cost is expected when using real-world telemetry data.

4. Finite burn optimal transfers to the saddle point

4.1. Saddle point fly-throughs from Sun–Earth libration point orbits
The finite burn maneuver conversion, as described in Algorithm 1, is ap-

plied to trajectories from the Sun–Earth L1,2 LPO regions to the gravita-
tional saddle point. The trajectories feature five successive impulsive ma-
neuvers designed in the high-fidelity roto-pulsating restricted n-body prob-
lem (RPRnBP); see Dei Tos and Topputo (2019) for details. Out of the
393 (from L1) and 191 (from L2) SP optimal impulsive solutions taken from
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Table 4: Solution parameters for sample finite burn transfer to SP in the RPRnBP. Here,
hLGA stands for altitude of lunar closest passage (counted if less than 70, 000 km), and
tLT is the total duration of the low-thrust burn.

Figure ∆v ToF hLGA tLT ∆m
[m/s] [days] [km] [days] [kg]

Figure 6a 0.99 239.5 — 5.73 0.84
Figure 6b 0.26 188.1 — 1.50 0.22
Figure 6c 0.30 172.7 — 1.72 0.25
Figure 6d 1.34 129.9 40030 7.73 1.13
Figure 7a 0.09 183.1 — 0.50 0.07
Figure 7b 0.14 122.5 15731 0.83 0.12
Figure 7c 3.53 102.0 — 20.4 3.00
Figure 7d 10.3 1002.5 — 62.1 9.27
Figure 8a 1.62 323.9 62111 9.30 1.40
Figure 8b 1.07 111.1 — 7.30 1.10
Figure 8c 0.72 537.8 — 4.20 0.60
Figure 8d 0.71 173.3 15601 4.10 0.59
Figure 9a 0.03 267.1 19498 0.16 0.02
Figure 9b 0.61 319.6 — 3.50 0.50
Figure 9c 8.48 102.4 — 49.3 7.20
Figure 9d 3.77 1011.9 — 22.1 3.20

Topputo et al. (2018c), 82% and 58% prove feasible when the impulsive ma-
neuvers are spread into finite burn arcs. Sample trajectories departing from
L1 and L2 are shown in Figures 6–7 and Figures 8–9, respectively. The so-
lutions are grouped into families and only representative transfers for each
family are displayed here for clarity. Table 4 shows the parameters for the
solutions shown. Few important observations arise:

1. There exists a lower bound for the ToF, roughly equal to 102 days from
both L1,2 libration point orbit regions.

2. There are plenty of transfers to the SP with ultra-low deterministic ∆v
from the Sun–Earth LPO regions. Exploitation of the chaotic nature
of the n-body problem enables a S/C orbiting in the L1,2 neighborhood
to reach the SP for as low ∆v as few centimeters per second.
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(d) Family σ with lunar encounter.

Figure 6: Solutions departing from L1 LPO (batch 1/2).

26



0.99 0.995 1
x [adim.]

-4

-2

0

2

4

y [
ad

im
.]

10-3

0.99 0.995 1
x [adim.]

-1

-0.5

0

0.5

1

z [
ad

im
.]

10-3

S/C
SP
Moon
Finite burn

-4 -2 0 2 4
y [adim.] 10-3

-1

-0.5

0

0.5

1

z [
ad

im
.]

10-3

(a) Minimum ∆v.

0.99 0.995 1
x [adim.]

-4

-2

0

2

4

y [
ad

im
.]

10-3

0.99 0.995 1
x [adim.]

-5

0

5

z [
ad

im
.]

10-4

S/C
SP
Moon
Finite burn
LGA

-4 -2 0 2 4
y [adim.] 10-3

-5

0

5

z [
ad

im
.]

10-4

(b) Low-altitude lunar encounter.
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Figure 7: Solutions departing from L1 LPO (batch 2/2).
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Figure 8: Solutions departing from L2 LPO (batch 1/2).

28



1 1.004 1.008
x [adim.]

-5

0

5

y [
ad

im
.]

10-3

1 1.004 1.008
x [adim.]

-1

0

1

2

z [
ad

im
.]

10-3

S/C
SP
Moon
Finite burn
LGA

-5 0 5
y [adim.] 10-3

-1

0

1

2

z [
ad

im
.]

