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Abstract

Traditional helicopter blades are subject to significant deformations, which in-

fluence control forces and moments, as well as the helicopter aeroelastic and

aeroacoustic behavior. Thus, the knowledge of rotor elastic states could help

improving flight control efficiency, and reducing vibration level and acoustic

emissions of next-generation helicopters. This paper presents an original and

computationally efficient modal approach aimed at dynamic shape sensing of he-

licopter rotor blades. It is based on strain measurements in a limited number of

points over the blade surface. Although the algorithm is based on the cascaded

solution of linear algebraic equations, much like other modal-based algorithms,

it is able to reconstruct nonlinear, moderate lag, flap and torsional deflections,

which are typical in helicopter structural dynamics. The algorithm is tested

on non-rotating and rotating hingeless blades through numerical simulations

based upon a multibody dynamics solver for general nonlinear comprehensive

aeroelastic analysis. Its capabilities are assessed against those of classical modal

approaches. Numerical investigations show that the proposed algorithm is reli-

able, accurate and robust to measurement noise.
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1. Introduction

Rotor blades are subject to significant deformations in standard and critical

operating conditions, owing to aerodynamic and inertia loads. They are slender

structures, whose flapping deformation, controlled by cyclic pitch, is used to

generate rolling and pitching moments and direct rotor thrust. Moreover, it5

reduces aerodynamic asymmetry between the advancing and retreating sides of

the rotor, thus alleviating vibratory loads transmitted to the airframe. Blade

shape sensing is a desirable alternative to state observers for Flight Control Sys-

tems (FCS) of next-generation helicopters (it is well known that the knowledge

of tip-path plane improves the performance of FCS, Refs. 1, 2, 3, 4, 5), as well as10

for aeroelastic and aeroacoustic control (see for example the Clean Sky GRC5

MANOEUVRES project, which was aimed at demonstrating the possibility to

reduce helicopters noise emission in terminal maneuvers through an in-flight

monitoring of the main rotor state, Ref. 6).

Although the potential benefits of placing sensors on rotor blades are very15

clear, two main issues remain open:

(i) the optimal positioning of the sensors on the blade, associated with the risk

of accidental breaks during manufacturing or operational life, as well as

with the the need to avoid bonding delamination (see Ref. 7 for a complete

review of technological issues for the case of sensor application on wind20

turbines);

(ii) the most efficient way of powering and connecting sensors, in relation with

the rotational motion of the rotor.

Both these issues make the use of a large number of sensors more challenging

than in fixed wing applications. Following the approach introduced in Refs. 8,25

9, 10, in this work the authors propose the use of a limited number of strain

gauge measurement points for the real-time determination of the rotor blades

shape. Due to both the low cost and reduced weight of the sensors needed to

implement such technique, it is easy to foresee its application to a wide range
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of rotorcraft, including lightweight helicopters, whose overall performance could30

be significantly improved.

Although the potential benefits of blade shape sensing are very clear, a

viable technological solution to the problem has not yet been identified. Two

main classes of shape sensing techniques have been proposed: optical and strain-

based. The latter has received more attention in the recent past due to tech-35

nological and practical problems related to the former. Indeed, while a direct

optical measurement (photogrammetry) represents a viable option in some cases

(Ref. 11), it may suffer from several disadvantages:

(i) only in-sight parts of objects may be monitored;

(ii) optical markers field of view must be sufficient, i.e. marker plane must form40

a sufficiently great angle with the direction between camera and marker;

(iii) operating conditions (water, ice, absence of light or direct sun exposure of

the camera) make the measurement problematic;

(iv) for real-time, high speed measurements, expensive equipment is required;

(v) camera vibrations heavily affect the accuracy of the measurement.45

All these problems are harshly present in rotor blade shape reconstruction, mak-

ing the application of optical measurements very difficult. On the other hand,

shape sensing from strain measurements is an area of growing interest in re-

cent years in many fields of application, ranging from automotive to medical,

aerospace and civil engineering. Moreover, Fiber Bragg Gratings strain gauges50

represent a great improvement in terms of bandwidth and ease of installation

with respect to traditional electric resistance solutions. In particular, they dras-

tically reduce the need of cables, as a single fiber may host hundreds of mea-

surement points, whereas each traditional strain gauge needs a dedicated wiring.

