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Abstract 14 

We assess the impact of an anisotropic space and time grid adaptation technique on our ability to 15 

solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in 16 

terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a 17 

second-order stationary random process. We consider nonreactive transport of dissolved chemicals 18 

to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which 19 

provides the advective component of transport, is obtained through the numerical solution of Darcy’s 20 

law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We 21 

investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are 22 

respectively grounded on the definition of the guiding error estimator through the spatial gradients 23 

of: (i) the concentration field only; (ii) both concentration and velocity components. We test the 24 

approach for two-dimensional computational scenarios with moderate and high levels of 25 

heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we 26 

key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough 27 

curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference 28 

against which we test our results, we consider corresponding solutions associated with uniform space-29 

time grids whose level of refinement is established through a detailed convergence study. We find a 30 

satisfactory comparison between results for the adaptive methodologies and such reference solutions, 31 

our adaptive technique being associated with a markedly reduced computational cost. Comparison of 32 

the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on 33 

concentration fields yields some advantages in grasping the key features of solute transport taking 34 

place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) 35 

embedding the velocity field in the error estimator guiding strategy yields an improved 36 

characterization of the forward fringe of solute fronts which propagate through high velocity regions.  37 

 38 



1 Introduction 39 

A critical challenge to the characterization of solute transport in heterogeneous porous materials is 40 

the development of numerical methodologies rendering suitable approximations of the space-time 41 

dynamics of concentration fields in the presence of marked spatial contrasts of the medium hydraulic 42 

parameters, such as conductivity. 43 

This study is focused on transport of non-reactive chemicals in heterogeneous porous media at the 44 

continuum scale, as described through the classical Advection Dispersion Equation (ADE). Effective 45 

dispersion coefficients appearing in the ADE accounts (in principle) for the enhancement of solute 46 

dispersion due to the unresolved velocity variability at scales which are not explicitly included in the 47 

model (see, e.g., Bijeljic and Blunt, 2006; Dentz and de Barros, 2015; de Barros and Dentz, 2016). 48 

This picture is consistent with the dispersion setting in capillary tubes (Taylor, 1953; Salles et al., 49 

1993) where hydrodynamic dispersion arises from enhanced diffusion due to the presence of a spatial 50 

velocity distribution. The advection term appearing in the ADE accommodates the resolved details 51 

of the velocity field emerging from the solution of the flow problem. In the past two decades a 52 

considerable amount of literature focuses on the analysis of transport features which are not consistent 53 

with the ADE formulation (most notably, e.g., long tails of solute breakthrough curves, corresponding 54 

to long residence times of solute mass within the domain). These observations has substantiated the 55 

development of models which can capture non-Fickian (or so-called anomalous) transport features. 56 

These are based on approaches which include space-time non local theories (e.g., Cushman and Ginn, 57 

1993; Guadagnini and Neuman, 2001; Morales-Casique et al., 2006a, b), continuous time random 58 

walk (CTRW, Berkowitz et al., 2006), fractional derivatives (Zhang et al., 2007) and multi-rate mass 59 

transfer concepts (Haggerty et al., 2004). All of these effective formulations include nonlocal 60 

transport terms, a framework relating all of them being presented by Neuman and Tartakovsky 61 

(2009).  62 

According to a number of recent studies, the ability of the ADE-based mathematical formulation to 63 

interpret solute transport processes in randomly heterogeneous media is largely tied to the level of 64 



descriptive detail associated with the characterization of the system properties. For example, results 65 

of Riva et al. (2008, 2010) suggest that apparent non-Fickian features observed in field-scale data are 66 

captured by the use of an ADE through an appropriate description of the (random) three-dimensional 67 

heterogeneity of the aquifer, and hence of the velocity field. In this context, the space-time resolution 68 

selected to approximate the ADE can have a considerable impact on the ability of the model to 69 

interpret observed results (e.g., Lawrence and Rubin, 2007). It is then relevant to be able to 70 

approximate the ADE with a sufficiently refined space-time resolution to retain the relevant details 71 

of the input heterogeneous conductivity (or trasmissivity) field, as the spatial organization of 72 

preferential pathways can imprint important transport features of transport (Edery et al., 2014). An a 73 

priori selection of the most suitable space and time discretization becomes then a challenging task. 74 

This aspect is exacerbated in highly heterogeneous media where solutes can typically travel relatively 75 

fast along preferential pathways and reside for long times in low-velocity regions. 76 

A convenient way to design a mesh according to which the space-time domain is discretized is to rely 77 

on a setting characterized by a uniform numerical grid in space and a fixed time step across the 78 

simulation window. In this context, an appropriate discretization grid can be identified through a 79 

typical grid convergence analysis. The latter is based upon the solution of the numerical problem 80 

through diverse space / time discretization levels, obtained through a sequential uniform refinement 81 

of the spatial mesh and of the time step. This type of approach can lead to unaffordable computational 82 

costs as the domain size increases and/or a detailed description of the tracer plume is needed. Adaptive 83 

discretization techniques provide a valuable alternative. The basic idea of adaptive discretization is 84 

to exploit the features of the solution to increase or decrease automatically the space and time 85 

resolution associated with the numerical approximation. As a consequence, the element and time step 86 

size (and eventually the element shape) is not chosen a priori, but dynamically adjusted. This is 87 

typically obtained upon relying on a specific error indicator. A series of previous works provides 88 

examples of implementation of adaptive grids in the context of numerical modeling of flow (Knupp, 89 

1996; Cao and Kitanidis, 1999; Cirpka et al., 1999; Mehl and Hill, 2002; Bresciani et al., 2012; 90 



Jayasinghe, 2015) and solute transport scenarios in homogenous (see, e.g., Pepper and 91 

Stephenson,1995; Kavetski et al., 2002; Saaltink et al., 2004; Younes and Ackerer, 2010) and 92 

heterogeneous (see, e.g., Huang and Zhan, 2005; Klieber and Rivière, 2006; Chueh et al., 2010; 93 

Gedeon and Mallants, 2012; Amaziane et al., 2014; Mansell et al., 2002 and references therein) 94 

porous media. Amaziane et al. (2014) employ both space and time adaptive technique for simulating 95 

radionuclide transport in block-wise heterogeneous media. In their approach, these authors did not 96 

incorporate the anisotropic features of the solution to guide the spatial adaptation of the grid. 97 