10-3

(a) Minimum ∆v.

0.995 1 1.005 1.01
x [adim.]

-5

0

5

y [
ad

im
.]

10-3

0.995 1 1.005 1.01
x [adim.]

-1

0

1

z [
ad

im
.]

10-3

S/C
SP
Moon
Finite burn

-5 0 5
y [adim.] 10-3

-1

0

1

z [
ad

im
.]

10-3

(b) Propeller.

1 1.004 1.008
x [adim.]

-4

-2

0

2

4

y [
ad

im
.]

10-3

1 1.004 1.008
x [adim.]

-2

-1

0

1

2

z [
ad

im
.]

10-4

S/C
SP
Moon
Finite burn

-4 -2 0 2 4
y [adim.] 10-3

-2

-1

0

1

2

z [
ad

im
.]

10-4

(c) Minimum ToF.

0.995 1 1.005
x [adim.]

-4

-2

0

2

4

y [
ad

im
.]

10-3

0.995 1 1.005
x [adim.]

-1

-0.5

0

0.5

1

z [
ad

im
.]

10-3

S/C
SP
Moon
Finite burn

-4 -2 0 2 4
y [adim.] 10-3

-1

-0.5

0

0.5

1

z [
ad

im
.]

10-3

(d) Maximum ToF.

Figure 9: Solutions departing from L2 LPO (batch 2/2).
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3. Close lunar gravity assists (LGA) may benefit the overall fitness of the
solution, either in terms of time of flight or fuel consumption, but it is
not required for optimality.

4. As expected for ultra-low control authority spacecraft, the time spent
thrusting is a significant amount of the total ToF. The vast majority
of SP transfers displays slow-varying control azimuth and elevation
during engine firing. This is beneficial for attitude pointing during the
maneuver continued execution.

5. The sheer number of FBM transfers to the SP provides sufficient diver-
sity in the solution and control space to allow for a robust feasibility
analysis and to draw reliable statistic conclusions.

4.2. LISA Pathfinder mission extension to the Sun–Earth saddle point
The mission extension of LISA Pathfinder is considered as case study. As

a technology demonstrator for the gravitational wave observatory mission
Laser Interferometer Space Antenna (LISA), LPF is also equipped with a
gravity gradiometer consisting of two freely falling test masses, separated by
a baseline of just under 40 cm, whose position is measured through laser
interferometry with picometer resolution. Simulations have shown that this
technology, with the level of accuracies reached, is an ideal apparatus to
collect data at the SP, for a possible confirmation of the MOND/TeVeS theory
(Trenkel and Kemble, 2009; Trenkel et al., 2012; Trenkel and Wealthy, 2014).

LISA Pathfinder was flying about Sun–Earth L1 into a Lissajous orbit
and had a residual control capability after nominal and extended missions.
This residual capability can be estimated into a ∆v budget of ∼ 1 m/s.
The residual, potential action cannot be modeled as producing instantaneous
velocity changes, as the maximum thrust level of the cold-gas thrusters is in
the order of 100 µN each, and thus applying velocity changes may require
maneuvering for several days. LPF is then an ultra low thrust spacecraft
that flies into a highly unstable environment. Table 5 provides the set-up
parameters to simulate LPF mission extension5.

The available estimation for the end-of-operation state (position, velocity)
is taken as initial condition, and the cold gas propulsion available on the

5∆v budget at beginning of life (BoL) for LPF was 3.8 m/s (Table 6.2 of LPF CReMA
(Landgraf et al., 2014)); the one reported in Table 5 is assumed.

30



LPF Science Module is considered as primary propulsion. Several mission
extension options are designed and validated, and their implementation is
discussed. The real ephemeris of LPF, representing its accurate position and
velocity, has been provided by ESA as a CCSDS OEM file (Consultative
Committee for Space Data Systems Orbit Ephemeris Message file). The
OEM file has been converted into a SPICE6 kernel for use in the current work.
The ephemeris data for LPF ranges from 2016 September 18 16:49:36.497
Barycentric Dynamical Time (TDB) to 2018 March 13 06:14:47.510 TDB.
LPF trajectory is plotted in Figure 10 in the Sun–Earth rotating frame. The
LPF orbit roughly retraces a Az = 400, 000 km amplitude halo.