Their use in rotor blade fatigue monitoring is under investigation (Ref. [12]).55

Several numerical approaches have been recently proposed for the determina-

tion of the deformed shape of bodies from strain measurement; some of them are
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based on the direct integration of strain field data at the measurement points

(Refs. 13, 14, 15), whereas others use modal expansion, exploiting the use of

preliminary FEM analysis on the monitored object (Refs. 16, 17, 18). The latter60

are usually more efficient in terms of number of required sensors (in the order of

tens instead of thousands), but require the knowledge of the object structure.

Moreover, with notable exceptions (Ref. 19), the approaches in the literature are

inherently linear, whereas in finite strain theory the general relationship between

strain and displacement is nonlinear. The modal shape functions may be con-65

veniently evaluated for helicopter rotor blades through an equivalent 1D beam

model. However, for linear approaches, rotors may be a challenging application,

being subject to moderate deflections in standard operating conditions. Anal-

ogous considerations may be drawn for fixed wing aircraft which are becoming

more and more flexible.70

2. Proposed Approach

In the present work, a modal shape sensing approach is proposed, capable

of reconstructing the shape of a beam-like structure subject to general deforma-

tions including torsion, in-plane, and out-of-plane bending. It is able of handling

nonlinear terms up to second order. This is particularly interesting for flight dy-75

namics and aeroelastic control applications, in which the knowledge of limited

information on rotor kinematics may give unsatisfactory results. It is worth

mentioning that, at present, devices for the identification of the rotor state

(e.g. by measuring cyclic flapping components 𝛽𝑐 and 𝛽𝑠, or flapping-related

displacement on a point along the blade) are still under development (Ref. 11).80

2.1. Strain-displacement relationship

Consider the approximation proposed in Ref. 20 for the strain-displacement

relationship of a bent and twisted beam, which is valid for moderate deflections
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𝜀𝜉𝜉 = 𝑢′ +
1

2
(𝑣′2 + 𝑤′2) − 𝜆𝜑′′ + (𝜂2 + 𝜁2)

(︂
𝜗′𝜙′ +

𝜙′2

2

)︂
− 𝑣′′[𝜂 cos(𝜗 + 𝜙) − 𝜁 sin(𝜗 + 𝜙)]

− 𝑤′′[𝜂 sin(𝜗 + 𝜙) + 𝜁 cos(𝜗 + 𝜙)]

(1a)

𝜀𝜉𝜂 = − 1

2

(︂
𝜁 +

𝜕𝜆

𝜕𝜂

)︂
𝜙′ (1b)

𝜀𝜉𝜁 =
1

2

(︂
𝜂 − 𝜕𝜆

𝜕𝜁

)︂
𝜙′ (1c)

where 𝜂 and 𝜁 are the coordinates along the cross-section principal axes, 𝜉 is

the coordinate along the elastic axis, 𝑢, 𝑣, and 𝑤 are the axial, lead-lag and flap

displacements of the elastic axis, whereas 𝜗 and 𝜙 are the built-in twist angle

and the blade cross-section elastic rotation (torsion), respectively. Note that, in85

the following, the warping function 𝜆 in Eqs. (1) will be neglected for the sake

of simplicity. However, its contribution may be easily included if necessary (e.g.

when the method is applied to composite blades [21, 22]), following one of these

approaches:

i) numerically, evaluating the warping function with a finite element (or equiv-90

alent) analysis;

ii) experimentally, in a known-displacement calibration test, determining the

warping function and its derivatives in the measurement points exploiting

strain measurements and the free–contour boundary condition (see Ref. 23);

iii) during the use of the device, using the strain components at the measure-95

ment points, and exploiting the fact that in cylindrical portions of the

blade the warping function only depends on 𝜂 and 𝜁. In this case, it is

worth noting that an iterative procedure for the simultaneous evaluation of

the unknowns in Eqs. (1a)-(1c) is needed, due to their intrinsic nonlinearity.

