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I. INTRODUCTION

D UPLEXERS are three-port selective networks, mainly
used for connecting a single antenna to the transceiver of

a communication system (with the receiving and transmitting 
bands more or less close together). They are typically consti-
tuted by two filters, whose inputs are connected to the first port 
(referred to as the antenna port) through a suitable three-port 
network (referred as the junction); the outputs of the filters 
are the other two ports of the duplexer (TX port and RX port). 
In the simplest type of duplexer, the junction is realized by 
means of a nonreciprocal three-port (circulator); in this way the 
interaction between the two filters is removed and the design 
of the duplexer reduces to that of two filters taken separately. 
This solution, however, is not always possible or convenient, 
for several reasons (cost, additional unwanted effects, etc.), 
so several approaches to the design of duplexers employing 
a reciprocal three-port junction have been developed [1]–[4]. 
Anyhow, all of them assume the classical topology of the 
duplexer recalled above, i.e., two filters connected through 
a three-port reciprocal junction. Recently, some works have
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appeared in the literature [5], [6] that suggest a more gen-
eral representation of the duplexer, which is assumed to be a
three-port lossless network, composed of resonators arbitrarily
coupled to each other, without any specific constraint about
the topology. In other words, it is currently being investigated
if some advantages are possible abandoning the constraint
imposed by the classical duplexer topology. Actually, this is
still an open question because a general solution allowing
to specify arbitrary transmission characteristics between the
antenna port and the two output ports of the duplexer has not
yet been conceived with an arbitrary three-port network (due
also to the difficulties of exploiting the unitary conditions of the
scattering matrix in arbitrary three-port lossless networks [7]).
In this paper, we propose a solution for a class of duplexers

synthesized as a generic three-port lossless network with the an-
tenna port matched at all frequencies. This duplexer was origi-
nally implemented by means of complementary low-pass–high-
pass filters, connected in parallel at the input port [8]. The most
common way to realize today this kind of duplexer is, however,
based on a directional structure, which is composed by two iden-
tical filters connected through two 90 hybrids [9]. Some recent
works have proposed a design approach that incorporate the hy-
brids into the coupled resonators structure [10], [11]. Here, we
present another approach to the design of this kind of duplexer,
based on polynomial modeling of a three-port network com-
posed of coupled resonators (transformed into a low-pass nor-
malized frequency domain [12]). Note that, unlike the previous
design approaches (which assume the duplexer as a four-port
network, with one port terminated on a matched load), our ap-
proach considers a true three-port network without any addi-
tional matched termination. Furthermore, our duplexer does not
require the 90 hybrids of the classical configuration.
This paper is organized as follows. Section II presents the

theory behind the design approach adopted. Section III de-
scribes the synthesis of the transversal canonical prototype for
three-port networks. In Section IV, a suitable transformation of
the canonical prototype is presented in order to get a topological
configuration more convenient for a practical implementation
than the transversal one. Section V shows the validation of the
proposed approach by means of the design and fabrication of a
test device. Conclusions are presented in Section VI, followed
by an Appendix where the algorithm devised for the generation
of a family of canonical prototypes for three-port networks
(used in Section IV) is presented.

II. POLYNOMIAL MODELING OF THE THREE-PORT NETWORK

A generic duplexer can be represented, for synthesis pur-
poses, as a three-port, reciprocal, and lossless network (Fig. 1).



Fig. 1. General schematization of the selective three-port network here consid-
ered (duplexer). The grey circles and the dashed lines represent the cavities and
the coupling structures, respectively.

