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Abstract

A new numerical procedure is presented to perform the analysis of three–dimensional linear

elastic no–tension structures exploiting the application programming interface of a general pur-

pose finite element analysis software. Masonry is replaced by an equivalent orthotropic material

with spatially varying elastic properties and negligible stiffness in the case of cracking strain. A

non–incremental algorithm is implemented to define the distribution of the equivalent material,

minimizing the strain energy so as to achieve a compression–only state of stress for any given

compatible load. Applications are shown for masonry–like solids of general shape visualizing load

paths in walls subject to dead loads and out–of–plane live loads, circular domes under self–weight

and a groin vault acted upon by both vertical and horizontal seismic loading.
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1. Introduction

Masonry, whether of bricks or stones, is well known to be a material with low tensile strength.

The inability of transferring significant tensile stresses explains the extensive crack patterns that

can frequently be observed in ancient masonry construction. However, cracks are not necessarily

symptomatic of a possible failure, since stresses can spontaneously attain a purely compressive

state, which means that cracked regions do not necessary result in instability of the building. The

brittle behavior in tension is one of the main reasons for the high non–linearity of the mechanical

response of masonry structures. Numerous micro– and macro– models, with different degree of

complexity and sophistication, have been developed over the years to properly address this issue

both from a constitutive and a numerical point of view, see e.g. [46] for a comprehensive review

and [48] for recent trends.

To mention a few, discontinuous idealizations based on the representation of masonry as a

continuous medium cut by joints [33] belong to the former class of models. The first numerical

implementation of such an approach in 3D was presented in [19]. These models have proved to

be reliable in the interpretation of experimental test results and damage observed on site [32], al-

though the computational cost can be a challenge in the application to complex structures. Other

micro–models that include damage laws and assume progressive micro–cracking and strength–loss

have been proposed as equivalent continuum idealizations, see e.g. [34, 8, 45]. Several model

parameters are needed to achieve an as-much-as-possible realistic mechanical response. Unfortu-

nately, extended experimental data is not easily available for historical masonry construction [35].

Moreover, complex non–linear finite element procedures are generally needed to handle such kind

of models. To overcome this issue, the contribution in [38] proposes an effective and accurate

computational strategy for brick masonry structures that adopts a domain partitioning approach

coupled with a meso–scale finite element model, see also [42, 15].

Considering the above aspects, a continuum idealization endowed with the linear elastic masonry–
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like material model can be seen as a meaningful mechanical approximation when dealing with the

preliminary assessment of historical masonry construction, see e.g. [17]. It assumes (i) the stress

tensor to be negative semi–definite (unilateral constraint), (ii) the strain to be the sum of an elastic

and inelastic part (small displacements and strains are considered), (iii) the negative semi–definite

stress tensor to be linearly dependent upon the elastic part of the strain and (iv) the positive

semi–definite inelastic strain to be normal to the stress tensor, see in particular [22].

Despite the apparent simplicity of the above assumptions, specific issues arise such as the

need for compatibility of the external loads with respect to the no–tension constraint, the non–

uniqueness of the solution due to the inelastic (cracking) strains and the discontinuities that are

likely to affect both the stress and the displacement field, see [3].

As reviewed in [20], there are different numerical methods to cope with the linear elastic

masonry–like material model, including total displacement formulations or displacement rate ap-

proaches, see e.g. [47, 25, 36, 1], as well as stress (complementary) formulations, see e.g. [40, 26, 20].

Reference is also made to the contribution in [41], which proposes a generalization of the classical

model to account for irreversible crushing strains. While most of the above formulations have been

implemented and tested for in–plane problems, the work in [37] adopts non conforming shell ele-

ments to search for thrust surfaces in linear elastic no–tension masonry vaults through appropriate

nonlinear techniques.

Alternatively, the no–tension assumption can be handled robustly through energy–based min-

imization procedures, as discussed e.g. in [6]. A numerical method was proposed in [4] that

solves the equilibrium of two–dimensional no–tension bodies seeking for the displacement field

that minimizes a suitable form of the total potential energy adopting the displacement field as

unknown.

Within this framework, the real masonry–like body can be replaced by an equivalent orthotropic

medium to mimic the strain energy contributions of the no–tension material by enforcing a neg-
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ligible stiffness in any direction along which a tensile strain arises [12]. For any given load that

is compatible with the no–tension assumption, the equilibrium of the body is sought by mini-

mizing the strain energy with respect to the distribution of the equivalent orthotropic material.

This requires the iterative computation of the displacement and stress fields depending on the

current values of a set of minimization parameters. The arising minimization problem was solved

in [13] through sequential convex programming, with the aim of investigating the in–plane and

out–of–plane behavior of masonry walls and arches by means of two–dimensional models. A pre-

liminary extension to the three–dimensional framework has recently been explored in [11], where

regular meshes of eight–node hexahedral elements are dealt with on simple geometries. As a

straightforward generalization of the two–dimensional approach, mathematical programming was

implemented to cope with the minimization procedure, whereas the orientation of the orthotropic

medium with respect to the global reference system was handled using Euler’s angles. Notwith-

standing the simplicity of the discretizations, which were all based on the repetition of the same

cubic element, a bottle–neck related to the computation of the objective function and its sensitivity

was reported. This was also tied to a certain complexity in the handling of the orientation of the

symmetry planes of the equivalent orthotropic material when dealing with the element stiffness

matrices and their derivatives.

This contribution presents an efficient numerical approach to analyze 3D linear elastic masonry–

like bodies exploiting: (i) the application programming interface (API) of any general purpose

software package performing the finite element analysis (FEA) of linear elastic orthotropic media

and (ii) an efficient scheme to update the minimization parameters based on a penalized steepest

descent–like method.

