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I. INTRODUCTION

SURFACE impedance boundary conditions (SIBCs), as
introduced by Leontovich [2], have become a standard tool

in computational electromagnetics. They offer the advantage 
that in the presence of conductors and under the condition 
of strong skin effect it is possible to solve the problem only 
outside the conductors, without having to resolve the boundary 
layer.

The low-order condition given by Leontovich only considers 
the local tangential plane over the surface of the conductor. 
Higher order conditions for smooth conductors were given 
by Rytov [3], on the basis of the principle of asymptotic 
expansions in terms of the skin depth. These conditions also 
consider the curvature of the surface of the conductor, and the 
tangential derivative of the field. For a further review on SIBCs 
we refer to [4] and [5]. The mathematical analysis of high-
order SIBCs has been performed in [6] for scalar problems and 
in [7] for vectorial problems. In particular, the authors have 
proved the convergence of the SIBCs when the skin depth 
tends to zero.

In this paper, we introduce the different kinds of high-order 
SIBCs presented in [6] in a variational formulation to be dis-
cretized with Galerkin’s method. We have chosen a 2-D formu-
lation in terms of magnetic vector potential, as in [1] and [8], 
where the problem is discretized with the boundary element 
method (BEM). The variational formulation that we propose 
can be discretized with the finite element method (FEM). In 
this paper, however, we have decided to perform the numerical 
simulations using the isogeometric analysis (IGA) method [9]. 
This is a discretization technique based on nonuniform rational 
B-splines (NURBS), a set of functions which are widely 
used in computer aided design (CAD) software. One of the 
advantages of IGA in this context is that it allows for an 
efficient computation of the curvature of the boundary of the 
domain, which is required by high-order SIBCs.
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Fig. 1. Geometry of the problem.

The remainder of this paper is organized as follows.
In Section II, we present the equations of the problem in
terms of magnetic vector potential. Different SIBCs are given
in Section III, and the variational formulation for each choice
SIBC is introduced in Section IV. A brief introduction to IGA
is presented in Section V, and the numerical results for several
test cases are discussed in Section VI.

II. MAGNETIC VECTOR POTENTIAL FORMULATION

Consider a set of N infinitely long parallel conductors, with
cross sections �i , i = 1, . . . , N , and let us denote by �0 ⊂ R

2

the surrounding air (see Fig. 1). Each conductor is assumed to
have electrical conductivity σi , and magnetic permeability μi ,
with μ0 the magnetic permeability of free space.

We consider a 2-D formulation of the time-harmonic
eddy-current model, written in terms of the magnetic vector
potential A = Aez , as in [8]. Splitting the potential into
“source” and “eddy” components, A = As + Ae, it can be seen
that As is constant in each conductor, and we will denote by
As

i its value in �i . Denoting by Ae
int and Ae

ext the restriction of
Ae to the conductors and to �0, respectively, the 2-D problem
inside the conductors reads

∇2 Ae
int = jωμiσi Ae

int in �i , i = 1, . . . , N (1)



and in the nonconducting domain

∇2 Ae
ext = 0 in �0. (2)

Denoting by �i the boundary of (the cross section of) each
conductor, and by n the unit normal vector exterior to �0, the
equations for Ae are completed with the interface conditions

Ae
int = Ae

ext − As
i on �i (3)

1

μi

∂Ae
int

∂n
= 1

μ0

∂Ae
ext

∂n
on �i . (4)

To avoid dealing with the infinite domain �0, we follow a
standard approach in finite elements: we truncate the domain
far away from the conductors, and impose an absorbing
boundary condition on the external boundary [10, Ch. 9].
Alternative approaches would be the use of perfectly matched
layers (PML) [10, Ch. 9], infinite elements [11, Ch. 16],
or a hybrid FEM-BEM method. Let us denote by �R

0 the
intersection of �0 with the circle of radius R, and by �R its
external boundary (see Fig. 1), where we apply the following
second order absorbing boundary condition [12, Sec. 3.3]:

∂Ae
ext

∂n
+ 3Ae

ext

8R
− 1

2R

∂2 Ae
ext

∂ξ2 = 0 on �R (5)

where ξ denotes the curvilinear coordinate over the boundary
contour.