We assume that the network in Fig. 1 is composed of res-
onant cavities arbitrarily coupled to each other (with some of
them also coupled to the three ports). As usually done in the
synthesis of microwave filters based on the equivalence with a
lumped network [12], each cavity is represented in a specified
low-pass frequency domain by means of a lumped capacitor of
unit value in parallel with a frequency-invariant susceptance,
while the couplings are modeled with frequency-invariant ad-
mittance inverters. Note that this is an approximation of the
physical reality, which typically produces satisfactory results
only in a small or moderate frequency interval.
Under the above assumptions, the scattering matrix elements

of the three-port network in Fig. 1 can be represented as the ratio
of polynomials in the normalized complex variable (which is
related to the real frequency domain through the well-known
low-pass-to-bandpass frequency transformation [12])

(1)

Note that the roots of represent the poles of the three-
port.
The lossless condition implies the following relations among

the polynomials and :

(2)

where is a polynomial depending on the network topology.
The superscript asterisk define the para-conjugate operator
[12].
Due to the reciprocity, the distinct polynomials are actually

seven; they will be referred in the following as:

(3)

Concerning the degree of these polynomials, it can be said that
the lossless condition alone does not imply that the order of

is necessarily equal to the number of cavities in the
duplexer. In practice, however, the ordinary implementations
of duplexers always exhibit this property. A way to impose
equal to the number of cavities is to assume the following con-
dition on the determinant of the scattering matrix:

(4)

Introducing this condition in (2), after some algebraic manipu-
lations the following equations can be found (the dependence of
all the polynomials on is implicitly assumed):

(5)

Note that there is no explicit solution for the polynomials from
the above equations. This fact has an important consequence:
we cannot assign a transmission and/or reflection characteristic
to a three-port reciprocal and lossless network independently
on the topology of the network (as instead it is possible with the
classical two-port filters).
In this paper, we have then imposed an additional constraint,

which allows to get an explicit solution for the polynomials in
(5). Such a constraint consists of assuming the antenna port of
the duplexer matched at all frequencies, i.e., , and there-
fore, .
Note that the class of duplexers so identified (referred to as

matched duplexers) has been known for a long time [9] and is of
particular interest in many practical applications. Amatched du-
plexer is usually implemented by means of two identical filters
connected through two 90 hybrids [9]. Recently, these devices
have been proposed for realizing reconfigurable combiners, and
some works have illustrated design approaches based on syn-
thesis techniques [10], [11]. The design approach described here
allows the realization of matched duplexers that do not need hy-
brids.
For deriving explicitly the polynomials in the considered case

(i.e., ), we assume, first of all, that the degree of
is even; it is then possible to make the following assumptions
concerning the polynomials and :

(6)

with and monic polynomials of degree and ,
respectively, whose roots are imposed to be on the imaginary
axis. We also assume that the coefficient and are real or
imaginary numbers (the highest degree coefficient of and
is anyhow real). is assumed equal to the degree of the

polynomial , given by , and must be lower
than or equal to . Note that these assumptions imply to
be even.



Introducing (6) into (5) with and taking into account
(2), the following results are obtained:

(7)

(8)

(9)

(10)

Equations (7)–(10) suggest that the polynomials and
can be obtained from the synthesis of a two-port filter

with assigned transmission and reflection
characteristics. The synthesis can be carried

out with one of the methods available in the literature [12], by
assigning the order to the filter together with the return
loss (determining the attenuation in band 1) and the imaginary
transmission zeros represented by the roots of polynomial
(that determine the attenuation in band 2). Note that the

highest degree coefficients of the reflection and transmission
polynomials coming from the synthesized filter represent the
coefficients and . With this assignment, the transmission
parameters of the duplexer ( and ) become equal (in
magnitude) to the transmission and reflection of the two-port
filter

(11)

The isolation and the output ports matching
result,

(12)

Note that isolation between ports 2 and 3 is assured by the zeros
on imaginary axis in and . The output ports matching is
also somehow enhanced by the multiple zeroes of and ,
respectively.
To illustrate the polynomials evaluation introduced above, let

consider a duplexer with the following requirement (in the nor-
malized frequency domain).
• Band 1: , attenuation in band 2: 21 dB.
• Band 2: , attenuation in band 1: 21 dB.

The polynomials and are obtained from the synthesis of
a two-port filter exhibiting an equi-ripple response in the pass-
band and stopband (attenuation and return loss equal to 21 dB).
In order to get this goal, two transmission zeros have been im-
posed on the imaginary axis at 1.4846 and 1.1582.
The roots of polynomials and , obtained from the

polynomials of the two-port filter, as explained above, are re-
ported in the following, together with the coefficients and
.
• Roots of : .
• Roots of : .