The proposed approach is ideally conceived to visualize load paths in structural components of

historical masonry buildings, such as walls, vaults and domes, when subjected to any compatible

set of dead loads and live loads. Indeed, the linear elastic no–tension model requires the definition

4



of a limited number of constitutive parameters, the adoption of an energy–based approach avoids

the need for non–linear approaches, and the implementation within a finite element package allows

general shapes to be handled and the exploitation of efficient sparse linear solvers. Basic matrix

operations on the principal stresses and on the relevant direction cosines are performed to update

the constitutive properties of the equivalent orthotropic material throughout the finite element

discretization. These quantities, as well as the overall strain energy, are directly computed by the

post–processing routines of the finite element software package.

The proposed approach may also be used to investigate the structural behavior of masonry–like

structures at failure. Mechanisms and collapse load multipliers are found without any a–priori

hypothesis on the failure mode, as conversely needed when assuming a rigid–plastic material model

in classical limit analysis, see the well–known rigid no–tension material model in [28].

It is finally remarked that the assumptions governing the linear elastic no–tension material

model imply limitations that need to be considered when addressing the analysis of historical

constructions under monotonic loading. In particular, inelastic strains are assumed to be normal

to the compressive stress tensor, meaning that friction between the voussoirs must be sufficient

to prevent sliding failure of one voussoir relative to its neighbours. Positive semi–definite strains

arise to recover kinematic. They allow detecting regions where cracks can appear, but they do not

provide any information to recover crack patterns or crack widths. No crushing collapse can be

modeled, although the evaluation of compressive stresses throughout the structure allows assessing

safety through the permissible stress design approach.

The layout of the paper is as follows. The mathematical formulation governing the equilibrium

of linear elastic masonry–like bodies is recalled in Section 2.1. The three–dimensional energy

function and the constitutive law for the equivalent orthotropic composite are derived in Section

2.2 and Section 2.3, respectively. The adopted energy–based approach is outlined in Section 3.1,

whereas its implementation using the API of a finite element software package is detailed in Sections
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3.2 and 3.3. Section 4 addresses numerical simulations, e.g. walls with openings subject to dead

loads and out–of–plane live loads, circular domes under self–weight and a groin vault under both

vertical and horizontal seismic loading. Finally, the main results of the work described in this

paper are summarized and on–going developments are outlined in Section 5.

2. Governing equations

2.1. Linear elastic masonry–like materials

According to [22], the so–called linear elastic masonry–like material is defined by the following

statements:

σij ∈ Sym−,

εij = εeij + εcij,

σij = Cijhkε
e
hk,

σijε
c
ij = 0, and εcij ∈ Sym+.

(1a)

(1b)

(1c)

(1d)

Eqn. (1a) forces the stress σij to belong to the closed cone of negative semi–definite symmetric

second order tensors Sym−. This constraint is equivalent to preventing the principal stresses from

being positive, see e.g. [47]:

σ11 ≤ 0, σ22 ≤ 0, σ33 ≤ 0, det(σ) ≤ 0

σ22σ33 − σ2
23 ≥ 0, σ11σ33 − σ2

13 ≥ 0, σ11σ22 − σ2
12 ≥ 0.

(2)

The infinitesimal strain tensor is defined as εij =
1
2
(ui,j + uj,i), where u is the displacement field.

According to Eqn. (1b), the tensor εij is assumed to be the sum of an elastic part εeij and a latent

one εcij accounting for “cracking strains”. The elastic part of the strain tensor is related to the

stress through the linear relationship in Eqn. (1c), whereas the hypothesis of normality holds for

6



the latent part of the strain tensor εcij, being Sym+ in Eqn. (1d) the closed cone of positive semi–

definite symmetric second order tensors. This calls for inelastic strains (herein “cracking strains”)

that can only arise orthogonally to the non–positive stress σij, similarly to standard associated

plasticity.

2.2. A strain energy function for three–dimensional no–tension elastic problems

Any linear elastic masonry–like material with symmetric elastic tensor Cijhk is hyper–elastic

and therefore admits a strain energy density function φ(εe). The case of isotropic linear elastic

masonry–like materials whose elastic behavior is fully described by the Young’s modulus E and

the Poisson’s ratio ν > 0 is herein dealt with in a general three–dimensional framework.

Let σα, α = I, II, III, be the eigenvalues of the stress tensor σ(χ) computed at any point

χ ∈ Ω, with σI ≤ σII ≤ σIII . zα, = α = I, II, III, are the corresponding eigenvectors.

Following [47], the behavior of the no–tension solid may be conveniently investigated by dividing

Ω into four subdomains such that Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 and:

Ω1 = χ ∈ Ω : σI < 0, σII < 0, σIII < 0,

Ω2 = χ ∈ Ω : σI < 0, σII < 0, σIII = 0,

Ω3 = χ ∈ Ω : σI < 0, σII = 0,

Ω4 = χ ∈ Ω : σI = 0.

(3)

In subdomain Ω1 the material is subjected to triaxial compression and behaves like a conventional

intact isotropic solid. In fact, due to Eqns. (1d) no latent strain is allowed, that is εcij = 0,

and the total strain fully turns into the elastic strain εij = εeij. In Ω2 the material is subjected to

biaxial compression and behaves like a transversally isotropic material with axis zIII . Indeed, some

“cracking strain” εc ≥ 0 is allowed in the direction orthogonal to the plane zI zII , whereas a fully

elastic behavior is found in this plane. In Ω3 the material is subjected to uniaxial compression
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and behaves like a transversally isotropic material with axis zI . According to Eqn. (1d) the

material is intact along this axis, whereas “cracking strains” εc ≥ 0 are allowed in the orthogonal

plane zII zIII . Finally, in subdomain Ω4 neither stress nor elastic strain is found and the material

behaves like a “void phase”, allowing for any positive semi–definite “cracking strain” to restore

compatibility.