Since the values of the source component As are unknown,
we need one more condition on each conductor to complete
the set of equations. This condition is the intensity flowing in
each conductor∫

�i

1

μ0

∂Ae
ext

∂n
dξ = Ii , i = 1, . . . , N. (6)

III. SURFACE IMPEDANCE BOUNDARY CONDITIONS

The general idea of applying SIBCs is to replace the solution
of the problem inside the conductor given by (1) with an
approximate boundary condition on its boundary. The method
is valid under the condition of skin effect, that is, in each
conductor the penetration depth δi = √

2/ωμiσi is much
smaller than the characteristic size of the conductor cross
section.

Defining α = √
2 j , the first-order (Leontovich),

second-order (Mitzner) and third-order (Rytov) SIBCs on �i

are, respectively [6], [8]

∂Ae
int

∂n
= −α

δi
Ae

int (7)

∂Ae
int

∂n
= −2α2

δ2
i κ + 2αδi

Ae
int (8)

(
δi

α
+ κδ2

i

2α2 + 3κ2δ3
i

8α3

)
∂Ae

int

∂n
+ δ3

i

2α3

∂2

∂ξ2

(
∂Ae

int

∂n

)
+ Ae

int =0 (9)

where κ = κ(ξ) is the (signed) curvature of the contour of the
cross section.

As it is explained in [6], the conditions (7)–(9) are obtained
through the approximation of a Neumann-to-Dirichlet (NtD)

operator, that gives Ae
int as a function of the normal deriva-

tive ∂Ae
int/∂n. Alternative conditions are proposed in [6] by

the approximation of a Dirichlet-to-Neumann (DtN) operator,
which is the inverse of the NtD one. The first-order condition
is the same as (7), since the first-order DtN and NtD approx-
imation operators are inverse to each other. The same is not
true for second- and third-order operators, and in this case the
DtN conditions are, respectively

∂Ae
int

∂n
=

(−α
δi

+ κ

2

)
Ae

int (10)

∂Ae
int

∂n
=

(−α
δi

+ κ

2
+ δiκ

2

8α

)
Ae

int + δi

2α

∂2 Ae
int

∂ξ2 . (11)

As we will see, the unknowns in the variational formulations
are the fields Ae

ext and As
i . Hence, it is necessary to rewrite

the SIBCs (7)–(11) in terms of those fields, by using the
interface conditions (3)–(4). For instance, dividing (7) by μi

and applying the interface conditions, we get

1

μ0

∂Ae
ext

∂n
= 1

μi

∂Ae
int

∂n
= −α
μiδi

Ae
int = −α

μiδi
(Ae

ext − As
i ). (12)

A similar procedure can be used for conditions (8)–(11).
In [6], the authors study the convergence properties of

all these conditions when δ → 0 from a mathematical
perspective. However, the choice of the most suitable SIBC
may depend on the problem and also on the numerical method
of discretization. One of the goals of this paper is to compare
the effectiveness of these SIBCs, by performing numerical
tests with a Galerkin discretization of the problem.

IV. VARIATIONAL FORMULATION

In this section, we present the variational formulation of
our problem applying the SIBCs presented above. In the first
part of this section, we introduce the formulation for the
low-order SIBC (7). After that, we present the formulation
for all the high-order SIBCs, which are all very similar,
except for condition (9). The variational formulation for this
condition requires the use of an extra unknown for the normal
derivatives, and it is presented at the end of this section.
We remark that these formulations are valid in general for any
Galerkin discretization method, and they can be discretized
for instance with the standard FEM, or with IGA, as we will
present in the next section. We also notice that, since we are
focusing on the implementation, we do not write the problem
in terms of sesquilinear forms, as it is done in [6] for the
mathematical analysis of the problem.