4.2.1. LISA Pathfinder transfer design
The trajectory of LPF mission extension to the saddle point is designed

with the following methodology.

1. An exploration of the solution space is performed starting from the real

Table 5: Dimensioned parameters for the LISA Pathfinder S/C at EoL.
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Figure 10: LISA Pathfinder trajectory.

6SPICE is NASA’s Observation Geometry and Information System for Space Science
Missions (Acton Jr, 1996; Acton Jr et al., 2018). https://naif.jpl.nasa.gov/naif; last
downloaded on February 7, 2018.
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LPF ephemeris (for more details on the exploration see Topputo et al.
(2018b)). The sole initial epoch, t0, is sufficient to fully characterize
the initial conditions for the exploration, and a fine search is applied
to the variable t0. The grid search bounds are set to t0 ∈ [30 March
2017 00:00:00.0 , 28 June 2017 00:00:00.0] TDB. A 90-day search grid
is deemed to well represent the LPF-to-SP dynamics. Moreover, these
dates are compatible with a real implementation of the ultra-low trans-
fer as mission extension for LPF.

2. Solutions, output of the exploration campaign, are used as initial guesses
for a precise (meters threshold) targeting of the real SP with a multiple
burn multiple shooting technique (Topputo et al., 2018c; Dei Tos and
Topputo, 2019). Five impulsive maneuvers are used to drive LPF to
fly through the saddle point.

3. Impulsive maneuvers, giving rise to optimal LPF-to-SP transfers, are
spread into finite burn arcs after application of Algorithm 1.

In Table 6, some important parameters of the LPF-to-SP transfers are
summarized. Our design follows a three-step approach: Exploration, Opti-
mization, Finite-burn conversion. In particular, 123 ballistic SP fly-throughs
have been found approaching a 10, 000 km sphere around the SP (explo-
ration), of which 93 have been optimized for fine SP targeting with impulsive
maneuvers (optimization). Among the latter, 73 solutions have been refined
in the RPRnBP with propelled arcs (finite-burn conversion). Attitude rates

Table 6: Trajectory design summary for the LPF mission extension case.

Phase Metrics LPF

Exploration # 123

Optimization
# 93

Total ∆v [m/s] 6.88± 4.79
Deterministic SP miss distance [mm] 0.7± 1.3

Finite burn # 73
Propellant consumed ∆m [kg] 5.00± 2.13
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Figure 11: LISA Pathfinder transfers to the SP.

in the order of few degrees per day are necessary for the finite-burn maneu-
vers, compatibly with the performances of the LPF attitude subsystem. The
totality of solutions that have been found from the LPF initial trajectory
belong to family δ (see Section 4.1). This predominance of δ-type transfers
is due to the relatively high amplitude Lissajous orbit LPF was flying along.
Figure 11a displays the whole set of preliminary solutions. The solution cor-
responding to ∆v = 0.657 m/s and ToF = 208 days is plotted in Figure 11b
as a feasible deterministic example. The navigation assessment is also shown
later for this solution. The solid line on the left part of the plot is the direct
SP transfer, whereas the darker solid line is the orbit behavior after the SP
fly-through. This trajectory is self-disposing, that is, after two close Earth
encounters LPF would permanently leave the Earth–Moon system and not
return in the mid-term.

4.2.2. LISA Pathfinder flyability analysis
Simulations for the navigation assessment are performed using correlated

process noises (see Section 3.2.3) and range and range-rate measurements
from Cebreros ground station, using the error values reported in Table 2, a
large, initial uncertainty of 100 km in each component of position, 1 m/s in
each component of velocity, and 0.1 kg in mass; a mapping time of 0.25 days;
and a maximum visibility windows frequency of once per week.