Jayasinghe (2015) implement an anisotropic spatial and temporal step refinement for single- and two- 98 

phase flow taking place in a homogenous field scale scenario. An advantage of anisotropic mesh 99 

adaptivity is that the size, orientation and shape of the elements are optimized to match the directional 100 

features of the problem considered. 101 

Our study is viewed in this context. A distinctive original aspect of our work is that we combine 102 

anisotropic mesh and time step adaptation to simulate solute transport within randomly heterogeneous 103 

media. We characterize heterogeneity of the considered porous systems in terms of the spatial 104 

distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order 105 

stationary random process This conceptualization of the medium is at the basis of a large body of 106 

works in the field of stochastic groundwater hydrology (see, e.g., Dagan, 1989 amongst others). By 107 

performing a detailed study on single realizations of the conductivity field, our work provides an 108 

assessment of the reliability of adaptive grid techniques to be employed within uncertainty 109 

quantification and model calibration procedures.  110 

Our works starts from the anisotropic mesh and time step adaptive discretization technique recently 111 

proposed by Esfandiar et al. (2014, 2015). The latter relies on the a posteriori recovery-based error 112 

estimators for space and time discretization errors presented by Micheletti and Perotto (2010) and 113 

Porta et al. (2012a,b). Esfandiar et al. (2015) assess the impact of employing a space and time 114 

adaptation procedure in the context of parameter estimation. They do so upon comparing parameter 115 

estimates obtained through inverse modeling of solute transport within a laboratory-scale block-wise 116 



heterogeneous flow cell. Their results show that implementation of the space-time adaptive 117 

methodology yields improved quality of parameter estimates as compared against those obtained 118 

using fixed uniform discretization characterized by a seemingly sufficient resolution. 119 

Here, we extend the adaptive discretization technique of Esfandiar et al. (2015) and apply it to 120 

modeling solute transport in single realizations of randomly heterogeneous porous media. We follow 121 

the typical procedure of solving the flow problem on a fixed numerical grid. The latter is designed to 122 

honor the spatial structure of the random conductivity field. The resulting velocity field may exhibit 123 

a complex spatial arrangement, including the occurrence of high velocity regions where flow is 124 

channeled and large stagnant zones that may originate non-Fickian solute transport features displayed 125 

by spatially averaged solute breakthrough curves (Edery et al., 2014). Spatial dynamic adaptation 126 

entails performing coarsening and refinement of the computational mesh/grid at each time step. In 127 

this context, a critical challenge to an effective implementation of dynamically adaptive spatial 128 

meshes is the requirement of projecting the velocity field onto the adapted mesh. The latter could be 129 

characterized by local element sizes which may be unrelated to the original mesh employed to 130 

characterize flow across the hydraulic conductivity field.  131 

Here, we investigate two diverse strategies guiding the anisotropic meshes adaptation. The error 132 

estimator associated with each of these strategies is assessed on the basis of spatial gradients of (i) 133 

solute concentration only, or (ii) both concentration and fluid velocity components. With reference to 134 

the latter implementation, we follow the procedure proposed by Porta et al. (2012a) to combine 135 

diverse error indicators to drive mesh adaptation. Embedding the velocity components in the error 136 

estimator is an original feature of our study and is consistent with the feedback between the spatial 137 

derivatives of the components of the velocity vector and the observed folding, stretching, mixing and 138 

spreading of the evolving concentration plume. The latter have emerged as remarkable features, 139 

which are particularly evident in highly heterogeneous media (see, e.g., Le Borgne et al., 2015). 140 



To assess the quality of the adaptive methodologies implemented, we focus on the temporal evolution 141 

of both local and spatially integrated concentrations as well as global spreading and mixing indicators. 142 

These include the second centered spatial moment of concentration and the scalar dissipation rate. 143 

The rest of the study is organized as follows. Section 2 describes the problem setting, Section 3 being 144 

devoted to a brief recounting of the main features of the adaptive methodology of Esfandair et al. 145 

(2014, 2015). Results and comparisons of the adaptive space-time discretization techniques are 146 

illustrated in Section 4. Conclusions are drawn in Section 5. 147 

2 Problem Setting 148 

2.1 Mathematical and Numerical Model 149 

We consider a two-dimensional rectangular domain,  , of height H = 0.14 m and width L = 0.04 m. 150 

We denote the horizontal and the vertical direction with y, z, respectively (see Fig. 1). The Advection 151 

Dispersion Equation (ADE) reads 152 

  0
C

C C
t


   


v D ,  (1) 153 

where ( , )C C t x  [-] is solute concentration at location x and time t, v [LT-1] is the velocity vector 154 

(vy and vz respectively denote horizontal and vertical velocity components), and D [L2T-1] is the local 155 

dispersion tensor given by 156 

    with , = ,
i j

T m ij L T

v v
D i j y z      D

v
. (2) 157 

Here, T  [L] and L  [L] respectively are transverse and longitudinal dispersivity; 
mD [L2T-1] is 158 

molecular diffusion; ij  is the Kronecker’ delta; and v  is the velocity modulus. We set 159 

310T L m       and 
9 210 /mD m s  in our showcase examples. The imposed boundary 160 

conditions for Eq.s (1)-(2) are (see also Fig. 1c) as follows: a time-varying concentration BCC  is set 161 

along the bottom edge of the domain, according to 
3 t

BCC e  ; impermeable boundary conditions are 162 

prescribed along the vertical edges; and a free boundary condition is imposed at the top of the domain, 163 



i.e., 0C  n , n being the normal unit vector to the boundary (see also Fig. 1a). Solute concentration 164 

is zero everywhere in the domain at the initial simulation time. 165 

We consider a steady-state advective velocity field, v, whose spatial structure is driven by the typical 166 

formulations 167 

0 v , 
K

h


  v ,   (3) 168 

where h [L] is hydraulic head, and   [-] is porosity, which we take as uniform and set as   = 0.35. 169 

The imposed boundary conditions for Eq. (3) are (see also Fig. 1b): fixed head along the bottom edge, 170 

BCh ; no-flow along the vertical edges; and imposed constant vertical velocity, ,z BCv =
37.0 10 /m s , 171 

at the top boundary. The hydraulic conductivity of the porous medium is modeled as an isotropic 172 

random field 
( , )Y y z

GK K e  [LT-1], 910 /GK m s  being the geometric mean of K and Y a zero-mean 173 

second-order stationary random process characterized by the isotropic exponential covariance 174 

function 175 

| |

2 l
Y YC e





r

.  (4) 176 

Here, r, 2
Y , l respectively are the separation vector (or lag) between two points in space, variance 177 

and correlation length of Y. In our examples, we set l = 0.02 m, corresponding to H/l = 7 and L/l = 2. 178 