A. Variational Formulation for Low-Order SIBC

Dividing (2) by μ0, then multiplying by a test function v,
and integrating over �R

0 , we obtain, after integrating by parts∫
�R

0

1

μ0
∇ Ae

ext · ∇v d S −
∫
�R

1

μ0

∂Ae
ext

∂n
v dξ

−
N∑

i=1

∫
�i

1

μ0

∂Ae
ext

∂n
v dξ = 0.



The integral on the external boundary �R can be modified
using the absorbing boundary condition (5). This yields, after
integrating by parts the term with the second derivative

1

μ0

(∫
�R

0

∇ Ae
ext · ∇v d S + 1

2R

∫
�R

∂Ae
ext

∂ξ

∂v

∂ξ
dξ

+ 3

8R

∫
�R

Ae
extv dξ

)
−

N∑
i=1

∫
�i

1

μ0

∂Ae
ext

∂n
v dξ = 0.

(13)

The integrals on �i are transformed by applying (12), i.e.,
the SIBC expressed in terms of Ae

ext and As
i , to obtain

1

μ0

(∫
�R

0

∇ Ae
ext ·∇v d S+ 1

2R

∫
�R

∂Ae
ext

∂ξ

∂v

∂ξ
dξ

+ 3

8R

∫
�R

Ae
extv dξ

)
+

N∑
i=1

∫
�i

α

μiδi
(Ae

ext− As
i )v dξ= 0.

(14)

Now, to write the formulation in a simpler and more
convenient way, we define the operators

a(u, v) := 1

μ0

(∫
�R

0

∇u · ∇v d S

+ 1

2R

∫
�R

∂u

∂ξ

∂v

∂ξ
dξ + 3

8R

∫
�R

uv dξ

)

aL(u, v) =
N∑

i=1

∫
�i

α

μiδi
uv dξ

and we also define, for a vector of constants C = {Ci }N
i=1 ∈

C
N , the operator

bL(v,C) =
N∑

i=1

∫
�i

α

μiδi
Civ dξ.

With these definitions, and introducing the vector of
unknown sources As = {As

i }N
i=1, the variational formulation

after applying the SIBC (7) becomes

a(Ae
ext, v) + aL(A

e
ext, v)− bL(v,As) = 0. (15)

Equation (6) must be added to the system to make it solvable
in the unknowns Ae

ext and As . The condition is modified using
(12), to give

∫
�i

1

μ0

∂Ae
ext

∂n
dξ =

∫
�i

−α
μiδi

(Ae
ext − As

i ) dξ = Ii . (16)

B. Variational Formulation for High-Order SIBCs

The variational formulations for the SIBCs (8), (10), and
(11) are very similar to the one presented and can be obtained
using the same procedure. Indeed, it is sufficient to replace
aL and bL in (15) with similar operators, defined using the

corresponding SIBC. For instance, the operator aL should be
replaced by

aM(u, v) =
N∑

i=1

∫
�i

1

μi

2α2

δ2
i κ + 2αδi

uv dξ (17)

aMDt N (u, v) =
N∑

i=1

∫
�i

1

μi

2α − κδi

2δi
uv dξ (18)

aRDt N (u, v) =
N∑

i=1

∫
�i

1

μi

(
α

δi
− κ

2
− δiκ

2

8α

)
uv dξ

+
N∑

i=1

∫
�i

δi

2μiα

∂u

∂ξ

∂v

∂ξ
dξ (19)

when using (8), (10), and (11), respectively. The definition
of the operators that replace bL is very similar. Notice that
since they are applied to constants, the derivatives when using
condition (11) in this last operator are always zero.