Due to the linear elastic behavior in compression and the normality condition, stresses and

total strains share the same principal directions. Hence, by exploiting Eqn. (1c) and expressing

the generalized Hooke’s law in terms of the principal directions, the strain energy function for a 3D

linear elastic masonry–like material may straightforwardly be written in terms of the total strain

tensor eigenvalues εα, α = I, II, III, as:

φ(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

2(1 + ν)(1− 2ν)

[
(1− ν)(ε2I + ε2II + ε2III) + 2ν(εIεII + εIεIII + εIIεIII)

]
in Ω1,

E

2(1− ν2)
(ε2I + ε2II + 2νεIεII) in Ω2,

1

2
Eε2I in Ω3,

0 in Ω4.

(4)

In subdomain Ω1, where the material behaves like an intact linear elastic isotropic material and no

“cracking strain” arise, the conventional contribution 1/2 (σIεI + σIIεII + σIIIεIII) is recovered,

where εI = εeI , εII = εeII and εIII = εeIII and the generalized 3D Hooke’s law holds. In Ω2, the

strain energy 1/2 (σIεI +σIIεII) is stored in the plane zI zII for εI = εeI and εII = εeII . Indeed, the

generalized Hooke’s law for plane stress holds, while no contribution is related to the orthogonal

latent strain along zIII . In Ω3, some strain energy is stored only along the compressive direction

zI , i.e. 1/2 σIεI with εI = εeI accounting for the 1D Hooke’s law, while the latent strains in the

orthogonal plane zII zIII do not provide any elastic contribution. The “fully cracked” subdomain

Ω4 provides null energy since no stress does work for the latent strain.
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Figure 1: The equivalent orthotropic material with symmetry axes z̃1, z̃2 and z̃3 is oriented along the principal
stress directions of the no–tension solid zI , zII and zIII to model its characteristic behavior in the four subdomains
Ω1−4. Lines stand for directions where the stiffness of the equivalent composite is not negligible.

2.3. An equivalent composite to mimic the no–tension solid

An equivalent composite can be defined to mimic the behavior of the linear elastic masonry–like

solid at any point χ ∈ Ω, that means providing for each one of the subdomains Ω1–Ω4 the relevant

form of the strain energy function φ(ε) as defined by Eqn. (3) and Eqn. (4).

An orthotropic material is considered with symmetry axes z̃i, i = 1, 2, 3. Direction cosines are

preferred to Euler’s angles to describe the orientation of the material due to their straightforward

implementation in the algorithm presented in detail in Sections 3.2 and 3.3. V = [ ẽ1 | ẽ2 | ẽ3 ]

stores the direction cosines of the symmetry axes of the material with respect to the adopted

reference system in Ω, i.e. zi, = 1, 2, 3. V is such that the symmetry axes of the orthotropic

material correspond to the principal direction of stress (and strain) of the masonry–like material

zα, α = I, II, III, see Figure 1.

Ẽi, i = 1, 2, 3, is the Young’s modulus of the composite along the symmetry axis z̃i, G̃ij, i, j =

1, 2, 3, is the shear modulus in the symmetry plane (z̃i, z̃j) and ν̃ij, i, j = 1, 2, 3, is the Poisson’s

ratio along z̃j under uniaxial tension along z̃i. The equalities ν̃12/Ẽ1 = ν̃21/Ẽ2, ν̃13/Ẽ1 = ν̃31/Ẽ3

and ν̃23/Ẽ2 = ν̃32/Ẽ32 hold.

Let ρi(χ), i = 1, 2, 3, be three bounded functions in Ω, such that ρmin ≤ ρ1, ρ2, ρ3 ≤ 1, respec-
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tively, where ρmin is a strictly positive lower bound to avoid any singularity. The elastic properties

of the equivalent orthotropic material along its symmetry axes are assumed to be governed by ρi,

i = 1, 2, 3, through an interpolation model that reads:

Ẽi = ρi E, ν̃ij =
√
ρi/ρj ν, G̃ij =

√
ρiρj G (i, j = 1, 2, 3), (5)

where E, ν and G = E/(2(1 + ν)) are the Young’s modulus, the Poisson’s ratio and the shear

modulus of the isotropic material, respectively. ρi, i = 1, 2, 3, can be seen as parameters that

govern stiffness transitions along z̃1, z̃2 and z̃3, see e.g. [7]. The above interpolation has especially

been conceived to provide vanishing stiffness along any direction onto which a variable achieves

its minimum value. Also, it recovers an isotropic material for ρ1 = ρ2 = ρ3 and a transversally

isotropic material for ρ1 = ρ2 and ρ3 = ρmin, independently of the value of the repeated governing

parameter.

The constitutive law for the orthotropic material may be written in general form as:

σij = Cijhk (ρ1(χ), ρ2(χ), ρ3(χ),V(χ))εhk, (6)

where Cijhk is the fourth order elasticity tensor of the equivalent orthotropic material, see e.g.