In the proposed formulation, the displacement 𝛿 = {𝑢, 𝑣, 𝑤}𝑇 and the elastic

torsion angle 𝜙 are first expressed as the linear combination of suited shape
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functions (Ψ𝑖 and Φ𝑖), with coefficients 𝑞𝑖 and 𝑟𝑖

𝛿(𝜉, 𝑡) =
∑︁
𝑖

Ψ𝑖(𝜉) 𝑞𝑖(𝑡) (2a)

𝜙(𝜉, 𝑡) =
∑︁
𝑖

Φ𝑖(𝜉) 𝑟𝑖(𝑡) (2b)

Then, Eqs. (1b) and (1c) are combined into a single equation which gives the

shear strain in the direction orthogonal to 𝜉 and tangent to the external surface,

𝜀𝑡 := 𝑡𝜂𝜀𝜉𝜂 + 𝑡𝜁𝜀𝜉𝜁 =
−𝑡𝜂𝜁 + 𝑡𝜁𝜂

2
𝜙′ (3)

where 𝑡𝜂, 𝑡𝜁 are the components of a unit vector lying in the plane of the section,

thus with 𝑡𝜉 ≡ 0, and tangent to the surface in the measurement point, or

𝜀𝑡 = 𝑘𝑟 (4)

where 𝑟 = {𝑟1, 𝑟2, . . . , 𝑟𝑀}𝑇 contains the 𝑀 torsion modal amplitudes, and100

𝑘 is a row vector evaluated in a straightforward manner from the knowledge

of the torsion shape functions and the location of the evaluation point. After

the torsion amplitudes are obtained from a suitable over-collocation of Eq. (4),

Eq. (2b) is used to calculate the terms that depend on 𝜙 in Eq. (1a), leaving

the displacement components as the only unknowns.105

Finally, evaluating Eq. (1a) at two points of the same cross-section, and

subtracting the corresponding 𝜀𝜉𝜉 values, one obtains

∆𝜀𝜉𝜉 = 𝜀𝜉𝜉2 − 𝜀𝜉𝜉1

=
[︀(︀
𝜂22 + 𝜁22

)︀
−
(︀
𝜂21 + 𝜁21

)︀]︀(︃
𝜗′𝜙′ +

𝜙′2

2

)︃
− 𝑣′′ [(𝜂2 − 𝜂1) cos(𝜗 + 𝜙) − (𝜁2 − 𝜁1) sin(𝜗 + 𝜙)]

− 𝑤′′ [(𝜂2 − 𝜂1) sin(𝜗 + 𝜙) + (𝜁2 − 𝜁1) cos(𝜗 + 𝜙)] (5)

where subscripts 1 and 2 refer to two measures at the same radial station 𝜉.

Using 𝑁 shape functions to approximate 𝛿, Eq. (5) is a purely linear relationship

between the difference ∆𝜀𝜉𝜉 and 𝑞 = {𝑞1, 𝑞2, . . . , 𝑞𝑁}𝑇 , i.e.

∆𝜀𝜉𝜉 = ℎ𝑞 + 𝑏 (6)
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where ℎ is a row vector depending on the displacement shape functions, Ψ𝑖, the

torsion angle, 𝜙, and the location of the evaluation points, whereas 𝑏 depends

on the torsion angle and the location of the evaluation points, i.e. both ℎ and

𝑏 depend on the elastic torsion angle, 𝜙, thus making ∆𝜀𝜉𝜉 still potentially

nonlinear.110

It is worth noticing that, using ∆𝜀𝜉𝜉 (Eq. (6)), instead of 𝜀𝜉𝜉 (Eq. (1a))

for the evaluation of the elastic axis displacement, the contribution of the axial

displacement 𝑢 vanishes, thus reducing the number of total modes required for

blade shape reconstruction when flap and lead-lag are the only linear displace-

ments of interest.115

2.2. Torsion and displacement amplitude identification

In order to identify torsion and displacement amplitude from Eqs. (4) and

(6), 𝑁 + 𝑀 linearly independent equations are needed. The 𝑁 measurements

for ∆𝜀𝜉𝜉 are easily obtained by aligning the sensors with the blade span. The

𝑀 equations for torsion identification can be obtained by using a set of sensors

glued over the blade surface, and oriented at angles 𝛼𝑖 with respect to the 𝜉-

axis, their outputs 𝜀𝛼𝑖𝛼𝑖 over each cross-section. Indeed, from the strain tensor