As before, the intensity condition (6) must be added to the
system. Applying the SIBCs (8), (10), and (11), it becomes,
respectively

∫
�i

−2α2

μi (δ
2
i κ + 2αδi )

(Ae
ext − As

i ) dξ = Ii (20)

∫
�i

1

μi

(−α
δi

+ κ

2

)
(Ae

ext − As
i ) dξ = Ii (21)

∫
�i

1

μi

(−α
δi

+ κ

2
+ δiκ

2

8α

)
(Ae

ext − As
i ) dξ = Ii . (22)

C. Variational Formulation for Rytov’s NtD Condition

The formulation for the third-order SIBC (9) can be
obtained with a mixed formulation, as it is done in [6]. The
procedure is similar to the one explained in [10, Ch. 9] for
third-order absorbing boundary conditions. The same approach
has been used in [13] for high-order transmission conditions,
in a discretization of vector fields.

We first introduce the new unknown ϕ = ∂Ae
int/∂n, that

will replace the partial derivative in (6) and (13), using the
interface condition (4), and also in the SIBC (9). Multiplying
the latter by a test function ψ and integrating over �i , then
integrating by parts the term with the second partial derivative,
and finally applying the interface condition (3), we get

δ3
i

2μiα3

∫
�i

∂ϕ

∂ξ

∂ψ

∂ξ
dξ −

∫
�i

1

μi

(
δi

α
+ κδ2

i

2α2 + 3κ2δ3
i

8α3

)
ϕψ dξ

−
∫
�i

1

μi
Ae

extψ dξ+
∫
�i

1

μi
As

iψ dξ=0.

(23)

To simplify the notation, for functions φ,ψ defined on the
boundaries �i where the SIBC is applied, and for a vector of



constants C = {Ci }N
i=1 ∈ C

N , we define the operators

cR(φ,ψ) =
N∑

i=1

δ3
i

2μiα3

∫
�i

∂φ

∂ξ

∂ψ

∂ξ
dξ

−
∫
�i

1

μi

(
δi

α
+ κδ2

i

2α2 + 3κ2δ3
i

8α3

)
φψ dξ

bR(u, ψ) =
N∑

i=1

∫
�i

1

μi
uψ dξ

dR(ψ,C) =
N∑

i=1

∫
�i

1

μi
ψCi dξ. (24)

Using the definition of these operators in (13) and (23),
and replacing ∂Ae

int/∂n by ϕ, the variational formulation is
written as

a(Ae
ext, v)− bR(v, ϕ) = 0

−bR(A
e
ext, ψ) + cR(ϕ,ψ)+ dR(ψ,As) = 0. (25)

As before, the system must be completed with the intensity
condition (6), which in this case is written in terms of the new
unknown ϕ, in the form∫

�i

1

μi
ϕ dξ = Ii , i = 1, . . . , N.

Remark 1: In the case of a multiconductor cable with a
shield, like the third test in Section VI, two approaches are
possible: to solve (1) in the shield, maintaining the absorbing
boundary condition on �R ; or to impose a SIBC on the
shield, as it is done in [14], and in practice truncating the
computational domain in the internal boundary of the shield.
Notice that in this case it is not necessary to impose the
intensity across the shield, since the variational formulation
guarantees that it is equal to − ∑N

i=1 Ii , as can be seen by
taking the test function v as a constant.

V. ISOGEOMETRIC ANALYSIS

Since the variational formulations of the previous section
consider the curvature of the conductors, an efficient dis-
cretization with FEM is only possible with second (or higher)-
order isoparametric finite elements [10, Ch. 4], or with curved
finite elements. In this paper, we have chosen to discretize the
problem with the IGA method. With this technique NURBS
basis functions, which are utilized by the CAD software to
describe the geometry, are also used as the shape functions in
the discrete problem by invoking the isoparametric concept.
As a result, the geometry description is done with NURBS,
and an efficient and stable computation of the curvature is
possible everywhere. This is in contrast with isoparametric
elements, for which the curvature is not well defined between
two elements. Moreover, in the IGA method it is possible to
compute with high-degree and high-regularity basis functions,
which gives similar approximation properties than FEM using
less degrees of freedom. Finally, we remark that for the exten-
sion to the vectorial 3-D case, isogeometric curl-conforming
spaces have been defined in [15].