[50]. Using Voigt notation the cartesian components of the stress tensor σij are re–gathered in the

array σ = [σ11 σ22 σ33 σ31 σ12 σ23]
T and, analogously, ε = [ε11 ε22 ε33 γ31 γ12 γ23]

T for the components

of the strain tensor εij. Recalling that σ̃ = T(V)σ, where T(V) can be recovered computing

σ̃mn = VimVjnσij and re–ordering according to Voigt notation, and ε̃ = RT(V)R−1 = T−Tσ,

where R is the Reuter matrix that transforms the tensorial components into Voigt components,
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one has:

σ = T(V)−1C̃(ρ1, ρ2, ρ3)T(V)−T ε = C(ρ1, ρ2, ρ3,V)ε, with

C̃−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ1E
− 1√

ρ2ρ1

ν

E
− 1√

ρ3ρ1

ν

E
0 0 0

1

ρ2E
− 1√

ρ3ρ2

ν

E
0 0 0

1

ρ3E
0 0 0

1√
ρ3ρ1G

0 0

sym
1√

ρ1ρ2G
0

1√
ρ2ρ3G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(7)

where C̃−1 is the compliance matrix of the equivalent orthotropic material written in the system

defined by its symmetry axes and C−1 is the resulting compliance matrix in the global reference

system.

Specializing C̃ in terms of the extremal values of ρi, i = 1, 2, 3, the behavior found in each one

of the four subdomains Ω1–Ω4 of Eqn. (3) is shown to be recovered by Eqn. (7), meaning that the

strain energy stored in each subdomain is that expected from Eqn. (4). For the sake of simplicity,

it is herein assumed that z̃1 = zI , z̃2 = zII and z̃3 = zIII . For ρ1 = ρ2 = ρ3 = 1 the generalized

Hooke’s law for 3D bodies is recovered (Ω1); for ρ1 = ρ2 = 1 and ρ3 = ρmin a transversally isotropic

material undergoing plane stress in zI zII arises (Ω2); for ρ1 = 1 and ρ2 = ρ3 = ρmin the term C̃−1
11

turns out to be 1/E, whereas the other entries provide contributions of negligible stiffness (Ω3);

finally, for ρ1 = ρ2 = ρ3 = ρmin one finds a “void phase” (Ω4).

Hence, the behavior of the equivalent orthotropic material matches that of the masonry–like

solid if the symmetry axes of the composite phase z̃i, i = 1, 2, 3 are aligned with the principal

stress (and strain) directions zα, α = I, II, III, and the relevant parameters ρ1, ρ2 and ρ3 attain
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unitary value in case of any principal compressive stress and vanishing value elsewhere. In other

words, a penalization of the stiffness of the material is required along the direction of any potential

inelastic strain, see Figure 1.

3. Energy–based analysis of no-tension solids

3.1. Problem formulation

As stated in the introduction, the equilibrium of a linear elastic masonry–like solid can be solved

searching for the displacement field that minimizes the total potential energy. Let Γ = Γt ∪ Γu

denote the boundary of the three–dimensional domain Ω. Γt is subjected to tractions t0, whereas

Γu to prescribed displacements u0. The body force g
0
acts in Ω. The minimization problem reads:

min
v∈vad

=
1

2

∫
Ω

∂φ(ε(v))

∂εeij(v)
εeij(v) dΩ−

∫
Γt

t0 · v dΓ−
∫
Ω

g
0
· v dΩ, (8)

where v ∈ H1 is any kinematically admissible vectorfield such that v |Γu= u0 and φ(ε) is specialized

in the subdomains Ω1−4 ∈ Ω according to Eqns. (3) and (4).

The minimization statement in Eqn. (8) can be reformulated as an energy–based problem

involving the equivalent material defined in Section 2.3, see [12] for the 2D rationale. Phases

of the composite are distributed in the domain searching for the triplet of the parameters ρi,

i = 1, 2, 3, that minimizes the overall strain energy satisfying the no–tension constraint, i.e.:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ρmin<ρ1,ρ2,ρ3≤1

Φ =
1

2

∫
Ω

ε(u)T C(ρ1, ρ2, ρ3,V) ε(u) dΩ,∫
Ω

ε(u)T C(ρ1, ρ2, ρ3,V) ε(v) dΩ =

∫
Γt

t0 · v dΓ +

∫
Ω

g
0
· v dΩ,

V| z̃1 = zI , z̃2 = zII , z̃3 = zIII ,

ρ1, ρ2, ρ3 | σI , σII σIII ≤ 0.

(9a)

(9b)

(9c)

(9d)
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In the above formulation Eqn. (9b) holds ∀v ∈ H1 such that v |Γu= u0 to state the stationarity

condition of the primal variational principle, whereas Eqns. (9c-9d) enforce that the overall strain

energy of the equivalent composite computed through Eqn. (9a) corresponds to that of the linear

elastic no–tension material.

According to Eqn. (9b) a displacement–based discretization made of N finite elements is

adopted in the simulations. The element–wise minimization unknowns xe1, xe2, xe3 are the param-

eters governing the stiffness of the equivalent material along its symmetry axes. In the e–th finite

element, these axes are defined by the matrix of the direction cosines Ve. The arising discrete

formulation reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
xmin≤xe1,xe2,xe3≤1

Φ =
1

2

N∑
e=1

UT
e Ke(xe1, xe2, xe3,Ve)Ue,

N∑
e=1

Ke(xe1, xe2, xe3,Ve)Ue = F,

Ve| z̃1 = zI , z̃2 = zII , z̃3 = zIII , e = 1 . . . N,

xe1, xe2, xe3| σI , σII σIII ≤ 0, e = 1 . . . N.