Fig. 2. Transmission responses of the duplexer in example.

Fig. 3. Output ports matching of the duplexer in example.

Fig. 4. Isolation of output ports of the duplexer in example.

• Roots of :
.

and .
Figs. 2–4 show the transmission, reflection, and isolation of

the duplexer characterized by the computed polynomials.

III. SYNTHESIS OF THE PROTOTYPE THREE-PORT NETWORK

Once the polynomials defining the desired response have
been defined, the next step of the design is the synthesis of a



Fig. 5. Transversal prototype canonical network for a three-port network. The
dashed line represent the admittance inverters and the gray nodes are unit
capacitances in parallel to the susceptances . Also the couplings among the
ports are represented with ideal inverters . It is assumed that a suscep-
tance may appear also in parallel to the port .

prototype network in the normalized frequency domain. As
explained in the previous section, we assume that this network
is composed of unit capacitances in parallel with frequency
invariant susceptances, coupled to each other with ideal admit-
tance inverters.
Even if very few works are available in the literature on mul-

tiport synthesis, the classical transversal canonical prototype in-
troduced in [13] for two-port filters has been recently general-
ized to an arbitrary multiport network [5]. Such a prototype, in
case of a three-port network, assumes the form shown in Fig. 5.
Using the same formalism adopted in [5], we introduce the

following normalized coupling matrix defining the above
network:

...
...

...
. . .

(13)

Note that the order of is ; the first three rows and
columns refer to the couplings involving the ports.
The elements of the matrix of the transversal prototype

are readily derived from , taking into account that all the ca-
pacitors in the network have unit value [it is assumed in (14)

and ]

(14)

The matrix whose elements are reported in (14) must be
now equated to the admittance matrix defined by the duplexer
polynomials introduced in the previous section. For deriving
this latter matrix, we apply the well-known relationship between
and matrices

(15)

where and are all polynomials. Note that, with the assump-
tions of Section II, it can be stated that the order of polynomial
is less than or equal to .
Using (15) and (5) with , the following expressions

can be written for the elements of :

(16)

It is possible to put the elements in the form (14)
by expanding the ratios as follows:

(17)

In (17), represents the th roots of (imaginary),
and are the constant term and the residues of the root ,
respectively, in the expansion of the term . Furthermore,
the following relations among the residuals hold true for
each :

(18)

Again, it can be shown that the conditions (18) are a conse-
quence of (5), provided that the roots of are simple (if there
are multiple roots in , the synthesis of the transversal prototype
with this method is no more possible).
Equations (14) and (17) can be equated term by term,

provided that relations (18) hold true, resulting in the fol-
lowing explicit expressions, valid for and

:

(19)

It should be noted that the lossless property implies that all
and are purely imaginary while all are real ( positive
and real). This assures that the parameters and are all real.
The square roots in (19) are assumed to be all positive.
To verify the above procedure for building up the transversal

three-port canonical prototype, the polynomials computed in
Section II have been used for synthesizing a duplexer with
matched antenna port. The evaluated coupling matrix is



shown at the bottom of this page. The response of the three-port
network, computed through , is not here reported because
it coincides with the one obtained through the polynomials,
already shown in Figs. 2–4.

IV. TOPOLOGIC TRANSFORMATION

The use of the canonical transversal prototype is impractical
in most applications so we have investigated various techniques
for transforming the coupling matrix. As a result, an original
procedure has been devised for generating a family of canonical
prototypes, starting from the matrix of the transversal one (the
procedure is illustrated in the Appendix). Using this procedure,
we realized that if specific conditions on the assigned polyno-
mials are met, the matched duplexer can be implemented with
a very simple and convenient configuration.
The necessary conditions regarding the characteristic poly-

nomials are the following.
• The degrees and of the polynomials and ,
respectively, must obey

(20)

• The sign of the highest degree coefficients of polynomials
and must satisfy

(21)

where and are the degree of and , respectively,
and is the imaginary unit.