We consider a mildly ( 2
Y  = 1) and a strongly ( 2

Y  = 5) heterogeneous Y field, to explore the effects 179 

of increasing level of complexity of the velocity and concentration distributions on the grid adaptation 180 

strategy. The heterogeneous conductivity fields are synthetically generated by the widely used and 181 

tested code SGSIM (Deutsch and Journel, 1998) on a uniform grid with 50yn   and 175zn   182 

elements, respectively along the y and z directions. Note that this corresponds to characterize the 183 

conductivity field through 25 generation points per correlation length, which ensures attaining a high 184 

level of descriptive detail of the heterogeneity in K. Hereinafter we label as K  the size of the square 185 



element of the uniform mesh employed for generating K. Fig. 1a depicts the realization of Y employed 186 

for the test case with 2
Y  = 5.  187 

Transport simulations are performed across a time window of length 4 PVT t  and 2 PVT t , 188 

respectively for 2 5Y   and 2 1Y  , PVt  = ,/ z BCH v  = 200 s corresponding to a pore volume. A global 189 

Péclet number  , ,/z BC m z BCPe lv D v    can be defined as the ratio between average diffusion-190 

dispersion and advective time scales. In our numerical test cases 20.0Pe  . 191 

Following Esfandiar et al. (2014, 2015), we discretize Eq.s (1)-(2) by means of a stabilized finite 192 

element method, which is based on a streamline diffusion technique (Brooks and Hughes, 1991). 193 

Spatial discretization is performed upon relying on a spatial mesh  h ET , which results in a 194 

conformal discretization of   into triangular elements E. Discretization of the time window [0, T] is 195 

performed upon introducing the time levels  0 0,.., nt t T  , which define the set  kI  of the time 196 

intervals kI  of amplitude 
1k k kt t t   . Time discretization is performed through the standard θ-197 

method (Quarteroni et al., 2007). We resort to an implicit scheme and set θ= 2/3 to guarantee the 198 

unconditionally absolute stability of the θ -method. The numerical solution of the flow problem in 199 

Eq. (3) relies on a standard finite element of degree two for the pressure. As such, velocity 200 

components are obtained as piecewise linear functions through Eq. (3). 201 

Fig. 1b depicts the resulting spatial distribution of the natural logarithm of the modulus of v ,  log v202 

, for 2 5Y  . Note the complexity of the structure of the velocity field, as evidenced by the presence 203 

of a clearly defined low-velocity region and two preferential pathways characterized by large 204 

velocities (identified by black dashed curves in Fig. 1b). Fig. 1c depicts the concentration field at t = 205 

0.5 tPV calculated on the same uniform mesh for 2 5Y   (see details in Section 2.3). 206 

2.2 Observables 207 



We introduce here the quantities which constitute the key target outputs for the purpose of our 208 

analyses. We consider the temporal variation of solute concentration at given locations within the 209 

computational domain, i.e., 210 

  ( , , )F F FC t C y z t    ( , , )S S SC t C y z t  (5) 211 

where FP  = ( Fy , Fz ) and SP  = ( Sy , Sz ) indicate the locations in the domain where v  is largest and 212 

lowest, respectively (i.e., subscripts F and S respectively correspond to fast and slow regions). We 213 

find ( 23.8 10 ;Fy m   23.8 10Fz m  ) and ( 21.5 10 ;Sy m   23.6 10Sz m  ) for the highly 214 

heterogeneous test case ( 2 5Y  ), as depicted in Fig. 1c. Otherwise, we obtain ( 34 10Fy m  ; 215 

26.9 10Fz m  ) and ( 21.8 10 ;Sy m   23.3 10Sz m  ) for the field with 2 1Y  . 216 

We also consider section-averaged concentrations, mimicking typically observed breakthrough 217 

curves, i.e., 218 

1
( , , )i i

L

C C y z t dy
L

   with  1,2,3i ,  (6) 219 

where 1C  is evaluated at z1 = H/4, 2C  at z2 = H/2, and 3C  at z3 = H (see Fig. 1c). 220 

We then focus on globally integrated quantities, which can quantify spreading and mixing of the 221 

plume within the domain. To this end, we consider the second centred spatial moment of the 222 

concentration plume along the z-direction, which has a relevant role for the characterization of solute 223 

plume spreading and is defined as 224 

 
 

 
21

( , )zz AVS t z z t C t d
M t



     
x  with   ( , )M t C t d



  x ,  (7) 225 

where AVz  is the center of mass of the plume at time t, i.e., 226 

 
 

1
( , )AVz t z C t d

M t


 
 

x . (8) 227 

We finally consider the scalar dissipation rate 228 



  Tt C Cd



    D  (9) 229 

which quantifies the rate of mixing of the plume and is markedly important for the study of mixing-230 

driven reactive transport (see, e.g., De Simoni et al., 2005, and references therein). 231 

2.3 Fixed Uniform Discretization 232 

We solve flow (Eq. (3)) and transport (Eq. (1)) in the set-up described in Section 2.1 for a series of 233 

fixed uniform triangular meshes, each associated with an increased level of spatial discretization and 234 

decreased width of the time step. Increasing levels of space-time refinement are analyzed until 235 

convergence of the numerical results is attained. As a convergence criterion, we impose that all of the 236 

integrated quantities of interest (Eq.s (6)-(9)) do not exhibit a relative absolute error larger than 1% 237 

and that the pointwise breakthrough curves (see Eq. (5)) do not exhibit a relative absolute error larger 238 

than 5%  between two consecutive levels of refinement. As a starting grid, corresponding to a first 239 

level of discretization, we select a structured Cartesian grid where the distances y  and z  between 240 

two nodes along the y and z axes coincide with K . The resulting mesh, here termed G1, is formed 241 

by 1 17,500Gn   triangles. As a second level of discretization (corresponding to mesh G2), we 242 

subdivide each conductivity element into four sub-elements, each of which is composed of two 243 

triangles. In this configuration, the length of the edges of the triangles are / 2y z K      and G2 244 

comprises 2 70,000Gn   elements. We proceed according to this strategy until we reach a level of 245 

refinement corresponding to / 6y z K      for mesh G6. The latter is then composed of 246 

6 630,000Gn   triangles. With reference to the time step, we analyze three different values, i.e., 247 

1

1 10t s  , 
2

2 5 10t s    and 
2

3 2.5 10t s   . Our results indicate that the quantities of interest 248 

introduced in Section 2.2 attain convergence at G5 (formed by 5 437500Gn   triangles) and for 249 

2

2 5 10t s   . In the following, the results associated with G6 and 
2

2 5 10t s    represent our 250 

reference solution for the fixed time-space discretization and results for the adaptive procedure will 251 

be compared against these. 252 



3 Adaptive Discretization Technique 253 

We briefly recall here the main features of the adaptive discretization methodology. The latter has 254 

been previously applied to shallow water modeling (Porta et al., 2012b) and computational fluid 255 

dynamics (Micheletti et al., 2010) settings. Esfandiar et al. (2015) applied this procedure to analyze 256 

solute transport within homogeneous and block-wise heterogeneous porous media. 257 

The adaptive technique is grounded on the definition of an a posteriori error estimator for the global 258 