(10a)

(10b)

(10c)

(10d)

The objective function is computed over the N elements of the mesh, Ke andUe being the element

stiffness matrix and the vector of the nodal displacements of the e–th element, respectively. F

denotes the vector gathering the nodal load contributions. Eqn. (10b) enforces elastic equilibrium

in Ω for any set of the discrete minimization unknowns, whereas Eqn. (10c) prescribes that the

symmetry axes of the equivalent orthotropic material are aligned to the principal stress directions

of the no–tension solid. Eqn. (10d) requires the discrete minimization unknowns to define a

compression–only stress state all over the domain. The lower bound xmin = 10−5 is assumed in

the simulations.

The above problem can be handled through mathematical programming techniques, such as
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sequential convex programming, in order to solve the equilibrium for any compatible set of dead

and live loads without accounting for the previous load history. By repeating the minimization

call for different values of the live loads, the collapse load of the structural element can also be

estimated as the value beyond which convergence is lost, see in particular [13].

3.2. Solving algorithm

Algorithm 1

1: procedure NoTen3D
2: Set j = 0, Φj = ∞, ΔΦ = 1
3: Initialize xj

ie = 0.5 i = 1, 2, 3 and Vj
e = I, ∀e

4: while ΔΦ > ΔΦtol do
5: j = j + 1
6: Assign C−1

e (xj−1
e1 , xj−1

e2 , xj−1
e3 ,Vj−1

e ), ∀e
7: Solve

∑
N Ke(x

j−1
e1 , xj−1

e2 , xj−1
e3 ,Vj−1

e )Ue = F
8: Compute Φj, σegα α = I, II, III at Gauss points, Vj

e at the center, ∀e
9: Evaluate ΔΦ = |∑N Φj

e −
∑

N Φj−1
e |/|∑N Φj−1

e |
10: Set ŵαβ, at each Gauss point, ∀e, such that:{

ŵegαβ = weg, if σegα ≤ 0 ∧ σegβ ≤ 0,
ŵegαβ = −kweg, otherwise.

11: Compute
∂̂Φ

∂xei

= −1

2

∑
ng

ŵegαβ σegα

∂C̃−1
αβ

∂xei

σegβ detJe α, β = I, II, III, ∀e

12: Update xei, i = 1, 2, 3, ∀e as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xj
ei = max[xj−1

ei − ξ, xmin], if xj−1
ei − γ

∂̂Φ

∂xei

< max[xj−1
ei − ξ, xmin],

xj
ei = min[xj−1

ei + ξ, xmax], if xj−1
ei − γ

∂̂Φ

∂xei

> min[xj−1
ei + ξ, xmin],

xj
ei = xj−1

ei − γ
∂̂Φ

∂xei

, otherwise.

13: end while
14: Assign C−1

e (xj
e1, x

j
e2, x

j
e3,V

j
e), ∀e

15: Solve
∑

N Ke(x
j
e1, x

j
e2, x

j
e3,V

j
e)Ue = F

16: Compute and plot σegα, α = I, II, III at Gauss points, Ve at the center, Ue at nodes, ∀e
17: end procedure
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The minimization statement in Eqn. (10) can be solved by adopting optimality criteria instead

of mathematical programming, see e.g. [27]. At each iteration of the update scheme, the derivatives

of the objective function with respect to the minimization unknowns are required. By means of

the adjoint method, the sensitivities of the strain energy may simply be retrieved from the current

finite element solution as:

∂Φ

∂xei

= −1

2
UT

e

∂Ke

∂xei

Ue. (11)

Due to Eqn. (1c) the strain energy is equivalent to the complementary energy, meaning that the

above sensitivity may alternatively be written in terms of stresses as:

∂Φ

∂xei

= −1

2

∫
Ve

σT
e

∂C−1
e

∂xei

σe dV, (12)

where σe collects the cartesian components of the stress tensor σij in the e–th finite element of

volume Ve according to Voigt notation. For each element, the compliance matrix of the equivalent

orthotropic material C−1
e depends on xe1, xe2, xe3 and Ve, see Eqn. (6).

Eqn. (12) can be evaluated from the current finite element solution by computing the principal

stresses σegα (with α = I, II, III) in the g–th Gauss point of the e–th element and exploiting

numerical integration as follows:

∂Φ

∂xei

= −1

2

ng∑
g=1

weg σegα

∂C̃−1
eαβ

∂xei

σegβ detJe, with α, β = I, II, III. (13)

In the above equation, weg is the weight related to the g–th among the ng Gauss points within the

element, Je is the Jacobian of the element and the terms C̃−1
eαβ are suitable entries of the element

compliance matrix C̃−1
e written in terms of the symmetry axes of the equivalent material. These

entries depends on xe1, xe2, xe3 only, according to Eqn. (7).
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To enforce the compression–only stress regime, modified sensitivities ∂Φ̂/∂xei can conveniently

be adopted to govern a steepest descent–like optimization algorithm and solve Eqn. (10) without

implementing Eqn. (10d) as a set of local constraints. The resulting algorithm is equivalent to the

optimality criteria method used in many problems of structural optimization, see in particular [7]

and [2].

The modified sensitivities are computed by substituting in Eqn. (13) the term weg with the

following ŵegαβ:

⎧⎨
⎩ ŵegαβ = weg, if σegα ≤ 0 ∧ σegβ ≤ 0,

ŵegαβ = −kweg, otherwise,
(14)

with k ∈ (0, 1] and k = 0.5 in the numerical simulations presented in Section 4.

The proposed numerical scheme is implemented in a procedure called NoTen3D, which is

detailed in Algorithm 1.