We can observe that the previous rules are easily met when the
polynomials of the duplexer are obtained from the synthesis of a
two-port filter, as explained in Section II. It is, in fact, sufficient
to impose with number of transmission zeros
and number of poles in this filter. The second is implied by
the imaginary unit multiplying the highest degree coefficient of
the transmission polynomial of the synthesized filter when the
difference - is even [14].
Duplexers satisfying the above conditions can be imple-

mented with the topology shown in Fig. 6.
It can be demonstrated that this topology (Fig. 6), even if not

strictly canonical, can be found among the ones generated with
the algorithm reported in the Appendix, provided the condi-
tions (20) and (21) are met. On the other hand, its identification

Fig. 6. General topology for the matched duplexer. Port 1 is the matched
common node.

among all the ones obtained with the mentioned algorithm is not
at all an easy task, considering the inevitable need to renumber
the nodes. Therefore, it may be more convenient, from a com-
putational point of view, to generate such a topology with the
method based on the optimization of the rotation angles [16] re-
called in the Appendix.
You can also observe that the two-port subnetworks inside

the dashed boxes have an arrow topology and can therefore be
reconfigured to a more convenient topology (from a practical
point of view), using the well-known sequence of rotations used
for two-port filters [15].
To test the proposed topologic transformation, the matched

duplexer considered in Section III has been synthesized in the
form of Fig. 6. The configuration obtained (with the computed
elements of the coupling matrix) is reported in Fig. 7. The trans-
formedmatrix has been obtained with the optimization of the ro-
tation angles. We have also verified that it belongs to the family
of canonical prototypes generated by the algorithm reported in
the Appendix: in fact, the same topology is obtained by applying
this algorithm with ' ' and .
As already observed, the topology generated by the algorithm

(reported for reference in Fig. 8) has a different nodes num-
bering with respect to the expected one (Fig. 6) so its automatic
identification among all the ones produced by the algorithmmay
be problematic.
Observing the scheme in Fig. 8, one can note that, other than

the numbering of the nodes, the signs of some couplings are also



Fig. 7. Matched duplexer with the transformed topology. The numbers rep-
resent the coupling matrix elements (those in bold are the main diagonal ele-
ments).

Fig. 8. Matched duplexer topology obtained with the algorithm reported in the
Appendix. Note that the numbering of nodes is different with respect to Fig. 7.
The sign of some couplings is also reversed.

different with respect to the corresponding ones in Fig. 7. This
means that there may exist topologies with couplings differing
only for some signs that present the same response (with pos-
sibly a different constant phase term).

V. EXPERIMENTAL VALIDATION

To validate the proposed design approach, a matched du-
plexer was designed and fabricated. The following electrical
specs have been imposed.
• Band 1: 2138.2–2155.8 MHz.
• Band 2: 2120–2135 MHz.
• Attenuation of channel 1 in band 2: 12 dB.
• Attenuation of channel 2 in band 1: 13 dB.
• Return loss at all ports: 20 dB.
The normalized frequency domain used for the synthesis of

the normalized prototype is defined by the usual bandpass-low-
pass frequency transformation

(22)

with and obtained by imposing the mapping of the nor-
malized frequencies 1 and 1 to the initial and final frequen-
cies of band 1 (2138.2 and 2155.8 MHz, respectively). It has

MHz and MHz.
The synthesis of the normalized prototype starts with the def-

inition of the reference two-port filter. A filter of order 3 with

Fig. 9. Scheme of the test duplexer. The numbers represent the elements of the
coupling matrix.

Fig. 10. Response of the matched duplexer in the normalized domain.

one transmission zero can meet the specs. The following assign-
ments have been then used:

dB

where represents the normalized frequency of the transmis-
sion zero.
The evaluation of the coupling matrix has been carried

out according to the procedure of Section IV. Fig. 9 shows the
scheme of the prototype network obtained by the synthesis, to-
gether with the elements of the coupling matrix. The computed
response in the normalized frequency domain of this three-port
network is reported in Fig. 10.
The next step of the design is the de-normalization of the

prototype, performed through the following expressions [14]:

(23)

where represents the external of resonator coupled
to the port ; is the coupling coefficient of the coupled res-
onators ; is the resonant frequency of resonator .