The navigation assessment described in Section 3 is applied to the 73
LPF-to-SP transfers found. Results for the LISA Pathfinder transfer shown
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in Figure 11b are displayed in Figures 12–18. More in detail, Figure 12
shows the declination during the entire transfer. This angle becomes relevant
when close to zero, where it can severely deteriorate the determination of the
spacecraft angular position based on Doppler data.
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Figure 12: Declination angle profile.
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Figure 13: Daily coverage from Cebreros.
As shown in Figure 13, long visibility windows (tc ≥ 12 hours) are avail-

able at the beginning of the transfer, whereas a progressive reduction of their
duration is found towards the end, i. e., close to the SP, due to the passage
across the equator, which affects LPF elevation with respect to Cebreros.
Within these coverage windows, simulated range and range-rate measure-
ments are generated as shown in Figures 14a–14b, respectively.

Figures 15a–15b illustrate the results of the covariance analysis and, in
particular, the achievable knowledge accuracy of the spacecraft state along
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Figure 14: Radiometric measurements within coverage windows.
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Figure 15: LISA Pathfinder state knowledge.

Table 7: 1σ position and velocity knowledge values at SP passage.

Component Position [km] Velocity [km/s]

Radial 6.962e-01 3.168e-06
Along-track 5.261e-01 1.028e-06
Cross-track 7.554e-01 1.027e-06

the transfer. As shown, after an initial improvement in the level of accuracy,
a limit is generally reached due to the effects of process and measurement
noises. The values of 1σ position and velocity knowledge at the SP passage
(i. e., at the end of the transfer), are reported for each component in Table 7.
Note that the 1σ values in Table 7 strongly depend on the measurement
interval. We expect that tuning the measurement interval may lead to an
improvement in the radial position and radial velocity knowledge at saddle
point passage. Note that from Figure 15b and Table 7, the achieved radial
velocity is slightly lower than the Doppler noise of 0.03 mm/s. This occurs
because the Doppler noise is factored in the SRIF as a Gaussian process with
zero mean, not as a constant noise with random direction.

The results of Monte Carlo analyses, using 100 samples and based on the
guidance assumptions described in Section 3.2.5, are reported in Figures 16a–
16b. A mean ∆v of 2.538 m/s is found, with a standard deviation of 1.114
m/s. However, as shown in Figure 16b and summarized in Table 8, an higher
value is required, i. e., 4.533 m/s, for a 95% confidence level. Thus, the size of
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Figure 16: Navigation ∆v distribution.

Table 8: Statistical ∆v required for navigation.

∆vnav Mean Standard deviation 95 percentile
Value [m/s] 2.538 1.114 4.533

∆v needed to navigate the nominal trajectory may be very large, if compared
with the nominal ∆v, even an order of magnitude larger as in this case.

As already mentioned in Section 3.2.5, resulting TCM have to be applied
using the LPF cold gas propulsion system. Figure 17 reports the time needed
to apply the required ∆v changes, computed a posteriori by using the actual
values of mass, thrust, and specific impulse. Note in particular how, the time
needed for the first correction maneuver overcomes the tmax, in case of TCM
frequency equal to once per week. On the contrary, changing the frequency,
e. g., one maneuver every two weeks, leads to a general increment in the
size of correction maneuvers, due to the larger dispersions reached during
the propagation. However, it also ensures a larger time for the application
of TCM before the next OD. In this case all the maneuvers are below the
maximum threshold and could therefore be implemented in a real scenario.

4.2.3. Critical analysis
The initial uncertainties in position and velocities considered in the fea-

sibility analysis (Section 4.2.2) are 100 km and 1 m/s, respectively. These
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Figure 17: Time required for the implementation of correction maneuvers.

values are more typical of post-launch conditions, and hardly apply to a
spacecraft that is flying on a regular basis in the near-Earth environment.
The relatively high statistical cost to navigate the nominal transfer reported
in Table 8 is mostly due to this assumption, because the initial uncertainty
determines how far the generated Monte Carlo samples are with respect to
the nominal transfer trajectory, which in turn affects the size of the TCM. A
parametric analysis was performed by varying the size of this initial uncer-
tainty. Seven cases, ranging from A to G, were considered, with the initial
uncertainty in position and velocity given in Table 9. Figure 18 reports the
results obtained for different cases. As expected, a smaller initial disper-
sion leads to smaller correction maneuvers and vice-versa. This means that
starting the transfer with a good level of position and velocity knowledge
may drastically reduce the value of ∆v required to navigate the nominal
trajectory and eventually affect the feasibility of transfer solutions.