associated with the Euler-Bernoulli beam

𝑇 =

⎡⎢⎢⎢⎣
𝜀𝜉𝜉 𝜀𝜉𝜂 𝜀𝜉𝜁

𝜀𝜉𝜂 −𝜈𝜀𝜉𝜉 0

𝜀𝜉𝜁 0 −𝜈𝜀𝜉𝜉

⎤⎥⎥⎥⎦
the local strain along a direction tangent to the beam surface, identified by the

unit vector 𝑚 (see Fig. 1), is given by

𝜀𝑚𝑚 =(𝑇𝑚) ·𝑚 = [(1 + 𝜈)𝑚2
𝜉 − 𝜈]𝜀𝜉𝜉 + 2𝑚𝜉𝑚𝜂𝜀𝜉𝜂 + 2𝑚𝜉𝑚𝜁𝜀𝜉𝜁 (7)

where {𝑚𝜉,𝑚𝜂,𝑚𝜁} are the components of the unit vector 𝑚. Notice that, being

the twist of a helicopter blade relatively small, the optimal sensor orientation

to eliminate the contribution of the axial strain, 𝜀𝜉𝜉, from the difference of the

signals of two sensors located at the same measurement point is 𝛼𝑖 ≈ ±45∘.120
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Figure 1: Sensor orientation.

These equations can be obtained by performing 𝑁 measurements for 𝜀𝜉𝜂 and

𝜀𝜉𝜁 , and 𝑀 measurements for ∆𝜀𝜉𝜉 at different cross-sections along the blade

span, which implies at least an additional measure for each spanwise station

that is considered. Note that the sections used for torsion and displacement

identification may coincide and, in this case, one of the measurements used for125

∆𝜀𝜉𝜉 on each section may be conveniently replaced with the weighted sum of

the signals from the two ±45∘ sensors. Thus, the minimum number of sensor on

each instrumented section is three. However, owing to the presence of noise and

measurement errors in both signal acquisition/processing and sensor positioning

processes, a greater number of measurements are required to obtain a reliable130

evaluation of the modal amplitudes.

Formally, the proposed solution procedure can be written as

min
𝑟,𝑞

𝐽 = 𝑒𝑇𝑡 W𝑡𝑒𝑡 + 𝑒𝑇𝑏 W𝑏𝑒𝑏 (8)

where W𝑡 and W𝑏 are symmetric, positive definite torsion (subscript 𝑡) and

bending (subscript 𝑏) weight matrices, and 𝑒𝑡 and 𝑒𝑏 are the corresponding

error measures, defined as

𝑒𝑡 = K𝑟 − 𝜀𝑡 (9a)

𝑒𝑏 = H𝑞 + 𝑏− ∆𝜀𝜉𝜉 (9b)

where matrices K and H are obtained by stacking the rows 𝑘 and ℎ of Eqs. (4)

and (6), respectively, for each sensor. Recall that the elements of vector 𝑏 in
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the bending error of Eq. (9b) may depend on the torsional solution 𝑟, so the

function that needs to be minimized is not purely quadratical in the unknowns135

𝑟 and 𝑞.

For both torsion and bending, the problem becomes linear by solving it with

W𝑡 = I and W𝑏 = 0 first, and then, after evaluating 𝑏 with the values of 𝑟

resulting from this first step, by repeating the minimization with W𝑡 = 0 and

W𝑏 = I.140

Alternatively, a weighting of W𝑡 = 𝑤𝑡I and W𝑏 = 𝑤𝑏I can be assumed, with

𝑤𝑡 and 𝑤𝑏 positive scalars, considering the limit for 𝑤𝑡/𝑤𝑏 → ∞, a choice that

privileges the torsion solution over the bending one.

The separate overdetermined problems can thus be solved in a staggered

manner as

𝑟 = K+𝜀𝑡 (10)

and, after evaluating 𝑏 using the torsion angle resulting from 𝑟,

𝑞 = H+(∆𝜀𝜉𝜉 − 𝑏) (11)

where (·)+ indicates the Moore-Penrose pseudo-inverse.

