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ABSTRACT: The evaluation of the seismic behavior of underground structures represents
one of the most actual seismic geotechnical and structural engineering research topics about
the study of the complex phenomena of soil-structure interaction.

In the last decades, different types of simplified and numerical approaches have been devel-
oped for the evaluation of the seismic behavior of these structures, especially after the recent
strong earthquakes where they have been subjected to significant damages. In the same way,
in the last few years, the International Codes are beginning to pay attention to the concepts of
their seismic design. Despite the significant development of knowledge still remain open sev-
eral uncertainties of the correct reproduction of the underground structures behavior under
seismic load.

The paper presents the main results of the comparison between coupled and decoupled
approach used for the evaluation of the seismic behavior of multi-propped shallow under-
ground structure embedded in granular soils, considering four homogeneous soil profiles char-
acterized by a different value of shear wave velocity and five natural accelerograms included
within the European Strong Motion Database. The results of the analysis show the influence
of the soil characteristics related to the seismic signal parameters on the seismic response of
the structure in terms of maximum bending moment acting on the concrete retaining walls.

1 INTRODUCTION

For a long period, the underground structures were considered less vulnerable to earthquake
compared to above-ground constructions. This assumption has been denied as a result of
damage observed following strong motion earthquakes in the last 30 years and in particular
the 1995 Kobe (Japan), the 1999 Chi-Chi (Taiwan) and the 1999 Kocaeli (Turkey) earth-
quakes (Hashash et al., 2010), when their seismic design was not adequate.
An effective seismic design requires a very good knowledge of the behavior of this type of

structures under seismic loads. Respect to above-ground structures, in facts, the underground
structures exhibit a complex soil-structure interaction phenomenon that contribute to create
uncertainty on the evaluation of their seismic behavior.
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The goal of this study is to further improve the knowledge of the underground structure seis-
mic response, considering a multi-propped underground structure embedded in granular soils
through the application of decoupled and coupled approaches. The decoupled approach consists
in the evaluation of the ground deformation without taking into consideration the presence of
the structure (i.e. 1D free field condition) and in the application of such deformations to the
structure computing the structure response parameter (bending moment, in this work). The
coupled approach, instead, was carried out by the fully dynamic nonlinear analysis, considering
a numerical model implemented in FLAC2D which represents both structure and soil.

2 SENSITIVITY ANALYSIS

As mentioned before, the behavior of the underground structures under seismic action is
strictly related to the response of the surrounding soil to a given seismic input. In particular, if
the fundamental frequencies of the soil profile are near to the frequencies of the seismic input
characterized by the maximum energy content, the occurrence of the resonance effects is pos-
sible (Tropeano & Soccodato, 2014; Soccodato & Tropeano, 2015).
Different types of approach were developed for the evaluation of the seismic behavior of

the underground structures that consider the soil-structure interaction effects (coupled
approach) or not (decoupled approach). This fact can lead to obtaining different values of
internal actions on the structural elements.
To evaluate the seismic behavior, a sensitivity analysis, based on the performance-based

design approach, was conducted considering the variation of shear modulus of the homoge-
neous soil which the structure is embedded. The model used is composed by the presence of
31.6 m of dry coarse-grained soil profile overlying 51.3 m of sandstone and the bedrock.

2.1 Soil profiles

Four different soil profiles have been defined to have a shear wave velocity equal to 360 m/s,
450 m/s, 600 m/s and 750 m/s. Table 1 lists the main mechanical properties of the soil profiles
considered in this analysis which are obtained considering the mechanical properties of the
Lima (Perù) outback soil (Zucca, 2019).
In particular, the profiles consist of a layer of dry coarse-grained soil, 31.6 m in thickness,

resting upon a rigid bedrock. An elastic perfectly plastic model with Mohr-Coulomb yield
locus, characterized by mechanical properties listed on Table 1 was adopted. The soil hystere-
tic behavior was modeled using the shear modulus decay curves given by Seed and Idriss
(1970). The hysteretic damping is, however, computed by applying the generalized Masing cri-
teria implemented in the computer code used in this study. The dilatancy, considered in this
study, is equal to zero.

2.2 Structure

A representative section of the shallow multi-propped underground structure, considered in
this study, is shown in Figure 1.
The principal structural elements that characterized the structure are the concrete retaining

walls, 1 m thick, and a series of concrete circular columns, 1.2 m diameter, positioned in a

Table 1. Mechanical properties of soil profiles (γ = unit weight, c’= cohesion, φ’ = friction angle, ν =
Poisson ratio).

γ c’ φ’ ν VS
Soil [kN/m3] model [kPa] [°] [-] [m/s]

coarse-grained soil 21 elasto-plastic 40 39 0.25 360 ÷ 750
sandstone 22 elastic - - 0.38 1750
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regular grid 14.70 × 12.00 m. The foundation of the columns consists of circular concrete
piles, 1.8 m diameter and 9 m deep. The materials mechanical properties of these elements are
listed in Table 2.

2.3 Seismic inputs

For the seismic analysis, five acceleration times histories recorded during different European
seismic events (Greece, Amatrice, L’Aquila, Friuli and Montenegro), included within the
European Strong-Motion Database (Luzi et al., 2016) have been used. The principal

Figure 1. Representative section of the structure.