(space-time) discretization error 259 

A A

ht h t    ,    (10) 260 

where 
A

h  is an anisotropic spatial error estimator that enables us to optimize the size, shape, 261 

orientation of the mesh elements and t  is an error estimator for the time discretization. We compute 262 

the two terms in Eq. (10) by relying on recovery-based error estimators (Zienkiewicz and Zhu, 1987), 263 

in the form introduced by Micheletti and Perotto (2010) and Porta et al. (2012b). 264 

3.1 Anisotropic Mesh Adaptation 265 

Let Ch be the piece-wise linear finite element approximation of concentration in the solution of Eq. 266 

(1), which is defined on mesh hT . We follow Porta et al. (2012a) and Micheletti and Perotto (2010) 267 

and introduce the local anisotropic estimator 268 
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. (11) 269 

Here, ,i E  and ,i Er  ( i = 1, 2) respectively identify the eigenvalues and the eigenvectors of the tensor 270 

ME, defining the mapping between a reference triangle Ê  and the generic element E of hT  (see Fig. 271 

2a). Note that ,i E  are measures of the length of the semi-axes of the ellipse circumscribing E, while 272 

,i Er  identify the directions of these semi-axes (Formaggia and Perotto, 2001, 2003). The quantity 273 

  R hP C t  represents the recovered spatial gradient of Ch at time t. As depicted in Fig. 2b,  R hP C  274 



is computed as the area-weighted average of the discrete gradient  hC t  within the patch E  of 275 

triangles sharing at least one vertex with E. The a posteriori estimator of the global error associated 276 

with the finite element spatial discretization of the concentration field is computed as 277 

   
2 2

, 0
h

A A

C E C

E

t t t 


       
T

. (12) 278 

Eq. (12) represents an anisotropic error estimate, because it directly involves the anisotropic quantities 279 

,i E  and ,i Er  identifying the size, shape, and orientation of element E. We refer to Porta et al. (2012a, 280 

b) and Micheletti and Perotto (2010) for a rigorous illustration of the error estimator in Eq.s (11)-(12) 281 

and its application. This adaptation strategy and the associated results will be referred to as CG  in 282 

the following. 283 

Together with Eq. (12), we consider in this work an additional version of the error estimator. The 284 

latter is constructed with the aim of embedding the spatial variability of the velocity components. Let 285 

us then assume that the field ( , )h h hu vv  represents the piece-wise linear interpolation of the velocity 286 

field on the adapted mesh hT . We introduce the dimensionless components 287 

min( )
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, (13) 288 

which we embed in the following definition for the error estimator 289 
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  (14) 290 

Here,  ,h EC t  represents the average concentration in the mesh triangle E at time t. We can also define 291 

an error estimator  ,

A

E V t  upon replacing Uh with Vh in Eq. (14). It is then possible to use Eq. (14) to 292 

obtain global error estimates 
A

U  and 
A

V  in the form of Eq. (12). Note that the error estimator in Eq. 293 

(14) is defined as a measure of the variability of the dimensionless velocity component Uh, and is also 294 



conditional to the value of local concentration  ,h EC t . This choice is consistent with our aim, which 295 

is directed towards targeting grid refinement across portions of the domain where solute mass is 296 

present, i.e., where transport phenomena are active at a given time.  297 

We aim here at embedding in a unique error indicator the information on the spatial distribution of 298 

concentration and on the velocity components. Following Porta et al. (2012b), we then define a global 299 

error estimator 300 

        2 2 2 21

3

A A A A

CUV C U Vt t t t                     (15) 301 

where the concentration field and the velocity components are jointly employed to guide the grid 302 

adaptive procedure. This adaptation strategy and the associated results will be referred to as CUVG  303 

in the following. Note that an error estimator in which different quantities are combined has been 304 

previously employed  in Porta et al. (2012a) in the context of  shallow water equations. Here, we 305 

apply the same concept to the numerical solution of Eq. (1), where the velocity components are 306 

parameters (and not unknowns) of the problem. We do so on the basis of the observation that the 307 

solution of Eq. (1) requires projecting the velocity components onto the grid employed to compute 308 

concentration. We use a linear interpolation of the velocity field between the mesh employed to solve 309 

Eq. (3) and the mesh where Ch is computed. The indicator in Eq. (15) is designed to control the error 310 

associated with the solution of Ch as well as the one related to the interpolation of Uh, Vh. 311 

The final goal of our procedure is to construct an anisotropic spatial mesh driven by the estimator in 312 

Eq. (12) or Eq. (15). Let us assume here that Ch, Uh, Vh are known piece-wise linear functions on a 313 

generic grid hT . Our aim is then to generate a new mesh, which is designed to minimize the selected 314 

error, conditional to a given number of mesh elements. For the purpose of our demonstration, we set 315 

the number of elements of the adapted grid to 410eleN  . The mesh adaptation procedure can be 316 

summarized as follows: 317 



1. We set a global tolerance  and impose that the same error E  is assigned to each triangle E 318 

of hT ; this criterion is typically denoted as the error equidistribution principle (Formaggia 319 

and Perotto, 2003). 320 

2. We solve a constrained local optimization problem in each triangle E of the mesh yielding the 321 

optimal values of ,

new

i E  and ,

new

i Er  (i = 1, 2) for all triangles in the mesh hT  (see, e.g., Formaggia 322 

and Perotto, 2003). This allows computing a metric tensor field ,0

new

EM .  323 

3. We aim at adapting a mesh such that the number of elements (i.e., the mesh cardinality) is 324 

fixed a priori. To this end, we apply a global and uniform rescaling of the metric tensor field  325 

,0

new

EM to obtain a new tensor field 
new

EM , which is associated with the desired number of 326 

elements. Note that the rescaling of the metric field relies on an a priori estimation of the area 327 

of the elements, which can be obtained from the optimized quantities ,

new

i E  and ,

new

i Er , i.e., it 328 

does not require to iteratively generate the mesh 
new

hT . 329 

4. Once 
new

EM  is known, we generate the adapted mesh 
new

hT  through the metric-based mesh 330 

generator BAMG (Hecht, 2012). 331 

Some constraints are imposed to the mesh adaptation procedure to guarantee the robustness of the 332 

methodology. Excessive element clustering is locally prevented by setting a minimum threshold value 333 