Notice that the evaluation of ∆𝜀𝜉𝜉 requires one additional strain gauge per145

each spanwise station, with an increase of sensors with respect to those used

in classical modal approaches (see for example Ref. 17), which are equal to the

number of modes. This drawback is largely compensated by the fact that the

proposed procedure is computationally very efficient, as it allows one to solve

nonlinear elasticity problems (under the assumption that bodies are subject to150

moderate deformations) through the sequential solution of two linear algebraic

systems (Eqs. (10) and (11)). Furthermore, it appears to be quite accurate

since, due to error propagation, a single measurement of ∆𝜀𝜉𝜉 is statistically

more precise than one of 𝜀𝜉𝜉.
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3. Numerical Results155

The test cases considered in this section refer to hingeless rotor blades whose

equivalent structural properties resemble those of the Bölkow (now Airbus Heli-

copters) BO105 helicopter blades, with a radius of 4.9 m rotating at 44.4 rad/s,

either in hover or in forward-flight at an advance ratio of 𝜇 = 0.2. The first blade

model analyzed is uniform, whereas the second one is strongly non-uniform, hav-160

ing a maximum variation of the bending stiffness of about 24000 %. Figure 2

illustrates the qualitative trend of the main structural properties along the blade

(note that, in the second plot, the one related to the flap and lag stiffness prop-

erties, the y-axis scale is logarithmic). The uniform blade structural properties

are equal to those at the tip of the non-uniform one.165

The actual measurements on the surface of rotor blades are simulated using

the elastic axis shape numerically computed by means of dynamic and aeroelas-

tic simulations performed with the free, general purpose multibody dynamics

solver MBDyn (Ref. 24), and hypothesizing a NACA0012 profile.

3.1. Static results170

The first analysis performed is the flap-wise bending reconstruction of the

non-rotating blade. In Fig. 3, the results of the proposed approach are compared

with those of the linearized model for small displacements.

Unless otherwise stated, here and in the following, two pairs of ±45∘ sensors

over the same section are considered ("measurement section", in the following)175

for both blade upper and lower surfaces. Notice that this is not an optimal

sensor arrangement, which would require a dedicated analysis. Some authors

(Ref. 25) have proposed the use of the condition number (CN) of matrices H

and K as an estimate of the quality of sensor placement. In addition, it should

be noticed that optimal positioning should also take into account the expected180

value of the measurement, to improve the signal to noise ratio.

Two and three bending modes are respectively used for the definition of the

H and K matrices in Eqs. (10) and (11) (homogeneous beam modes are consid-

ered). Since the aim was to investigate the difference in terms of accuracy of the
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Figure 2: Structural properties along blade.

proposed approach versus the classical modal approaches, the number of mea-185

surement sections has been set relatively high (six sections), in order to consider

results close to convergence. In this case, the proposed formulation is equivalent

to the classic modal approach to shape sensing, as expected, since the nonlinear

terms are negligible. Analogous results (not shown here, for conciseness) have
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Figure 3: Shape reconstruction for a small-displacement flap bending. Comparison between

linearized and proposed approach.
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Figure 4: Shape reconstruction for a moderate-displacement flap bending. Comparison be-

tween linearized and proposed approach.

been obtained for the lag deformation. On the contrary, when displacements190

become larger, the effect of the nonlinear terms is no longer negligible. In this

case, illustrated in Fig. 4, the proposed approach provides a much more accurate

shape reconstruction.

Figure 5 shows the reconstruction of the torsion deformation of the same

blade. Here, eight measurement sections were required to obtain results close195

to convergence. Only the result from the proposed approach is shown, since the

torsion problem stated in Eqs. (1b) and (1c) is linear.

Sensitivity to sensors positioning.

Figures 6 and 7 depict the effect of the spanwise position of the sensors, both
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Figure 6: Flap reconstruction using sensors near the blade root.
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Figure 7: Flap reconstruction using sensors uniformly distributed along the blade.
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in terms of flapwise bending reconstruction and relative error. In Figure 6, four200

sensors are clustered near the blade root section, whereas in Figure 7 the same

number of sensors are uniformly distributed over the whole span. As expected,

placing the sensors closer to the root, where the strains associated with low-

frequency modes are usually larger, reduces the reconstruction error. Figure 6

also shows that the error may be made sufficiently small for helicopter blade205

shape sensing with a reduced number of sensors.

Sensitivity to modal base.