Fig. 11. Photograph of the body of the matched duplexer. The tuning screws
are visible on the cover of the structure.

The following results are obtained from (23) ( are in mega-
hertz):

Note that there is also a unit coupling between ports 1 and 3; it
consists, in the de-normalized domain, of an ideal inverter with
the same impedance of the ports.
The last step of the design is the selection and dimensioning

of suitable cavities implementing the resonators in the de-nor-
malized frequency domain. The duplexer considered here has
been conceived for the base stations of mobile communications,
where coaxial cavities with capacitive loading (for reducing
the overall size) are typically adopted. The size of the cavities
has been selected to get an unloaded of about 5000, which
is obtained with the following assignments: side mm,
height mm, inner rod diameter mm. The direct
coupling between ports 1 and 3 is realized with a transmis-
sion line a quarter-wavelength long and with 50- character-
istic impedance (that approximates the ideal inverter mentioned
before). The main couplings are implemented by opening win-
dows of suitable size between the coupled cavities; for the cross
couplings, probes with suitable dimensions have been used. The
coupling with the external ports is realized by means of a tap on
the inner conductor of the involved cavities.
The dimensioning of all the couplings has been carried out by

considering two cavities at a time and applying the well-known

Fig. 12. Response of fabricated duplexer. Solid lines refer to the measure-
ments, dashed lines to the simulations (performedwith the de-normalized equiv-
alent circuit). and represent the return loss at ports 2 and 3; is the
isolation between the output ports (2, 3); is the return loss at the common
port (the simulated curve is not reported because the simulated matching is
larger than 100 dB at all frequencies).

Fig. 13. Response of fabricated duplexer (continued). and are the
transmission between the common port (1) and the output ports (2, 3).

technique based on the even and odd resonance frequencies
([11, Ch. 14]). The conventional CNC milling has been used for
fabricating the body of the duplexer. Screws have been included
in the cover for allowing the accurate tuning of the cavities and
couplings. A photograph of the fabricated device in shown in
Fig. 11.
The measured response of the aligned duplexer is reported in

Figs. 12 and 13; for comparison, the response obtained by simu-
lating the de-normalized equivalent circuit of the duplexer with
a commercial circuit simulator is also reported on the figures
(the unloaded of resonators was set to 5000). Note that the
matching at the antenna port ( in Fig. 12) is limited by the
fabrication tolerances; it remains anyhow better than 30 dB in
both the passbands. Overall, we can say that there is an excel-
lent agreement between the measurements and simulations.

VI. CONCLUSION

In this paper, a novel approach to the design of a duplexer
with the antenna port matched at all frequencies has been



presented. The method described is based on the polynomial
characterization of the duplexer, which is assumed as a generic
three-port lossless network composed of arbitrarily coupled
resonators. In addition to the design procedure, two other
interesting achievements have been here presented.
• The derivation of the characteristic polynomials of a three-
port network by imposing: the lossless condition (unitary
scattering matrix ), the condition (4) on the determinant
of , and the polynomial at numerator of identically
zero

• The sequence of matrix rotations defining a general family
of canonical prototypes, starting from the transversal one.

Regarding the configuration of the matched duplexer here de-
veloped, it must be noted that it represents the first solution with
an actual three-port network (i.e., not belonging to the classical
four-port configuration with two identical filters and two 90
hybrids).
The design procedure has been validated by the realization of

a test device, whose measurements have proven to be in excel-
lent agreement with the expectations.
To conclude, it is also worth mentioning the limitations of

the proposed solution. First of all, it must be said that the actual
matching at the input port depends on the degree of symmetry of
the implemented network. In practice, a return-loss level larger
than 30 dB can hardly be achieved. Another drawback respect
the classical four-port configuration (that uses 90 hybrids) is
represented by the finite isolation between the output ports that
cannot be specified independently by the transmission param-
eters and (it is, in fact, proportional to their product).
Being, however, that and are reciprocal to each other
(they represent the transmission and the reflection of the ref-
erence filter, respectively), the isolation is expected to also be
sufficiently small in the proposed duplexer configuration.