At iteration j = 0, the minimization variables xe1 = xe2 = xe3 are given the initial guess 0.5 to

define an isotropic material no matter the assignment of Ve, see Eqn. (7). The array which stores

the strain energy values Φ during each step of the algorithm is initialized, as well as the scalar

quantity ΔΦ that records the relative change in energy between two subsequent iterations.

A main set of instructions is repeated within the loop from lines 4 to 13 to update the element–

wise minimization unknowns and the orientations matrices of the equivalent material. At each

iteration j, the compliance matrices C−1
e are evaluated depending on the current set of xe1, xe2,

xe3 and Ve through Eqns. (6–7). The global stiffness matrix is assembled and inverted to compute

the unknown nodal displacements in each element vector Ue, see lines 6-7.

The overall strain energy is calculated to evaluate its variation with respect to the previous

iteration, which is stored in ΔΦ. The principal stress directions zI , zII and zIII are computed at

the center of the element to update Ve, whereas the principal stresses are evaluated at each Gauss
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point to compute the modified sensitivities ∂̂Φ/∂xei according to Eqns. (13) and (14), see lines

10-11. This is done by solving a set of eigenvalue problems after evaluating the component of the

stress tensor at the points above mentioned. The steepest descent–like update scheme is reported

in line 12: the move limit ξ defines the maximum variation that a minimization unknown can attain

within a single step, whereas γ scales the gradient information. In the numerical simulations it is

assumed that ξ = 0.2 and γ = 0.5. Both user–defined parameters can be tuned to fix convergence

issues as well as speed up the procedure, if needed. In general, lowering ξ and γ allows a smoother

history of the objective function to be obtained, whereas more iterations of the algorithm are

performed.

In case the stopping criterion ΔΦ ≤ ΔΦtol is met, the compliance matrices C−1
e are evaluated

depending on the last set of minimization variables xe1, xe2, xe3 and direction cosines Ve, which

provide the expected equivalence of the fictitious orthotropic material with respect to the linear

elastic masonry–like medium. Hence, the stiffness matrix K is assembled and inverted to evaluate

the displacement and the stress field that solve the no–tension elasticity problem (lines 14-16).

ΔΦtol = 10−3 is adopted in the numerical simulations.

It is finally remarked that the constrained minimization statement in Eqn. (10) could be

alternatively solved resorting to derivative–free algorithm, see e.g. [39, 18].

3.3. Implementation through the API of a finite element package

The proposed algorithm can straightforwardly be implemented to exploit the Application Pro-

gramming Interface (API) of any general purpose software that performs the Finite Element Anal-

ysis (FEA) for linear elastic orthotropic media. Using communication protocols, few input and

output data are exchanged between an external program and the FEA package to iteratively run

the analyses of the equivalent composite with space–varying properties.

The steps needed to perform the process are sketched in the flowchart shown in Figure 2.
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NoTen3D

Provide mesh, load and
boundary conditions

Create brick property and UCS, ∀e
Set starting guess and ΔΦ = 1

Check
ΔΦ > ΔΦtol

Assign C̃e(xe1, xe2, xe3)
via brick property, ∀e
Assign Ve via UCS, ∀e

Run FEA

Read strain energy Φe, ∀e
Read σeα at Gauss points and center, ∀e

Compute ΔΦ

Compute principal stress di-
rections and update Ve, ∀e

Compute ∂Φ̂/∂xei and
update xe1, xe2, xe3, ∀e

Assign C̃e(xe1, xe2, xe3) and Ve, ∀e

Run FEA

Plot deformed shape
Plot principal stresses and directions

TRUE

FALSE

Figure 2: Flowchart of NoTen3D as implemented using the API of a finite element package.18



At first, the model is built (or imported) in the FEA software environment, providing a three–

dimensional mesh made of brick elements from the available library, and prescribing loads and

boundary conditions. The case of a general purpose FEA software that does not allow the API

to access the element stiffness matrix is herein considered. To overcome this issue, a new brick

property is assigned to each element in the mesh, along with a relevant User Coordinate System

(UCS). The former permits control of the elastic constants of an orthotropic material model,

whereas the latter provides information on the alignment of the symmetry axes of the composite

with respect to the global reference system. The initialization of the algorithm is performed as

described in the previous section.

At each iteration, the current set of parameters xe1, xe2, xe3 is needed to endow the brick

properties with the relevant compliance matrices C̃−1
e , which are written in terms of the material

reference systems according to Eqn. (7). The current set of direction cosines Ve enters the

assignment of the relevant UCSs to align the composite element by element. Afterwards, the built–

in solver is used to perform a finite element analysis and post–process the solution to provide an

approximation of the stress field and compute the variation in terms of the overall strain energy

with respect to the previous iteration. The principal stress directions read at the center of the

elements directly provide a new set of matrices Ve, whereas the principal stresses read at the

Gauss points of each element allow for the computation of the modified sensitivities required by

the scheme used to update the minimization variables.

At convergence, the graphical user interface (GUI) of the software package can be fully exploited

to provide stress and displacement maps by post–processing the solution achieved.

4. Numerical simulations

Extended simulations are reported to assess the implemented algorithm, focusing both on

numerical features and applications. Section 4.1 addresses different sets of control points for
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the constitutive properties of the equivalent material, investigating the effect of mesh refinement.

Section 4.2 focuses on the collapse of a windowed masonry panel subjected to vertical and out–

of–plane loads, providing a comparison with results from limit load analysis. Sections 4.3 and 4.4

show load paths computed by the proposed method in cracked masonry vaults for different load

scenarios.