Figure 8 presents a sensitivity analysis with respect to the number of modes used

in the reconstruction algorithm. It depicts the torsion deformation obtained by

increasing the number of the torsion modes, and using the four instrumented210

sections clustered near the blade root. Expanding the modal base up to three

modes gives an improvement of the reconstruction quality, whereas the use of
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Table 1: Condition number of H and K matrices for different bending and torsion modes

number (four sections, three total sensors per section).

1 2 3 4

H 1 15.82 9.80e02 2.61e05

K 78.74 1.59e03 6.53e02 8.60e06

four modes seems to produce a dramatic worsening of the accuracy. The same

analysis performed on flap and lead-lag deformations (not presented here for

the sake of conciseness) shows that the optimal number of modes is two, al-215

though the sensitivity of the reconstruction accuracy to the modes number is

less pronounced. The negative effect of increasing the number of modes fixing

the number of sensors can be also inferred by Table 1, which reports the condi-

tion number of the H and K matrices when the modes number is varied. Here

the number of sensors per section has been kept to a minimum, which is equal220

to three, assuming that two sensors are used for evaluating torsion and bending

at the same time (subtracting and adding their signals appropriately). Globally,

the modes increase results in a degradation of the matrices conditioning, which

become ill-conditioned when four modes are used. It is worth recalling that the

reconstruction accuracy is a trade-off between a well-conditioned system and225

an appropriate number of modes (see Fig. 9). If a high number of modes is re-

quired due to the nature of the problem, a simultaneous increase of the number

of sensors is needed, taking care to position them in a suited way to keep the

condition number low.

Thus far, a homogeneous blade has been considered. In other words, the230

modal base used for the definition of the H and K matrices of Eqs. (10) and

(11) is the proper base for the problem examined. If we consider a non-uniform

blade in the simulation, the overall quality of the shape reconstruction decreases

significantly, for the same number and type of modes, also considering a high

number of measurement sections (Figs. 10 and 11).235

However, using non-uniform blade modes, the reconstruction accuracy is re-

stored, as shown in Figs. 12 and 13. Since for real-life applications a reasonably
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Figure 9: Opposite consequence of increasing the number of modes on shape sensing accuracy.
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Figure 10: Shape reconstruction of a non-uniform blade, using modes of a uniform one.
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Figure 11: Shape reconstruction of a non-uniform blade, using modes of a uniform one.
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Figure 12: Shape reconstruction of a non-uniform blade, using its natural modes.
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Figure 13: Shape reconstruction of a non-uniform blade, using its natural modes.

18



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3
x 10−4

%

N
on

di
m

en
si

on
al

 in
te

gr
al

 e
rr

or

 

 

3 
4 
6 

Figure 14: Ventiles of error for different number of sensors over each measurement section.

accurate FEM model of the blade is usually available, the evaluation of its eigen-

modes, or their experimental determination [26, 27], is a convenient operation,

which reduces the number of modes that need to be considered (and thus of240

sensors to be installed).

Sensitivity to measurement noise.

Another issue that is addressed here is the influence of measurement noise on

the robustness of the result. In particular, the effect of redundant measure-

ment sections on disturbance rejection has been investigated. Considering a245

random noise equal to 0.2 × 10−6 plus 10% of the measurement (which is a

value significantly higher than that expected for a modern strain sensor), the

reconstruction error for a flap bending case has been evaluated over ten thou-

sand simulations with different numbers of couples of ±45∘ sensors (3,4,6) for

each measurement section. Fig. 14 shows the resulting ventiles of integral er-250

ror (namely
1

𝐿3

∫︁ 𝐿

0

(︀
𝑤𝑟 − 𝑤𝑠

)︀2
𝑑𝑥). It appears clearly that by increasing the

number of sensors, the error is significantly reduced.