APPENDIX

Here, the derivation of a general algorithm for generating a
class of canonical topologies for -port networks is presented.
Let assume that the considered network belongs to the class

defined in Fig. 1 (Section II), where the scatteringmatrix at the
ports is defined through suitable characteristic polynomials. We
assign the term canonical to all the specific topologies of the
port network, which can be synthesized, for whatever set of

assigned polynomials (with a finite number of possible excep-
tions). In case of (two-port filters), three basic canonical
topologies have been widely studied and several methods are
well known for the evaluation of the related coupling matrix.
These topologies are usually referred as folded, transversal, and
arrow [15]. Generally, the synthesis of a canonical prototype can
be performed either directly, by using circuital methods (like
the one used in Section III for the transversal prototype with

), or by means of suitable matrix transformations (the
so-called matrix rotations or Given’s transforms). For two-port
filters, [15] shows the sequence of matrix rotations (each de-
fined by an angle and a pivot) producing the coupling matrix of
the folded or arrow prototype (the starting matrix is typically
the coupling matrix of the transversal prototype, analytically
synthesized from the assigned characteristic polynomials). An-
alyzing the procedure used in [15] for generating the mentioned

Fig. A1. Three canonical topologies obtained with the developed algorithm
for and . The grey nodes represent the ports. Note that several
couplings in the above drawings may disappear (i.e., their resulting value is
zero), depending on the polynomials originally assigned for the synthesis of the
transversal prototype used as starting point by the proposed algorithm.

sequence of rotations, we have devised a general algorithm for
building up a family of canonical topologies in case of arbitrary
-port networks. This algorithm is described in the following.
Let be the transversal coupling matrix associated to a net-

work with ports and nodes (and therefore of order ).
The proposed algorithm is constituted by sequences of
rotations, each depending on one over possible choices. The
number of possible topologies that can be generated is therefore

, but it should be noted that some of them could be equiv-
alent (i.e., differ only for the nodes and ports numbering). We
assume that a specific topology can be identified by assigning a
number in base , where each figure represents the choice to
do at each step of the procedure.
The algorithm is then enunciated as follows:

Assign the starting matrix
Initialize the vector as
Transform into a vector containing its digits
FOR TO
Assign
FOR TO
Transform with pivot (CT1, CT2) annihilating
element

NEXT CT2
Cancel the element from vector and append CT1
to vector

NEXT CT1



The equations requested for rotating and annihilating specific
elements of are reported in [15].
Note that the folded and arrow topologies for -port net-

works belong to the family of the canonical matrices gener-
ated with this algorithm (they are identified, respectively, by

' ' and ' ' with ). All the
others topologies can be considered as intermediate between the
mentioned two.
Fig. A1 shows the structures obtained with for

three different values of c (‘00000,’ ‘11111,’ and ‘22222’).
Another way to find new topologies by mean of rotations of

a canonical matrix is based on the numerical optimization of
the rotation angles in a fixed sequence of rotations, spanning
all the distinct pivots of the matrix. This procedure was orig-
inally introduced in [16] for two-port filters and has been ex-
tended here to arbitrary -port networks. Strictly speaking, it is
not said that, for a given sequence of rotations (spanning all the
distinct pivots) and a starting canonical matrix, a set of rotation
angles always exists that allows the evaluation of the coupling
matrix associated to an arbitrary (but realizable) topology. Fur-
thermore, even if these angles exist, the optimization algorithm
may fail their determination. On the other hand, the chances for
getting the desired goal in the optimization process are greatly
increased if many different canonical matrices are available as
a starting point. In fact, we have observed that using one of the
canonical matrices generated with the previous algorithm as a
starting point, the convergence has been always obtained in all
the performed tests (in most cases, the optimization was suc-
cessful starting with the transversal prototype).
It is worth saying that, being that this approach is based on

optimization, it is convenient only when the realizability of the
desired topology is guaranteed, but there is no algorithm for
the analytical determination of the required sequence of matrix
rotations.
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