Table 2. Mechanical properties of the structural elements.

Structural elements Columns Pile Retaining Walls Slabs

concrete (fck) [MPa] 40 40 30 40
steel (fyk) [MPa] 420 420 420 420
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characteristics of the seismic inputs (PGA = peak ground acceleration, IA = Arias Intensity)
are listed in Table 3. The accelerograms have been selected for event magnitude between 6 and
7, peak ground acceleration value between 0.4 g and 0.6 g and in such a way the other integral
ground motion parameters have maximum variability.
In Figure 2 the seismic signals in frequency domain are shown. Note that the peaks of the

Fourier transform of the different seismic inputs are localized near the frequencies range that
include the first fundamental frequency of the four soil profiles. Only for the Montenegro seis-
mic input, all the main picks are found at lower frequencies compared to the first fundamental
frequency that characterized the different soil profiles.

2.4 Numerical modelling

The dynamic analyses were carried out, under plane strain conditions, through the finite dif-
ference code FLAC (Itasca, 2007). The numerical model and the relative computational grid
is shown in the Figure 3.
An elastic perfectly plastic model with Mohr Coulomb yield locus for the soil, characterized

by the mechanical properties listed in Table 1, was adopted while for the sandstone a simple
elastic constitutive law was chosen (Zucca et al., 2017). The shear stiffness at small strain, G0,
is calculated as a function of the shear waves velocity value, VS.
According to Kuhlemeyer & Lysmer (1973) criterion, the maximum size of the computation

mesh elements has been fixed to allow the correct propagation of harmonics with 18 Hz,

Table 3. Characteristics of the seismic inputs.

Mw PGA IA
Event [-] Station [g] [cm/s]

Greece 6.5 AIGA 0.52 117.1
Amatrice 6.5 AMT 0.53 156.4
L’Aquila 6.1 AQG 0.49 132.4
Friuli 6.0 FRC 0.35 84.5
Montenegro 6.9 PETO 0.45 455.7

Figure 2. Fourier Transforms of the seismic inputs.
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which is the maximum frequency of the seismic inputs used in this work. The formulation to
optimize the size of the mesh is given in Pagliaroli et al. (2007).
To minimize reflection effects on vertical lateral boundaries of the computational grid, free

field boundary conditions available in FLAC 7.0 library have been used. The contact between
soil and walls was modeled by using elastic-perfectly plastic interface elements, with a friction
angle equal to 20°.

2.5 System response

The response of model appears significantly influenced by different overlapping effects:

1. different stiffness of the soil profiles, due to the different values of shear wave velocity;
2. non-linear behaviour of the soil;
3. geometry of the system (2D effects);
4. soil-structure interaction effects.

The comparison between the parameters of the seismic inputs and those obtained at surface
level enables an evaluation of system response in relation to the first two effects mentioned above.
The results of the free field analysis (i.e. in 1D condition for the scheme considered in this

study), in terms of acceleration ratio (ratio of maximum acceleration at ground level, PGAS-

1D and maximum acceleration of the seismic input, PGA), are showed for each soil profiles in
the Figure 4.
The soil response, at the different seismic inputs, is related to the system vibration modes

ex-cited by the signal. In fact, the seismic response of the soil column is meaningfully influ-
enced by the soil motion and straining, in particular for the markedly non-linear behaviour of
the soil.
As mentioned before, the seismic inputs have resonance effects with the first vibration mode

of the different soil profiles, leading to an increase of the shear strain in the deeper soil layers
and, consequently, additional damping according to the strongly non-linear behaviour of the
soil (Soccodato & Tropeano, 2015). For these reasons, the free field analyses exhibit larger
amplification of the peak acceleration. Only for the unscaled accelerograms, the free field ana-
lyses show a reduction of the peak acceleration due to characteristics of the inputs which amp-
lify the damping effects due to the nonlinear behaviour of the soil.
The effects 3 and 4 are evaluated considering the ratio between the maximum acceleration

at the 2D model surface, PGAS-2D, and the peak acceleration at the surface obtained in free
field condition, PGAS-1D. The results are summarized in the Figure 5.

The geometry of the system and the presence of the structure generate an amplification of
the seismic motion behind the walls and at the center of the excavation for the focusing

Figure 3. Model geometry and computation grid.
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Figure 4. 1D response factor.

Figure 5. 2D response factor for L’Aquila seismic input.
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phenomena of the waves and seismic motion attenuation in front of the retaining walls due to
the diffraction phenomena of the waves. The presence of the structure, furthermore, due to
the its high stiffness, produces additional reflections for the soil-structure interaction effects.
The interaction of reflected and incident wave fields modifies the shaking amplitude that
depends on the phase shift of the two signals. The geometrical amplification and the phase
shift are closely related to the frequency content of the signal that changes due to the non-
linear behavior of the soil (Kuhlemeyer & Lysmer, 1973; Soccodato & Tropeano, 2015).