Conventional bilateral restraints can be used in conjunction with the linear elastic no–tension

material model. Supports and symmetry conditions can be dealt with by prescribing one or more

null components of the nodal displacements, i.e. by removing the relevant degrees of freedom and

the related sub-vectors and sub–matrices in Eqn. (10b). Only negative semi–definite stresses are

allowed within the no-tension solid, meaning that tensile reactions can not occur. In case there is

no compressive stress in the vicinity of the boundary, inelastic strains arise to recover kinematics.

This provides the expected unilateral behaviour of the restraints.

4.1. Example 1. A square column under eccentric loading

Figure 3: Example 1. Section of a column subject to an eccentric force.
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(a) (b) (c)

Figure 4: Example 1. Principal stress directions for different meshes and control points of the constitutive properties
of the equivalent material: element–based approach with 4x4x16 elements (a); element–based approach with 8x8x32
elements (b); 4x4x16 elements and implementation based on Gauss points (c).

A preliminary investigation is performed on a square column of height H = 1.2 m, with side

d = 0.3 m. Its section is shown in Figure 3. The column is made of two different materials: from the

base to the height of 0.95 m, the column is made of a masonry–like material with Em = 1, 000 MPa

and νm = 0.25, whereas the upper part is made of a material symmetric in tension and compression,

with Ec = 100Em and νc = νm. A vertical load P = 10 kN is applied at the top in the center of

pressure C, which is eccentric with respect to the center of gravity G because of e =
√
2d/4. The

objective of the top “curb” is to spread the vertical load and constrain the underlying horizontal

sections of the masonry–like column to remain plain. Vertical displacements are restrained at the

base of the column.

Combined compressive and bending stresses σzz arise in the solid, being z the vertical axis. Due

to the symmetry properties of the section, the compression-only stress field is expected to be linear

in x–direction and constant along the orthogonal y–direction. The translational equilibrium along

the z–axis and the rotational equilibrium around the y–axis provide xn = 2e =
√
2d/2 = 0.212 m

and σ−
z = 3N/(4e2) = 6N/d = −0.667 MPa, where xn defines the location of the neutral axis and

σ−
z the minimum stress. Hence, half of the section undergoes compressive stresses that are linear

in the x–direction and vanish along the orthogonal diagonal.
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Figure 5: Example 1. Normal stress σzz along the x–axis: analytical solutions vs. values computed in the center of
the elements for the element–based approach with meshes 4x4x16 and 8x8x32.

Figure 4 provides a comparison in terms of computed principal stress directions in a typical

section of the column. Vectors are drawn at the points where the stress field is evaluated to control

the orientation of the equivalent orthotropic material (in general, the center of the element). They

lie along the principal stress directions and their length is proportional to the value of the stress.

The map is scaled by the maximum value computed in the domain under the load condition

considered. The same considerations apply to all similar maps reported in the following. Different

set of points to control the constitutive properties of the equivalent material are considered in this

figure, as well as different meshes. Sub–figures (a) and (b) refer to the algorithm that computes

Ve at the center of each element to govern the stiffness of the whole element as described in

Sections 3.2 and 3.3, whereas sub–figure (c) shows the output of a more complex implementation

that controls the constitutive properties of the equivalent material in each Gauss point. In the

latter case N ·ng minimization unknowns are used and the formula in Eqn. (13) is evaluated using

the stress of the relevant Gauss point only. This approach can not be implemented into a general

purpose FEA software that does not allow the API to access the element stiffness matrix or, more

generally, to control the constitutive law at each Gauss point.
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Figure 6: Example 1. History plot of the non–dimensional objective function with 4x4x16 elements: element–based
approach vs. implementation based on Gauss points.

Figure 5 shows that normal stresses computed using the former approach on a 4x4x16 and a

8x8x32 elements mesh are in good agreement with the analytical solution. For both meshes, the

element–based approach captures effectively the extension of the cracked region and provides a

good approximation of the compressive stresses.

Figure 6 provides history plots of the objective function, i.e. the overall strain energy scaled

by its value at j = 1 for xe1 = xe2 = xe3 = 0.5, comparing the element–based approach with

the one relying on Gauss points for a mesh with 4x4x16 elements. The algorithm stops when a

prescribed tolerance on the maximum relative variation in terms of energy ΔΦ is achieved between

two subsequent iterations, see Section 3.2. Usually, 10–20 steps are enough to reach convergence.

Two smooth curves result from this comparison. However, the element–based method converges

faster than the one based on the approximation of the constitutive properties of the material at

Gauss points.

The element–based algorithm can be easily implemented in almost every general purpose finite

element software that has a linear elastic solver for orthotropic materials and a basic API. Also,

it is effective in approximating the expected stress field with smooth and fast convergence. The
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simulations presented next will resort to this approach only.

4.2. Example 2. A masonry–like panel subject to out–of–plane live loads

Figure 7: Example 2. Geometry of half of a panel subjected to vertical dead loads and out–of–plane live loads.
Dimensions in m.

A façade made of linear elastic masonry–like material is considered: half of the in–plane ge-

ometry is shown in Figure 7 considering a plan length L = 3.6 m (the panel has a symmetry

axis at x = 0). The façade has an out–of–plane thickness s = 0.4 m. Properties of the material

are as follows: Em = 1, 000 MPa, νm = 0.25, γm = 20 kN/m3. A lintel made of material with

symmetric behavior in tension and compression is modeled over the opening assuming El = 10Em,

νl = νm and γl = γm. At the top of the panel the distributed dead load q = 5 kN/m acts along

the centerline of the wall.