For LPF at EoL condition, it is sound to consider a circumstance in which
the initial position and velocity uncertainties are between case E and F:
5-10 km and 0.05-0.1 m/s, respectively. The 95-percentile navigation cost
associated to case E and F is 0.48 m/s and 0.30 m/s, respectively. When
summed to the deterministic cost for the transfer shown throughout Section
4.2.2 (0.657 m/s, see Figure 11), it yields a total cost of 0.957–1.137 m/s.
Although at the limit of the budget, this cost is compatible with the estimated
residual budget in Table 5, which indicates evidence for the feasibility of the
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LISA Pathfinder transfer to the Sun–Earth saddle point. Having disposed
LPF on July 18 2017, therefore not opting for the opportunistic mission
extension described in this paper, may have represented a missed opportunity.
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Figure 18: Navigation cost for several case with
different initial dispersion.

Table 9: Cases on initial dispersion.

Case σr [km] σv [m/s]

A 10000 10
B 500 5
C 100 1
D 50 0.5
E 10 0.1
F 5 0.05
G 1 0.01

5. Conclusions

A method to convert impulsive maneuvers into finite burn arcs is pre-
sented. The method is applied to the case of LISA Pathfinder transfer to
the Sun–Earth gravitational saddle point with very promising results, both
in terms of convergence and in terms of optimality of the solutions. Many
transfers are found from the Sun–Earth libration point region, which feature
reasonable time of flight and very low ∆v consumption, from few centimeters
per second to 10 m/s, compatibly with the limited control authority of the
spacecraft.

Navigation analysis results have shown that some limitations do exist,
due to the level of ∆v required to keep the spacecraft on the nominal path.
In particular, it is found that the sizes of correction maneuvers are highly
influenced by the frequency chosen for the guidance process as well as by the
initial dispersion of the spacecraft state. Therefore, LPF could haven been
moved to the SP only if the initial dispersion was reduced to a value smaller
than 10 km on each position component and smaller than 0.1 m/s on each
velocity component. These values are compatible with ESA current deep-
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space tracking capabilities. With these conditions, a guidance frequency of
one control maneuver per week would have been sufficient. For larger initial
dispersion values, the size of correction maneuvers rapidly increases, with a
consequent need to reduce the guidance frequency to once every two weeks or
even lower values, to ensure their proper implementation with the on-board
thrusters. Nonetheless, in these cases the transfer feasibility could still be
jeopardized, due to high level of ∆v required.

This work shows evidence of feasibility to fly and navigate LISA Pathfinder
towards the Sun–Earth saddle point, exploiting the chaotic dynamics of a
high-fidelity dynamical model. Nevertheless, LPF was disposed on July 2017,
and the result of the present work were not used.

Acknowledgments

The work described in this paper has been conducted under ESA Contract
No. 4000118201/16/F/MOS. The authors would like to acknowledge Masaki
Nakamiya, Gonçalo Aguiar, Erind Veruari, and Srikara Cherukuri for their
valuable contribution.

References

Acton Jr, C., 1996. Ancillary data services of NASA’s navigation and
ancillary information facility. Planetary and Space Science 44, 65–70.
doi:10.1016/0032-0633(95)00107-7.

Acton Jr, C., Bachman, N., Semenov, B., Wright, E., 2018. A look towards
the future in the handling of space science mission geometry. Planetary
and Space Science 150, 9–12. doi:10.1016/j.pss.2017.02.013.

Bekenstein, J.D., 2004. Relativistic gravitation theory for the modified
Newtonian dynamics paradigm. Physical Review D 70, 083509.1–28.
doi:10.1103/PhysRevD.70.083509.

Bekenstein, J.D., Magueijo, J., 2006. Modified Newtonian dynamics habitats
within the solar system. Physical Review D 73, 103513.1–14. doi:10.1103/
PhysRevD.73.103513.

Belbruno, E., Miller, J.K., 1993. Sun-perturbed Earth-to-Moon transfers
with ballistic capture. Journal of Guidance, Control, and Dynamics 16,
770–775. doi:10.2514/3.21079.