3.2. Dynamical results

Figure 15 shows the tip-flap displacement for a periodically forced, yet non-

rotating case. Figure 16 reports the tip displacement components for the255

rotating blade. In this case, one lag mode, four flap modes and two torsion

modes are used in the reconstruction, which uses six measurement sections. As
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Figure 15: Time history of actual flap displacement of tip and its reconstruction with linearized

and proposed approach.
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Figure 16: Reconstruction of tip flap, lag and torsion displacements of the rotating blade.
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Figure 17: Shape reconstruction of a rotating blade. The linearized approach is here applied

without including axial modes.
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Figure 18: Comparison between proposed approach and linearized one (including axial mode)

for a rotating case.

stated in Section "Shape Sensing Algorithm", axial modes are not needed for

the proposed approach. On the contrary, with the linearized approach it is

strictly necessary to introduce them, since a significant part of strain is due to260

the centrifugal force field. Figure 17 shows what happens when no axial modes

are included in the simulation for the linearized approach. In this case, after

introducing a single axial mode, the quality of the reconstruction is restored, as

shown in Fig. 18. However, this comes at the cost of an increase of modes that

need to be evaluated and thus of the number of required sensors.265

Figure 19 shows the time history of the integral error (defined as above)
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Figure 19: Integral and tip error using one lag, four flap and two torsion modes, considering

four instrumented sections.

and the relative error at the blade tip. Although quite small, the error on flap

displacement is significantly larger than those on lag and torsion. Increasing the

number of instrumented sections and modes from four to eight (Figure 20) sig-270

nificantly improves the shape reconstruction. Note that increasing the number

of sensors requires a corresponding increase of the instrumented portion of the

blade, to maintain a small conditioning number for both the H and K matrices.

This caution is needed, since natural modes behave similarly in the vicinity of

the blade root.275

Notice that a reduction of required modes may also be achieved by consid-

ering those of a rotating beam.

3.3. Application to complex structures

It is worth mentioning that the proposed approach could be also applied to

subparts (beams) of complex structures. This makes it possible to retain also280
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Figure 20: Integral and tip error on flap using eight flap modes, considering eight instrumented

sections.

the evaluation of second order terms in cases where the analytical relationship

between displacement and strain is unknown. The drawback is that for the

evaluation of the structure’s global shape a post-processor is needed, which

enforces compatibility of the subparts’ deformation.

Here, with the aim of assessing the effectiveness of the shape sensing proce-285

dure on complex 3D structures, composed of different structural elements (e.g.,

3D elements, beams and shells), the wing box sketched in Figure 21 has been

considered. For this analysis, an approximate distribution of the aerodynamic

loads is considered, linearly varying along the wing chord and elliptically vary-

ing along the wing span.[28] Nine virtual strain gauges are positioned on the290

upper skin, in the first third of the wing span from the root (see Figure 21).

Results in terms of spanwise distribution of the out-of-plane displacement are

shown in Figure 22, where results from a FEM analysis are compared with the

reconstruction obtained using two modes. Note that in this case the accuracy

of the reconstruction algorithm is weakly dependent on the number of modes.295

Indeed, a similar analysis, performed using only one mode for the out-of-plane

displacement reconstruction, provided results with less than 1% error at the

wing tip.
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Figure 21: Idealized wing structure (C=1 m, L=6.5 m, a=0.22 m, b=0.57 m). Black dots on

the right picture represent measurement points location.
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Figure 22: Simulated and reconstructed wing deflection.
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4. Conclusions

The numerical testing of the shape sensing procedure has given good re-300

sults in terms of accuracy and precision, with a small number of required strain

sensors. In the end, the reconstruction error could be reduced to within a

few percent, even using quite a limited number of modes (2 for the flapwise

displacement and 3 for the twist) and sensors (4 sections, each with 3 strain

gauges). Increasing the number of instrumented sections makes it possible to305

use a larger modal base, thus reducing the reconstruction error, whereas adding

more sensors on each section helps reducing the effect of measurement noise.

Having more instrumented sections and more strain gauges on each section

would also help dealing with some types of sensor malfunctions. The procedure

has also demonstrated its capability to reconstruct the shape of moderately de-310

flected beams (whereas classical modal approaches to shape sensing are limited

to small displacements), although the algorithm only requires the solution of

linear problems. The determination of the optimal placement of sensors, the ca-

pability of dealing with finite displacements and the extension of the algorithm

to other seminal structures (e.g. plates, shells) are still open issues that will be315

the subject of future analyses.

Another field of future study is the application of the proposed procedure to

complex structures. In this case, it will be necessary to make congruent infor-

mation from the shape sensing across subparts of the structure.
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