In this section, we present a brief description of NURBS
basis functions and the IGA method. For a deeper study on
NURBS we refer the reader to the book [16], whereas for
a more-detailed explanation of IGA we refer to the seminal
paper [17] and the book [9].

A. NURBS Functions and Geometry

Univariate B-spline basis functions of degree p are
defined from a nondecreasing knot vector � = {0 =
ζ1, . . . , ζn+p+1 = 1}. We will only consider the case of open
knot vectors, that is, the first p +1 knots are all equal to zero,
and the last p+1 are all equal to one. Starting from piecewise
constant functions

Bk,0(ζ ) =
{

1, if ζk ≤ ζ < ζk+1
0, otherwise

B-splines of degree p are computed using the Cox-De Boor
recursion formula

Bk,p(ζ ) = ζ − ζk

ζk+p − ζk
Bk,p−1(ζ )+ ζk+p+1 − ζ

ζk+p+1 − ζk+1
Bk+1,p−1(ζ ).

The resulting B-splines form a basis of the space of piecewise
polynomials of degree p with p − mk continuous derivatives
at the knot ζk , where mk is the multiplicity of ζk . Some
fundamental properties of B-splines are that they are non-
negative, the basis function Bk,p is supported in the interval
[ζk, ζk+p+1), and on each knot span [ζk, ζk+1) there are at
most p + 1 non-null B-spline basis functions.

NURBS basis functions are defined as rational B-splines by
associating a positive weight to each B-spline function, in the
form

N̂k,p(ζ ) = wk Bk,p(ζ )∑n
j=1w j B j,p(ζ )

. (26)

NURBS basis functions inherit most of the properties of
B-splines, in particular those related to their continuity and
support.

Bivariate B-splines and NURBS are simply defined from
the univariate ones by tensor product (see [16, Ch. 3]). For
simplicity we maintain the same notation for univariate and
bivariate functions.

A NURBS surface (respectively, curve) can be constructed
by associating a control point Ck ∈ R

2 to each bivariate
(respectively, univariate) basis function. This gives a parame-
trization of the form

F(ζ ) :=
n∑

k=1

N̂k,p(ζ )Ck, ζ = (ζ1, ζ2) ∈ (0, 1)2. (27)

The grid formed by the set of control points is usually called
the control net, and it is one of the tools used in CAD software
to manipulate the geometry (see Fig. 2). We remark that the
parametrization of the boundary of the domain can be also
written as a NURBS, using univariate basis functions and the
control points on the boundary of the control net.

Several algorithms for the computation of NURBS basis
functions and their derivatives, and also for the evaluation of
the parametrization F, can be found in [16]. In particular, the
knot insertion and degree elevation algorithms recompute the



Fig. 2. Parametrization of one quarter of a ring using NURBS. Dashed lines:
control net. Red dots: internal control points. Blue squares: boundary control
points.

control points of the parametrization (27) when more knots are
inserted (h-refinement) or the degree of the basis functions is
raised ( p-refinement).

In practice, complicated geometries cannot be given as the
image of the unit square, like in (27), but as several patches
that must be glued together. We give more details about this
in Section V-C.

B. Isogeometric Analysis Based on NURBS

The idea behind IGA is to maintain the description of the
geometry given as a NURBS, and to use the same NURBS
basis functions for the discretization of the PDE problem. Let
us assume that the domain �0 is described with a NURBS
parametrization like (27). Invoking the isoparametric concept,
we look for a discrete solution of our problem in the form

Ae
ext(x) =

n∑
k=1

Ae
k Nk (x) (28)

with Nk the basis functions in the physical domain, defined as

Nk(x) = N̂k(F−1(x)). (29)

Notice that, by the isoparametric approach, the degrees of
freedom are in a one-to-one correspondence with the control
points that define the parametrization (27). Compared with
FEM, IGA can give more regular-basis functions, with up to
p − 1 continuous derivatives. Moreover, knot insertion and
degree elevation algorithms allow us to refine the discrete
space without modifying the original geometry.