39



Bowell, E., Virtanen, J., Muinonen, K., Boattini, A., 2002. Asteroid orbit
computation, in: Bottke, W.F.J., Cellino, A., Paolicchi, P., Binzel, R.P.
(Eds.), Asteroids III. University of Arizona Press, pp. 27–43.

Bryson, A.E., 1975. Applied optimal control: optimization, estimation and
control. CRC Press.

Cox, A., Howell, K.C., 2016. Transfers to a Sun–Earth saddle point: An
extended mission design option for LISA Pathfinder, in: Advances in the
Astronautical Sciences, pp. 653–668.

Crassidis, J.L., Markley, F.L., 2003. Unscented filtering for spacecraft atti-
tude estimation. Journal of Guidance, Control, and Dynamics 26, 536–542.
doi:10.2514/2.5102.

Dei Tos, D.A., 2018. Trajectory optimization of limited control authority
spacecraft in high-fidelity models. Ph.D. thesis. Politecnico di Milano,
Milano, Italy. URL: https://www.politesi.polimi.it/handle/10589/
137086, doi:10.13140/RG.2.2.15099.00804.

Dei Tos, D.A., Topputo, F., 2017. Trajectory refinement of three-body orbits
in the real solar system model. Advances in Space Research 59, 2117–2132.
doi:10.1016/j.asr.2017.01.039.

Dei Tos, D.A., Topputo, F., 2019. High-fidelity trajectory optimization with
application to saddle-point transfers. Journal of Guidance, Control, and
Dynamics, accessed February 19, 2019 doi:10.2514/1.G003838.

Fabacher, E., Kemble, S., Trenkel, C., Dunbar, N., 2013. Multiple Sun–Earth
saddle point flybys for LISA Pathfinder. Advances in Space Research 52,
105–116. doi:10.1016/j.asr.2013.02.005.

Farquhar, R.W., Dunham, D.W., Guo, Y.P., McAdams, J.V., 2004. Uti-
lization of libration points for human exploration in the Sun–Earth–Moon
system and beyond. Acta Astronautica 55, 687 – 700. doi:10.1016/j.
actaastro.2004.05.021.

Farquhar, R.W., Muhonen, D.P., Newman, C.R., Heubergerg, H.S., 1980.
Trajectories and Orbital Maneuvers for the First Libration-Point Satellite.
Journal of guidance, control, and dynamics 3, 549–554. doi:10.2514/3.
56034.

40



Galianni, P., Feix, M., Zhao, H.S., Horne, K., 2012. Testing quasilinear mod-
ified Newtonian dynamics in the solar system. Phys. Rev. D 86, 044002.
doi:10.1103/PhysRevD.86.044002.

Givens, W., 1958. Computation of plain unitary rotations transforming a
general matrix to triangular form. Journal of the Society for Industrial
and Applied Mathematics 6, 26–50. doi:10.1137/0106004.

Gómez, G., Masdemont, J., Mondelo, J., 2002. Solar system models with
a selected set of frequencies. Astronomy and Astrophysics 390, 733–750.
doi:10.1051/0004-6361:20020625.

Guo, Y.N., Hawkins, M., Wie, B., 2013. Applications of Generalized Zero-
Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm. Journal
of Guidance, Control, and Dynamics 36, 810–820. doi:10.2514/1.58099.

Hees, A., Famaey, B., Angus, G.W., Gentile, G., 2016. Combined solar
system and rotation curve constraints on MOND. Monthly Notices of the
Royal Astronomical Society 455, 449–461. doi:10.1093/mnras/stv2330.

Landgraf, M., Renk, F., de Vogeleer, B., Boutonnet, A., 2014. LISA
Pathfinder Consolidated Report on Mission Analysis. European Space
Agency (ESA), CReMA, S2-ESC-RP-5001. ESA.

Milgrom, M., 1983. A modification of the Newtonian dynamics as a possible
alternative to the hidden mass hypothesis. Astrophysical Journal 270,
365–370. doi:10.1086/161130.

Milgrom, M., 2008. The MOND paradigm. arXiv preprint astro-
ph/0801.3133 .

Mingotti, G., Topputo, F., 2011. Ways to the Moon: A survey, in: Advances
in the Astronautical Sciences, pp. 2531–2547.