(
9

min 10p   in our test cases) for the product 1, 2,

new new

E E   within the local optimization solution. This is 334 

tantamount to assigning a lower limit on the element area, because 1, 2,
ˆ

E EE E   . In this work we 335 

do not impose any constraint on the maximum size of grid elements. Note that it would be possible 336 

to control the maximum size of an element, e.g., by imposing an upper bound to the product 1, 2,

new new

E E 337 

. 338 

3.2 Time Step Adaptation 339 



Time step adaptation is implemented upon relying on a recovery-based estimate of the time 340 

discretization error. We aim at predicting the time step 
kt  that can be used at each time level tk for 341 

the subsequent advancement in time. The recovery-based estimator for the time discretization error 342 

within time interval 1

1 ,k k

kI t t


     is then defined as (Porta et al., 2012b) 343 
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where  RC x  is a recovered solution, coinciding with the parabola which interpolates the 345 

concentration values      2 1, ,k k k

h h hC C C   x x x  at times 
2 1, ,k k kt t t    , respectively (see Fig. 3a); 346 

and  k

hC x  is the numerically computed concentration at time tk and at point x. Note that the 347 

multiplicative factor 
1kt   in Eq. (16) renders the time error estimator dimensionless, consistent with 348 

the spatial error estimator in Eq. (12) and Eq. (15). In this work, the estimator in Eq. (16) is always 349 

evaluated on the basis of the concentration Ch, because flow is steady-state and the fluid velocities 350 

are then constant in time (even if variable in space). The recovery-based error estimator in Eq. (16) 351 

is evaluated at each i-node, i.e., Ni, of the current mesh hT . The time error estimator over the whole 352 

space domain is obtained as an area weighted average 353 
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 (18) 356 

The new time step is computed by (a) substituting in (17) 
1kt   with 

kt  in order to obtain a time 357 

error estimator associated with interval Ik, i.e.  
k

t

I ; (b) imposing a tolerance for time error estimator, 358 

610
k

t t

I t     . As a result we obtain (Porta et al., 2012b; and Esfandiar et al., 2014) 359 
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    (19) 360 

The predicted time step in Eq. (19) is constrained by a minimum and a maximum value. These are 361 

respectively set to 0.05MINt s   (which coincides with the value selected for the uniform grid G6) 362 

and 30MAXt s   (which is chosen to avoid excessive coarsening of the time discretization). 363 

3.3 Solution adaptation procedure 364 

We detail here all the steps we follow to obtain the numerical solution of Eq. (1) through our adaptive 365 

strategy. As a first step, we compute a reference velocity field by solving the flow problem in Eq. (3) 366 

on a fixed uniform and sufficiently fine grid 
F

hT . This enables us to obtain the numerical 367 

approximation of the fluid velocity field       ,h h

F F F

hh h hu vT T Tv . In this study we set 3F

h GT  368 

to achieve a good balance between accuracy and computational costs. 369 

We then illustrate in the following the way we employ the space-time adaptive procedure for a generic 370 

time level tk. We do so by assuming the concentration ( )k k

h hC C t  and the grid 
k

hT  to be known. The 371 

adaptive solution is employed to compute 
1k

hC 
, the adapted grid 

1k

h


T  and the new time level tk+1. 372 

These are obtained through the following steps: 373 

1. Obtain the velocity field  h hh
k Tv v  upon projecting       ,h h

F F F

hh h hu vT T Tv  onto the 374 

grid 
k

hT . This is here performed through linear interpolation. 375 

2. Solve the transport scenario, as described in Eq. (1), by employing the velocity field 376 

 h hh
k Tv v  to determine the advective and dispersive parameters. This allows obtaining 377 

 1 kk

h hC 
T . 378 

3. Apply the mesh adaptation procedure relying on estimator in Eq. (12) or Eq. (15) and compute 379 

1k

h


T . As detailed in Section 3.2, we obtain this adapted grid so that the number of elements 380 

of 
1k

h


T  is approximately equal to 104. 381 



4. Project the concentration fields 
1 1, ,k k k

h h hC C C 
 onto the new grid 

1k

h


T  to obtain the adapted 382 

time step 
kt . The next time level for the simulation is then defined as 

1k k kt t t    . 383 

The procedure is then repeated until 
1kt T  . Note that step 4 of the above procedure can be 384 

performed only when k > 1, i.e., the two steps 0 1,t t   are associated with a fixed time step MINt , 385 

which is assigned a priori, as anticipated in Section 3.2. 386 

4 Results 387 

We illustrate here the comparison of numerical results associated with the observables described in 388 

Section 2.2 and obtained relying on: (a) space-time adaptive methodology guided by error estimators 389 

based on the concentration fields only, i.e., Eq. (12), or the joint use of the concentration and velocity 390 

fields, i.e., Eq. (15); and (b) fixed time step and fixed uniform spatial discretization. In the latter case, 391 

we focus in the following on results obtained with a fixed discretization time interval set to 2t  and 392 

grids G6 and G1, respectively corresponding to the reference solution, and to a uniform grid 393 

characterized by a number of elements of the same order of magnitude as the two adaptive 394 

methodologies considered. We discuss results obtained for the highly heterogeneous field ( 2 5Y  ) 395 

in Section 4.1, and those obtained for mild heterogeneity ( 2 1Y  ) in Section 4.2. 396 

4.1 Highly heterogeneous domain ( 2 5Y  ) 397 

The selected realization of the log-conductivity field is depicted in Fig. 1a. Fig. 1b depicts the natural 398 

logarithm of the velocity modulus, i.e.  log | |v , as obtained from the numerical discretization of the 399 

flow problem on the fixed uniform grid G3. As noted in Section 2.1, Fig. 1b reveals the presence of 400 

two high velocity channels (see dashed curves in Fig. 1b), which act as preferential pathways for fluid 401 

flow and are expected to drive transport behavior. An approximately circular low velocity region 402 

centered around location z = 0.035 m, y = 0.02 m is also identified (see dash-dotted circle in Fig. 1b). 403 

Fig. 1c depicts the resulting concentration field at t = 0.5 tPV. As a general observation, one can note 404 



that solute mass distribution across the domain is largely influenced by the structure of the velocity 405 

field, part of the mass being delayed due to the presence of the above mentioned low velocity region. 406 

We start our analysis by focusing on the early-time features of the adapted mesh and resulting 407 

concentration fields when applying adaption strategies CUVG  and CG . We compare the ensuing 408 

results against those obtained by the reference solution. Fig. 4 depicts the concentration field obtained 409 

at t = 0.05 tPV by the three discretization strategies (Fig. 4a-c) and the adapted meshes (Fig. 4d-e). We 410 

present concentrations in logarithmic scale, because small concentration values are critical to evaluate 411 

early arrivals and tailing, which are often of interest in practical applications. All panels of Fig. 4 are 412 

focused on a limited region located in the proximity of the inflow boundary. Analysis of Fig. 4a-c 413 

shows that CUVG  and CG  yield a solution which is consistent with G6. We note that two solute 414 

fingers appear at early times. This is due to the channeling in the velocity field around the low velocity 415 

region zone highlighted in Fig. 1b. 416 

The analysis of the spatial topology of the adapted grid CG  reveals that the element size is relatively 417 

coarse in the proximity of the forward solute fringe (see Fig. 4d). This can be seen, e.g., in the region 418 