It is also important to note that, since we are using open knot
vectors [16, Ch 2], the only basis functions that do not vanish
on the boundary are those associated to the control points on
the boundary of the control net, marked as blue dots in Fig. 2.
This can be seen in Fig. 3, where we depict a boundary and
an internal basis function.

1) Discrete Problem for Low-Order SIBC: As for the
variational formulation, we start describing how to compute
the solution using the low-order condition (7), that is, we
discretize the variational problem (15). In this case, the
unknowns of our discrete problem are the vector of coefficients
A = {Ae

k}n
k=1, and the value of the source component

As in each conductor, that we represent with the vector
As = {As

i }N
i=1. As in FEM, the solution within IGA is

computed using a Galerkin method. Introducing the vector of
intensities I = {Ii }N

i=1, the unknowns are computed by solving
the linear system[

K + S −B�
−B C

] [
A
As

]
=

[
0
I

]
(30)

Fig. 3. Representation of two basis functions in the physical domain, one
associated to a boundary control point, and one associated to an internal
control point.

where the coefficients of the matrices K = [Kkl ], S = [SL
kl ]

and B = [B L
ik] are given by

Kkl = a(Nk , Nl ), k, l = 1, . . . , n (31)

SL
kl = aL(Nk , Nl ), k, l = 1, . . . , n (32)

B L
ik =

∫
�i

α

μiδi
Nk dξ , i = 1, . . . , N, k = 1, . . . , n (33)

with Nk the NURBS basis functions defined in (29).
We remark that, although we are writing the equations for all
the basis functions, the boundary integrals for (32) and (33)
only have to be computed for the basis functions that do not
vanish on the boundary. The second row of the system comes
from the intensity condition (16), and C is a diagonal matrix
with coefficients given by

C L
ii =

∫
�i

α

μiδi
dξ .

2) Discrete Problem for High-Order SIBCs: The discrete
version of the problem when applying the SIBCs (8), (10) or
(11) can be written in the form (30), changing the matrices
coefficients according to the SIBC. In fact, the matrix K is
independent of the SIBC, with the same coefficients given
in (31). The entries of S are computed replacing in (32) the
operator aL with the operator in (17)–(19) that corresponds
to the desired SIBC. The coefficients of the matrix B and the
diagonal matrix C are computed using (20)–(22).

3) Discrete Problem for Rytov’s NtD Condition: As we have
seen in Section IV, the variational formulation for Rytov’s
condition (9) requires us to introduce an extra unknown for
the normal derivative. In the discrete setting, in addition to the
discretization of Ae

ext given in (28), we need a discretization
of the normal derivative ϕ = ∂Ae

int/∂n, that is only defined
on the boundary.

As we mentioned, the boundary of the domain can be
written as a univariate NURBS, using the control points on
the boundary of the control net, and their associated basis
functions. Denoting these basis functions by Nb

l , the discrete
version of ϕ is very similar to (28) and takes the form

ϕ =
nb∑

l=1

ϕl Nb
l (34)

with nb being the number of boundary basis functions.
Introducing the vector of unknown coefficients ϕ = {ϕl}nb

l=1,
the solution to the problem is computed by solving the linear



Fig. 4. Representation of a ring using four different NURBS patches (left).
The control points at the interfaces between patches, represented by blue
squares, must be coincident (right).

system ⎡
⎣ K −B� 0

−B C D�
0 D 0

⎤
⎦

⎡
⎣ A

ϕ

As

⎤
⎦ =

⎡
⎣ 0

0
I

⎤
⎦. (35)

The entries of the matrix K are the same given in (31).
The coefficients of the matrices B = [B R

kl ], C = [C R
kl ], and

D = [DR
ik ] can be derived from (24)

B R
kl = bR(Nk , Nb

l ), k = 1, . . . , n, l = 1, . . . , nb

C R
kl = cR(N

b
k , Nb

l ), k, l = 1, . . . , nb

DR
ik =

∫
�i

1

μi
Nb

k dξ k = 1, . . . , nb, i = 1, . . . , N.