Modenini, D., Zannoni, M., Tortora, P., 2017. Retrodictor-corrector filter.
Journal of Guidance, Control, and Dynamics 40, 2330–2334. doi:10.2514/
1.G002969.

Montenbruck, O., Gill, E., 2000. Satellite orbits: models, methods and ap-
plications. Springer Science & Business Media.

41



Ocampo, C., Munoz, J.P., 2010. Variational equations for a generalized
spacecraft trajectory model. Journal of guidance, control, and dynamics
33, 1615–1622. doi:10.2514/1.46953.

Park, R.S., Scheeres, D.J., 2006. Nonlinear mapping of gaussian statistics:
Theory and applications to spacecraft trajectory design. Journal of Guid-
ance, Control, and Dynamics 29, 1367–1375. doi:10.2514/1.20177.

Sanders, R.H., 2007. Modified gravity without dark matter, in: Pa-
pantonopoulos, L. (Ed.), The Invisible Universe: Dark Matter and Dark
Energy. Lecture Notes in Physics, vol. 720, Springer, Berlin, Heidelberg,
pp. 375–402. doi:10.1007/978-3-540-71013-4_13.

Sanders, R.H., McGaugh, S.S., 2002. Modified Newtonian dynamics as an
alternative to dark matter. Annual Review of Astronomy and Astrophysics
40, 263–317. doi:10.1146/annurev.astro.40.060401.093923.

Senent, J., Ocampo, C., Capella, A., 2005. Low-thrust variable-specific-
impulse transfers and guidance to unstable periodic orbits. Journal of
Guidance, Control, and Dynamics 28, 280–290. doi:10.2514/1.6398.

Tapley, B.D., Schutz, B.E., Born, G.H., 2004. Statistical orbit determination.
Academic Press.

Topputo, F., Belbruno, E., 2015. Earth–Mars transfers with ballistic
capture. Celestial Mechanics and Dynamical Astronomy 121, 329–346.
doi:10.1007/s10569-015-9605-8.

Topputo, F., Dei Tos, D.A., Mani, K.V., Ceccherini, S., Giordano, C.,
Franzese, V., Wang, Y., 2018a. Trajectory design in high-fidelity models,
in: 7th International Conference on Astrodynamics Tools and Techniques
(ICATT), pp. 1–9.

Topputo, F., Dei Tos, D.A., Rasotto, M., Nakamiya, M., 2018b. The
Sun–Earth saddle point: characterization and opportunities to test gen-
eral relativity. Celestial Mechanics and Dynamical Astronomy 130, 33.
doi:10.1007/s10569-018-9824-x.

Topputo, F., Dei Tos., D.A., Rasotto, M., Renk, F., 2018c. Design and fea-
sibility assessment of ultra low thrust trajectories to the Sun-Earth saddle

42



point, in: 2018 Space Flight Mechanics Meeting, AIAA SciTech Forum,
(AIAA 2018-1691). doi:10.2514/6.2018-1691.

Topputo, F., Zhang, C., 2014. Survey of direct transcription for low-thrust
space trajectory optimization with applications. Abstract and Applied
Analysis 2014. doi:10.1155/2014/851720.

Trenkel, C., Kemble, S., 2009. Gravitational science with LISA Pathfinder.
Journal of Physics: Conference Series 154, 012002. doi:10.1088/
1742-6596/154/1/012002.

Trenkel, C., Kemble, S., Bevis, N., Magueijo, J., 2012. Testing modified
Newtonian dynamics with LISA Pathfinder. Advances in Space Research
50, 1570–1580. doi:10.1016/j.asr.2012.07.024.

Trenkel, C., Wealthy, D., 2014. Effect of LISA Pathfinder spacecraft self-
gravity on anomalous gravitational signals near the Sun–Earth saddle point
predicted by quasilinear MOND. Physical Review D 90, 084037.1–22.
doi:10.1103/PhysRevD.90.084037.

Yarnoz, D.G., Jehn, R., Croon, M., 2006. Interplanetary navigation along
the low-thrust trajectory of BepiColombo. Acta Astronautica 59, 284–293.
doi:10.1016/j.actaastro.2006.02.028.

43


	FronteRivista
	DEITD_OA_02-19senzafront