y = [0, 0.01] m × z =[0.04, 0.05] m and is consistent with the observation that concentrations vary 419 

between approximately 10-7 and 10-4 in this region, i.e., the concentration gradient is lower than that 420 

associated with other portions of the domain (see Fig. 4b). As a consequence, the log-concentration 421 

field rendered by CG  appears to be characterized by a local loss of accuracy. We also observe that 422 

some oscillations (of the order of 10-6-10-5) appear in the solution. This is evident, for example, around 423 

location (y ≈ 0.02 m, z ≈ 0.02 m). The emergence of these oscillations might be linked to the 424 

interpolation of the solution between adapted meshes, which is in turn associated with some errors in 425 

the presence of relatively coarse elements. The adapted mesh CUVG  is characterized by elements of 426 

small size all along the forward solute fringe. This is related to the observation that adaptation is also 427 

guided by the spatial gradients of Uh and Vh, which are embedded in Eq.s (14)-(15). As a result, the 428 

solution rendered by CUVG  is capable of reproducing the fine scale details of the reference log-429 



concentration field, which are partially lost in CG . We also observe that the shape of the triangular 430 

elements is nearly isotropic when the velocity components are considered for mesh adaptation, 431 

consistent with the isotropic correlation model selected for the spatial covariance of conductivity. 432 

Fig. 5 depicts the log-concentration field for time t = 1.5 tPV, as given by (a) G6, (b) CG , and (c) 433 

CUVG . From a preliminary visual inspection, the concentration field displays smooth variations and 434 

the three solutions appear to be very similar. Solute mass remains trapped in the low velocity region 435 

located in the bottom part of the domain (see also Fig. 1b), solute being almost uniformly distributed 436 

across the system for z > 0.07 m. These features of the solution are reflected in the adapted meshes. 437 

Grid CG  is refined within the low conductivity zone where relatively high concentration gradients 438 

arise (see Fig. 5d). Mesh CUVG  is formed by elements of comparable size throughout a vast portion 439 

of the domain, i.e., at all locations where C > 10-7 (see Fig. 5c and Fig. 5e). At these late times, visual 440 

inspection of the results indicates that the solutions obtained for G6, CG  and CUVG  share some 441 

similarities, even as the adapted meshes display marked differences. Fig. 6 depicts a magnification of 442 

the log-concentration field and of the adapted grids around the low velocity area at t = 1.5 tPV. The 443 

solution associated with mesh CG  exhibits local variations of the order of 10-6-10-5. These are 444 

particularly evident at z ≈ 0.015 m, i.e., the light blue fringes of logC observed in Fig. 6b do not 445 

appear in the reference solution (Fig. 6a) and when CUVG  is considered (Fig. 6c). As previously 446 

noted, this result can be linked to local differences of the element size of the grids associated with 447 

CG  and CUVG . We observe that CUVG  is composed of elements of mostly uniform size. Only mild 448 

variations in the element shape and orientation are detected in Fig. 6e and Fig. 5e. This implies that 449 

the footprint of the concentration field on the mesh topology is barely effective. Otherwise, the mesh 450 

CG  is completely tied to the concentration field gradients and displays marked variations of the 451 

element size and shape around the low velocity area. 452 



The evolution of the time step, t , as a function of time is depicted in Fig. 7 for CUVG  (red curve) 453 

and CG  (blue curve). The lowest ( MINt ) and largest ( MAXt ) allowed time step are also reported 454 

in Fig. 7. The time steps at early times practically coincide with MINt , due to the rapid temporal 455 

variation of the concentration field. As time advances, values of t  larger than MINt  are allowed. 456 

This is so because the solute plume spreads over an increased portion of the domain and 457 

diffusive/dispersive process gain importance leading to a reduced time variation of the concentration 458 

fields. The combination of the time step and mesh adaptivity yields a relative speed up of the 459 

computational costs. The ratio of the CPU time required by CUVG  and G6, / 6CUV GCPU , and by CG  460 

and G6, / 6C GCPU , is respectively equal to 1

/ 6 1.27 10CUV GCPU 

    and 1

/ 6 1.56 10C GCPU 

   . 461 

We now proceed to analyze the behavior of the selected quantities of interest described in Section 462 

2.2. Fig. 8a depicts the section-averaged concentrations  iC t , with i = 1, 2, 3, evaluated for G6 (see 463 

Fig. 1c). Asymmetry is a recurring feature of all iC  results. This behavior is linked to the level of 464 

heterogeneity of the conductivity field (see, e.g., Riva et al., 2008, 2010; Edery et al., 2015). A marked 465 

tailing behavior appears at late times. This is particularly evident in 1C , due to the presence of the 466 

low velocity region where solute accumulates at early times and from which it is subsequently slowly 467 

released by diffusion-dispersion. For the sake of clarity, the comparison between the results obtained 468 

with the strategies considered is then highlighted across a set of subpanels, each focusing on specific 469 

parts of the ( )iC t  curves. Fig. 8b depicts details of the early times behavior of 1C  for G6 (black 470 

curve), G1 (green curve), CG  (blue curve) and CUVG  (red curve). Overall, we observe that the 471 

differences between section-averaged concentrations rendered by the various solutions are relatively 472 

small (of the order of 10-5). This can be also seen for intermediate and late solute arrivals, respectively 473 

in Fig.s 8c and 8d. We observe that the fixed mesh G1 tends to underestimate the section-averaged 474 

concentration for late arrivals, the adaptive grids reproducing quite consistently the results given by 475 

G6. The two adaptive strategies also well reproduce the peak concentration given by G6. Otherwise, 476 



G1 tends to underestimate the largest concentration by approximately 10-3 at both locations z1 and z2, 477 

as depicted in Fig. 8c. 478 

Fig. 9 illustrates comparisons between results obtained with the diverse meshes tested for local values 479 

of concentrations CF and CS in Eq. (5). Note that, even as the two locations considered are quite close 480 

in the domain, the local concentration dynamics exhibit very different characteristics at these points. 481 

For example, CF peaks at t = 0.1 tPV, while CS attains the largest value at t = 1.5 tPV and then slowly 482 

decreases. The delay observed at these two locations reflects the fact that transport is advection 483 

dominated at location PF, while solute mass exchanges around location PS are dominated by diffusion 484 

and transverse dispersion. 485 

Fig. 9 shows a magnification of CF at early (Fig. 9b), intermediate (Fig. 9c), and late (Fig. 9d) times 486 

for G6 (continuous black curves), G1 (green curves), CG  (blue curves) and CUVG  (red curves). The 487 

differences between G1 and G6 can reach values up to 10-2 and are particularly evident for t < 0.1 tPV, 488 

i.e., as long as CF increases with time (see Fig.s 9b-c). The two adapted meshes are here in close 489 

agreement with G6. Note that at these early times the two adaptive strategies tend to render later 490 

solute arrivals at PF, while G1 yields earlier solute arrivals (due to numerical diffusion). The 491 

difference between the solutions given by all the strategies tend to reduce to values below 10-4 for t > 492 