2.6 Decoupled approach

The decoupled approach, considered in this study, consists in the evaluation of the ground
deformation without taking into consideration the presence of the structure (i.e. in free field
condition) and in the application of such deformations (valued at the depth of the structure)
to the structure, according to the scheme reported in Wang (1993), to obtain the bending
moment acting on the retaining walls.
The seismic response of the soil profiles and, consequently, the displacements are evaluated

at the roof and the base of the structure with two different analyses approaches. The 1D
response analyses have been performed with DEEPSOIL (Hashash et al., 2016) adopting an
equivalent linear formulation and fully non-linear approach. The results obtained through
both approaches analyses are shown in Figure 6.
The displacements obtained by the equivalent linear analysis (DA-EL) shows a trend result-

ing from the first vibration mode shape of the soil column. These results are in according to
the considerations expressed in the previous paragraph 2.3, i.e. the seismic signals mainly
excite the first fundamental frequency of the soil profiles.
The second approach (DA-NL), used to obtain the displacements at the depth of the base

and at the roof of the underground structure, is to consider the free-field displacements

Figure 6. Comparison of the results (M = maximum moment occurred during the seismic action; M0 =
static moment).
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resulting from the numerical model, described in the previous paragraph 2.4, through the exe-
cution of a fully dynamic non-linear analysis.
The comparison of the results (Figure 6) of the two different methods showed that the relative

displacements obtained by the non-linear analysis are greater than the relative displacements
obtained by the equivalent linear analysis. Consequently, the increase of the bending moment
acting on the retaining walls follows this trend. The results show, also, that the difference of
the values of the bending moment acting on the section in correspondence to the central
slab obtained by non-linear analysis, DA-NL, and that obtained by equivalent linear analysis,
DA-EL, lies between 2% and 4% for all the selected accelerograms. This limited value is due to
the incidence of the value of the moment obtained under static conditions on the value of the
final moment compared to the increment due to the seismic action.

2.7 Coupled approach

The coupled approach is performed through one Finite Difference Model (FDM), imple-
mented in FLAC 7.0 (Itasca, 2007) software, representing both structure and soil. The model
characteristics are described in the previous paragraph 2.4. The evaluation of the seismic
behaviour of the underground structure described above is carried out considering static and
dynamic loads. In the static phase, the boundary conditions are the following: vertical sup-
ports in the base nodes to restrain the vertical displacements and horizontal supports in the
lateral nodes of the mesh to permit vertical soil settlements. The external loads considered are:
the dead load on the sides of the station equal to 50 kPa due to the presence of existing build-
ings and streets, the dead load in correspondence to the station equal to 20 kPa due to the
presence of the streets and the self-weight of the structure and the soil.
The static condition is determined by performing a construction stage analysis, accounting

for all the main phases involved in the construction of the structure.
The dynamic analysis is performed, after the final step of the construction stage, by using

fully non-linear dynamic analysis in time domain considering the five different seismic inputs.
The results obtained with coupled approach (labelled as CA-NL) and are shown in Figure 6.

3 RESULTS

Figure 6 shows the summary of the results obtained by the different approaches for all the
seismic inputs.
The results of the equivalent linear analysis (DA-EL) indicated that the maximum increase

of bending moment during the seismic action, in the section in correspondence to the central
slab, is equal to 110 kN m for Montenegro seismic input. Bending moment increase is almost
negligible in cases where the soil profile is characterized by shear waves velocity equal to VS =
600 m/s and VS = 750 m/s.

Considering the fully non-linear 1D dynamic analyses results (DA_NL), the maximum
increment of bending moment occurred in the profile characterized by VS = 360 m/s for Mon-
tenegro earthquake and it is equal to 125 kN m. The difference of the results obtained by the
equivalent linear analysis and that resulted from non-linear analysis were between 2% and 4%
for all the accelerograms. As mentioned before, this limited value is due to the incidence of the
value of the moment obtained under static conditions on the value of the post-seismic
moment compared to the increment due to the seismic action.
The results of the coupled approach (CA-NL) showed that for all the accelerograms the

increment due to the seismic action was higher for the soil profiles characterized by VS = 600
m/s and 750 m/s in contrast to the decoupled approach results. The maximum increment, also
in this case, occurred for Montenegro seismic signal and was equal to 150 kN m for the soil
profile characterized by VS = 750 m/s.

The trend of the maximum value of the bending moment, obtained during the seismic
event, decrease of the maximum value when the soil column stiffness increases.
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4 CONCLUSIONS

The values, in terms of maximum bending moment acting on the section in correspondence to
the central slab during the seismic event, obtained by the coupled approach are always greater
than the values obtained by the decoupled approach.
For all the selected accelerograms these differences are moderate for the soil profiles charac-

terized by a low stiffness, confirming the validity of the decoupled approaches, but tending to
increase for the soil profiles characterized by VS = 600 m/s and 750 m/s where the decoupled
approach appears underestimate the internal actions on the structural elements.
Furthermore, the results obtained are affected by the different assumptions which charac-

terize the methods. In particular, the decoupled approach tends to lose the criterion of the
contemporaneity of the actions because they are considered only the maximum displacement
that occurs during a seismic event.
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