C. Multipatch Geometries

The parametrization (27) assumes that the geometry can be
defined as the image of the unit square. In most practical sit-
uations, the geometry of the physical domain will differ topo-
logically from a square. In these cases, we will represent the
geometry by multiple patches, assuming that at the interfaces
the patches match both parametrically and geometrically, that
is, they have coincident knots and control points (see Fig. 4).
With this approach, the continuity between patches is reduced
to C0, but high continuity can be maintained within each patch.

The way to deal with multiple patches in IGA is very simple.
Since the boundary control points of two adjacent patches
coincide at the interface, we also enforce the boundary degrees
of freedom at that interface to coincide. This is very similar to
what is done in FEM between adjacent elements. We notice
that this approach only gives C0 continuity of the solution
between patches, and the refinement of one patch propagates to
the adjacent one. It is also possible to obtain higher regularity
than C0 by enforcing some constraints on the first layer of
internal knots, but these methods are beyond the scope of this
paper. We refer the reader to [9] for more details on the subject.

VI. NUMERICAL RESULT

The method has been implemented in MATLAB using the
GeoPDEs toolbox1 [18]. The integrals in the matrix entries
(31)–(33) are approximated with Gaussian quadrature rules,

1Available at http://geopdes.sourceforge.net.

Fig. 5. Relative error in p.u.l. resistance for two circular copper cables of
diameter equal to 2 mm. Distance between the centers of the conductors is
4 mm.

Fig. 6. Relative error in p.u.l. inductance for two circular copper cables of
diameter equal to 2 mm. Distance between the centers of the conductors is
4 mm.

and standard algorithms from [16] are used to evaluate, at
the quadrature points, the NURBS parametrization, the basis
functions, and the derivatives of both. An alternative to these
algorithms is the use of Bézier extraction, as it is described
in [19].

To validate our implementation and to compare the obtained
IGA results with the BEM computations presented in [1], we
have chosen here the same test cases.

First of all the canonical problem of two parallel circu-
lar conductors is solved. Conductivity of each conductor is
σ = 5.8 × 107 S/m and diameter is 2 mm; distance between
centers is 4 mm. The per-unit-length (p.u.l) series parameters
are computed following the procedure described in [8]. The
applied discretization is with NURBS of degree 3, the number
of elements is equal to 3600 and the number of degrees of
freedom is equal to 4761. The radius of the external boundary
is R = 0.04 m. To compare our IGA results with those
obtained with the BEM formulation in [1], Rytov’s condition is
implemented as a NtD SIBC as in (9), using the corresponding
mixed formulation (25). The relative errors with respect to
analytical results [20], shown in Figs. 5 and 6, are very close to
those obtained in [1] and [8] using BEM, showing that they are
due to the chosen SIBC and do not depend on the discretization



Fig. 7. Dimensions of the two elliptical conductors.

Fig. 8. Relative error, with respect to commercial FEM software results, in
p.u.l. resistance for two elliptical copper cables.

Fig. 9. Relative error, with respect to commercial FEM software results, in
p.u.l. inductance for two elliptical copper cables.

technique. The DtN SIBCs (10)–(11) implemented with the
formulation presented in Section IV-B give similar results and
so are not reported in Figs. 5 and 6.