0.1 tPV (Fig.s 9c-d). We observe that the solution associated with CG  displays oscillations of the 493 

order of 10-5 which are visible at the forward and backward tails. Such oscillations are related to the 494 

small inaccuracies noted in Fig. 4 and Fig. 5, and are explained by observing that the local element 495 

size at location PF is characterized by large variations across time. 496 

The temporal variation of concentration SC  (i.e., concentration at point PS) is depicted in Fig.s 9e-f. 497 

Considerable differences appear between G1 and G6, while the adaptive solutions closely adhere to 498 

the results given by the reference solution. For example, one can see that the time of occurrence of a 499 

concentration value CS = 10-5 is largely overestimated by G1 (see Fig. 9e). 500 



We then consider the evolution of global indicators of spreading and mixing of solute mass in the 501 

domain, i.e., Szz in Eq. (7) and   in Eq. (9). Fig. 10a depicts a comparison between Szz evaluated with 502 

G6 (black curve), G1 (green curve), CUVG  (red curve) and CG  (blue curve). Only limited 503 

differences can be noted between the four solutions, G1 only slightly overestimating Szz for t < 0.25 504 

tPV and otherwise underestimating it. Fig. 10b reveals a marked difference between the scalar 505 

dissipation rate   obtained through G1 when compared against reference results obtained through 506 

G6. Otherwise, CG  and CUVG  provide values of   which compare extremely well with the 507 

reference solution G6. This result suggests that, while different meshing strategies may have a 508 

reduced impact on the prediction of spreading, they can heavily affect the prediction of mixing, an 509 

aspect which can be of relevance also with reference to the simulation of reactive processes. 510 

As a final term of comparison, Fig. 11 depicts the global a posteriori error estimator A

C  (Eq. (12)) 511 

for G6 (black curve), G1 (green curve), CUVG  (red curve) and CG  (blue curve). Note that the value 512 

of the estimator provides an approximation of the computational error in the H1 seminorm (i.e., based 513 

on the gradients of the concentration). Inspection of Fig. 11 reveals that G1 shows the highest value 514 

of A

C  across all simulation times. Mesh G6 renders the smallest value of A

h  for 0.05 tPV < t < tPV. 515 

Note that the slope of the curves for CG  and CUVG  is smaller than that of the curve for G6 within 516 

the interval 0.05 tPV < t < tPV. The smallest slope given by the adaptive procedures within the 517 

highlighted temporal interval is consistent with the observation that, even if the spatial gradients in 518 

the solution are smearing out, the plume spreads across the z directions. The total plume size increases 519 

and the assigned number of elements eleN  needs to be cover an area of the domain which increases 520 

with time. As a consequence of these dynamics, the reduction in A

C  is less marked in the adaptive 521 

procedure than in G6. The elements of the adaptive grid CG  tend to concentrate around the low 522 

velocity region at late times, i.e., t > tPV (see Fig. 4). This allows for a proper resolution of 523 

concentration gradients which arise around the low velocity region, leading to a sensible reduction of 524 



A

C  (see the marked negative slope of the blue curve in Fig. 11). Interestingly, the values of A

C  525 

associated with CG  and CUVG  are smaller than those related to G6 for t < 0.05tPV, when A

C  reaches 526 

its largest value. Moreover, inspection of meshes CG  and CUVG  at times t < 0.05 tPV reveals that 527 

almost all eleN  elements are properly placed near the inlet, with elements having an average size 528 

smaller than the one of the uniform elements in G6. Therefore, it is reasonable to assume that adaptive 529 

grids may lead to a slightly more accurate spatial solution at these early times than the reference G6. 530 

4.2 Mildly heterogeneous domain ( 2 1Y  ) 531 

We focus here on the test case with 2 1Y  , to assess the sensitivity of the results to the heterogeneity 532 

of the porous medium. The Y field here considered has been generated with the same seed number 533 

used for the case with 2 5Y   to preserve the key features of the spatial structure of the velocity field 534 

depicted in Fig. 1b. We omit results related to section-averaged concentrations 
iC , which display a 535 

satisfactory agreement between G6 and the two adaptive strategies. Fig. 12a depicts the temporal 536 

evolution of the local concentrations CS and CF for G6. We recall that the location of the two points 537 

PF and PS is not the same as in the highly heterogeneous test case examined in Section 4.1. 538 

The overall behaviors of CS and CF are not dramatically different, reflecting the reduced influence of 539 

the heterogeneity on the concentration, as opposed to the highly heterogeneous setting. Fig. 12b 540 

depicts a magnification of CS at early times. Note the good agreement between the results obtained 541 

for G6, CG  and CUVG . A good agreement between the results obtained via G6, CG  and CUVG  is 542 

also evidenced at early time for CF (not shown) and at late time for both CF and CS (see Fig. 12d). 543 

The two adaptive strategies well reproduce the observed peak of CF, as shown in Fig. 12c. A result 544 

of similar quality also holds for the peak of CS (not shown). Results obtained via G1 display the 545 

smallest peak and heaviest tails, features which can be attributed to the action of numerical dispersion. 546 

Fig. 13 depicts the time evolution of (a) Szz and (b)  . Similar to the case for 2 5Y  , we note that 547 

the temporal evolution of Szz and   associated with CG  and CUVG  is in good agreement with the 548 



results obtained through G6. Fig.s 13a-b highlight that solute spreading, as represented by Szz, is 549 

overestimated and the scalar dissipation rate   is underestimated for mesh G1, a feature which is 550 

related to reduced concentration gradients. The adaptive mesh CUVG  provides the smallest Szz and 551 

the highest   values. This is in agreement with the observed general tendency of providing a more 552 

compact and sharp evolution of the injected plume by using this adaptive strategy. 553 

5 Conclusions 554 

We apply a space-time adaptive methodology guided by a posteriori error estimator for 555 

solving solute transport in porous media with spatial distributions of log conductivity Y characterized 556 

by mild and high levels of heterogeneity. We quantify heterogeneity in terms of the variance, 2
Y , of 557 

Y, which we set to 2
Y  = 1 or 5 in our examples. The heterogeneous conductivity fields are 558 

synthetically generated on a uniform grid (termed G1). We consider nonreactive transport of 559 

dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. 560 

The key goal of our work is to test the applicability of an automatic mesh and time step adaptation 561 

procedure to solve solute transport in such conditions. We implement two strategies to guide the space 562 

adaptive procedure. In the first strategy, labeled as CG , the mesh is adapted solely on the basis of 563 

the spatial gradients of the concentration field. The second strategy, labeled as CUVG , embeds the 564 

spatial gradients of both concentration and velocity components to guide the error estimator. We 565 

perform a series of numerical tests and compare the results of the implemented adaptive strategies 566 

against those obtained through fixed uniform discretizations. The number of elements of the adapted 567 

meshes is kept constant in time and is approximately equal to the number of elements employed in 568 

G1. The time step is allowed to change within a given range of values ( MINt , MAXt ). The fixed 569 

uniform discretization strategies are set such that the spatial meshes are structured and tailored to the 570 

spatial structure of Y and the time step is fixed to MINt . Our results lead to the following major 571 

conclusions: 572 



1. For the highest level of heterogeneity considered ( 2 5Y  ), convergence of the numerical 573 

results, as quantified by local and spatially-averaged quantities, is achieved for a numerical 574 

uniform grid (G6) whose element size is six times smaller than element of G1. This result 575 

indicates that, in general, it may not be appropriate to routinely employ the same spatial 576 

discretization to describe the random conductivity field and numerically approximate solute 577 

mass transport. The results associated with grid G6 are then taken as a reference against which 578 

we test our grid adaptation strategies. 579 

2. Comparison of the results obtained by solving the transport problem on G1 against those 580 

resulting from the mesh adaptation strategy indicates that only mild differences can be 581 

observed when section-averaged concentration and global solute spreading indicators are 582 

considered. Otherwise, the use of an appropriate discretization strategy is markedly relevant 583 

when local concentration values and global mixing are of concern. This result suggests that 584 

mesh adaptation techniques may be well suited to simulation of reactive transport processes. 585 

3. Both adaptive strategies, CG  and CUVG , can reproduce the results obtained through G6 in 586 

terms of section-averaged and local concentration values, as well as global spreading and 587 

mixing metrics. This result is achieved upon reducing the computational cost by 588 

approximately one order of magnitude. 589 

4. The two adaptive strategies lead to different meshing of the computational domain along time. 590 

Embedding information on both velocity and concentration in the mesh adaptation strategy 591 

yields to a more uniform distribution of mesh elements where solute mass is not negligible. 592 

However, the two strategies analyzed yield similar results with reference to (section-averaged) 593 

concentration breakthrough curves, global mixing and spreading indicators. A key difference 594 

is that local concentration values obtained through CG  exhibit oscillations at locations 595 

characterized by low concentration gradients and relatively coarse elements. This highlights 596 



the importance of controlling the largest element size in the adaptive procedure, when such 597 

low values of concentration are of interest. 598 

5. The space-time evolution of the CG  and CUVG  meshes suggests that the former is more 599 

appropriate to grasp the main features of solute transport taking place within low velocity 600 

regions, where diffusion-dispersion mechanisms are dominant, while the latter yields an 601 

improved characterization of the forward fringe of solute fronts which propagate through high 602 

velocity regions. 603 

  604 
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 733 

 734 

Fig. 1. Test case with 2 5Y  : (a) Spatial distribution of the log-conductivity field Y, (b) spatial 735 

distribution of the (natural) logarithm of the velocity modulus, (c) solute concentration field at t = 0.5 736 

tPV. High-velocity channels (dashed lines) and the low velocity region (dash-dotted line) are 737 

highlighted in (b). Locations associated with section averaged concentrations 
1C , 

2C , 
3C  and local 738 

concentrations FC , SC  are identified in (c) (see text for definitions). Imposed boundary conditions 739 

for the flow and transport problems are respectively included in panels (b) and (c).  740 

  741 



 742 

 743 

Fig. 2. Spatial error estimator  ,

A

E C t  in (11): definition sketch of (a) the anisotropic setting, and (b) 744 

the recovered gradient  R hP C . 745 

  746 



 747 

Fig. 3. Time derivative recovery procedure: (a) recovered solution CR (dotted and dashed lines) versus 748 

linear interpolant of values 
hC  (continuous line) and (b) comparison between the time derivatives 749 

/RC t   (dotted and dashed lines) and /hC t   (continuous lines) 750 

  751 



 752 

 753 

Fig. 4. Test case with 2 5Y  : spatial distribution of the concentration field (in logarithmic scale) 754 

within a subset of the domain close to inlet at time t = 0.05tPV, for discretization (a) G6; (b) CG ; (c) 755 

CUVG  and the associated adapted meshes for (d) CG ; (e) CUVG . 756 

  757 



 758 

Fig. 5. Test case with 2 5Y  : spatial distribution of the concentration field (in logarithmic scale) 759 

within the simulation domain at time t = 1.5tPV, for discretization (a) G6; (b) CG ; (c) CUVG  together 760 

with the associated adapted meshes for (d) CG ; (e) CUVG .  761 



 762 

 763 

Fig. 6. Test case with 2 5Y  : spatial distribution of the concentration field (in logarithmic scale) in 764 

the low velocity region evidenced in Fig. 1b for t = 1.5tPV and discretization (a) G6; (b) CG ; (c) 765 

CUVG  together with the associated adapted meshes for (d) CG ; (e) CUVG . 766 
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 768 

Fig. 7. Test case with 2 5Y  : temporal evolution of the adaptive time step, t . 769 
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 771 

Fig. 8. Test case with 2 5Y  : temporal evolution of the section-averaged concentrations 
1C  772 

(continuous curves), 
2C  (dashed curves), and 

3C  (dotted curves), for (a) G6. Panels (b-d) display the 773 

comparisons between solutions given by G1, G6, CG , CUVG , associated with early times (b), peak 774 

(c) and late times (d), as indicated in panel (a). 775 

  776 



 777 

Fig. 9. Test case with 2 5Y  : temporal evolution of the local concentration values FC  (continuous 778 

curves) and SC  (dashed curves), for (a) G6. Panels (b-f) display the comparisons between solutions 779 

given by G1, G6, CG , CUVG  related to specific time intervals for FC  (b-d) and SC  (e-f) as indicated 780 

in panel (a). 781 
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 783 

Fig. 10. Test case with 2 5Y  : time evolution of (a) solute plume spreading, Szz, and (b) scalar 784 

dissipation rate,  .  785 
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 787 

Fig. 11. Test case with 2 5Y  : Time evolution of the a posteriori estimator  A

C t  in Eq. (12).  788 

  789 



 790 

Fig. 12. Test case with 2 1Y  : time evolution of the local concentration values FC  (continuous 791 

curves) and SC  (dashed curves), for (a) G6. Panels (b-d) display the comparisons between solutions 792 

given by G1, G6, CG , CUVG  and related to specific time intervals for FC  (c-d) and SC  (b,d), as 793 

indicated in panel (a). 794 

  795 



 796 

Fig. 13. Test case with 2 1Y  : temporal evolution of (a) solute plume spreading, Szz, and (b) scalar 797 

dissipation rate,  . 798 
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