The second test case of two parallel elliptical conductors
is then considered, with the dimensions given in Fig. 7 and
the same electrical conductivities as in the circular conductors
case. The numerical results for p.u.l. resistance and inductance
are compared in Figs. 8 and 9 with those obtained with a
commercial FEM software [21], which solves the problem
including the discretization of (1) in the conductors, and that
were reported in [1]. The degree of NURBS, the number of
elements and of degrees of freedom is the same of the previous
test case of two circular conductors. The radius of the external
boundary is R = 0.3 m. As it can be noted the error does

Fig. 10. Magnitude of the x-component of the magnetic field over the contour
of the right conductor at 500 Hz. The origin of the curvilinear coordinate is
at point O in Fig. 7.

Fig. 11. Geometry of the three-phase power cable (rs = 100 mm,
rc = 17 mm, a = 1.5rc , b = 3rc).

not converge exactly to zero, due to the finite size of the
computational domain (as a matter of fact, the error converges
to zero when the radius of the domain goes to infinity). We see
from Fig. 9 that DtN conditions perform better in this example.
This seems to be a problem-dependent feature, since the same
behavior is not repeated in other tests. A comparison with
the results obtained by the commercial FEM software is also
carried out in terms of the magnetic field over the contour of
the elliptical conductor (Fig. 10), at a frequency of 500 Hz.
The high-order SIBCs give better results in this test case, but
as the authors mention in [6], it is not guaranteed that raising
the order of the SIBC will lead to better numerical results,
as can be noted comparing the results for Mitzner and Rytov
conditions.

Finally, to deal with a more realistic geometry, we have
applied the method to the simulation of a three-phase cable
with a shield (that we consider infinitely thick), with the same
geometry of the example in [1] (see Fig. 11). The three phase
conductors and the shield are supposed to be made of copper,
with electrical conductivity σ = 5.8 × 107 S/m and magnetic
permeability μ = μ0.

The discretization is done with NURBS of degree 3, the
number of elements is equal to 15 300 and the number of
degrees of freedom is equal to 17 758. In this case, the SIBC
is also imposed on the shield, as explained in Remark 1. As can
be noted from Figs. 12 and 13, there is a better convergence for
high-order SIBCs, in particular for the resistance in Fig. 12,



Fig. 12. Differences with commercial FEM software results in p.u.l.
resistance of conductor 1.

Fig. 13. Differences with commercial FEM software results in p.u.l.
inductance of conductor 1.

although the behavior is not regular at the highest frequency
(100 kHz), as the error does not go to zero. We attribute this
effect to a lack of accuracy of the reference-adaptive FEM sim-
ulation, computed with 272 380 elements for this frequency. To
improve the results we should use a higher number of finite
elements, not obtainable with the computational resources at
hand, showing in this way the relevant advantage of the use
of SIBCs. The considered test case also shows that, even if all
the approximations tend to the same results when frequency
increases, it is not always the case that higher order SIBCs
give lower errors, as it is seen in Fig. 13.

VII. CONCLUSION

High-order SIBCs are implemented in an isogeometric dis-
cretization of a 2-D variational formulation. Both NtD and DtN
approaches are considered while introducing the impedance
boundary conditions and the corresponding variational formu-
lations are derived. In the case of the highest order Rytov’s
conditions, the NtD conditions require a mixed formulation
with the use of more unknowns. The implementations are val-
idated with the solution of three canonical cases, showing that
all the approximation errors tend to be zero with increasing
frequency, regardless of the kind and order of the impedance
boundary conditions. Reference solutions are analytical or are
obtained by a commercial finite element software. In some
cases, the advantage of using high-order impedance boundary

conditions can be appreciated in terms of accuracy. The present
formulation can be extended to the vectorial 3-D case. In this
case, one would apply the SIBCs presented in [5] and [7] and
the discretization with isogeometric methods would require
the use of the curl-conforming spline spaces introduced
in [15], which are a generalization of edge finite elements
to the isogeometric context.
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