A preliminary analysis is performed accounting for dead loads, i.e. q and self–weight. A map

of the principal stress direction is represented in Figure 8 that also provides information on the

relative stress magnitude. Principal stresses in compression are marked in blue, whereas principal
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Figure 8: Example 2. Principal stresses in the panel under dead loads. Blue stands for compression, red for tension.

stresses in tension in red. The adopted material model is able to capture an arch–like load path

and some stress concentrations arising around the corner of the lintel that absorbs most of the

lateral thrust of the arch.

To assess the safety of the façade in case of an earthquake, many technical codes suggest to

investigate the activation of first–mode mechanisms induced by out–of–plane loads, see in particu-

lar [21]. Assuming a very poor connection between the façade and both the transversal walls and

the storey/roof at the top of the panel, an overturning of the wall about its base is expected. The

kinematic approach of limit analysis for mechanisms consisting of rotating rigid blocks is consid-

ered. Hence, the collapse load multiplier λc of the single–degree–of–freedom mechanism reported

in Figure 9 is found when the virtual power of the represented forces vanishes. One has:

λc =
(W + qL) · s/2
W · zg + qL ·H . (15)
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Figure 9: Example 2. Kinematics for the computation of the collapse load multiplier of the panel using limit load
analysis.

Considering the geometrical parameters shown in Figure 7 and masses and loads previously defined,

λc = 0.09. This means that the façade is likely to overturn under the occurrence of horizontal

loads whose magnitude is less than 10% of that of the vertical loads. As already mentioned, limit

load analysis is based on the Heyman’s model of material, i.e. the rigid no–tension material.

Alternatively, the linear elastic masonry–like material model may be implemented to predict

collapse. Solving the equilibrium for λ multiples of 0.01, the last converged value is λc = 0.08, in

good agreement with the above analytical result. Figure 10 shows a map of the principal stresses

in the panel at incipient collapse along with the (magnified) deformed geometry. The panel is

going to overturn almost rigidly about its foot, whereas a “plastic hinge” is going to arise due to

the localization of compressive stresses along the edge of the base sections. Figure 10(a) shows also

the force path in the lintel, where non–homogeneous tensile stresses allow the sustained regions to

transfer both vertical and horizontal loads to the piers. Technical codes may require the evaluation
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(a)
(b)

Figure 10: Example 2. Equilibrium of the panel for λc = 0.08: principal stresses (a) and magnified deformed
geometry (b).

of the relevant “spectral seismic acceleration” referring to an equivalent single–degree–of–freedom

oscillator. This information is recovered by scaling λc by a confidence factor and a “participating

mass fraction” that can be straightforwardly evaluated from the horizontal displacements, see the

deformed shape in Figure 10(b).

To increase the strength of the façade in case of an earthquake, the connection of the panel

with the above storey/roof can conveniently be improved. The effect of a set of ties (end–plate

anchors 0.2 m × 0.2 m, spacing 0.9 m) is modelled enforcing constrained transversal displacements

(along y) where anchors act at the top of the wall, see dotted lines in Figure 7. The effect of a

longitudinal chain is also modelled, constraining displacements along x in the upper part of the

corner at x = 3.6 m.
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(a)
(b)

Figure 11: Example 2. Equilibrium of the panel reinforced with ties for λ = 0.45: principal stresses (a) and
magnified deformed geometry (b).

Figure 11 shows a map of the principal stresses in the panel along with a (magnified) deformed

geometry for λ = 0.45. Most of the bulk of the panel is stressed, meaning that the façade is safe

for such a remarkable level of horizontal forces, see in particular Figure 12 that refers to a vertical

section of the piers. The ties restrain the top wall displacements, while counteracting the effect of

the distributed horizonal load λq. Reference is made to Figure 13 that shows arch–like load paths

which arise in a horizontal section of the panel located at the height of the transversal ties. This

also clarifies the need for a longitudinal constraint/reinforcement to enforce the equilibrium of the

corner region. Of course, the effectiveness of the intervention mainly depends on the compressive

strength of the masonry–like material (see in particular stress peaks at the anchor regions and at the

base of the wall) and on the maximum tensile force that ties can sustain. The proposed procedure
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Figure 12: Example 2. Equilibrium of the panel reinforced with ties for λ = 0.45: principal stress at x = 2.75 m.

(a)

Figure 13: Example 2. Equilibrium of the panel reinforced with ties for λ = 0.45: principal stresses at z = 3.05 m.
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Figure 14: Example 2. Kinematics for the computation of the collapse load multiplier of the panel reinforced with
ties using limit load analysis.

can be used to estimate the maximum stress in the no–tension material and the maximum reactions

in the constrained regions, i.e. 0.35 MPa and 5.80kN respectively.

Assuming the Heyman’s masonry model and excluding failure of ties, one can investigate the

load multiplier that activates the two-block collapse mechanism depicted in Figure 14. Block 1

undergoes clockwise instantaneous rotation with velocity ω1, whereas block 2 rotates anticlockwise

with instantaneous velocity ω2, being ω2 = H1/H2ω1. Equilibrium of the partially constrained

structure requires vanishing of the virtual power of the depicted forces, that means:

λc =
(qL+W2)(s/2 + s ·H2/H1) +W1 · s/2 ·H2/H1

W2 · (H − zg2) +W1 · zg1 ·H2/H1

. (16)

The value of λc depends on the position of the “plastic hinge” in B (i.e. the ratio H1/H2), which is

not known a–priori and can be found by applying the upper bound theorem of limit analysis. The
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Figure 15: Example 2. Equilibrium of the panel reinforced with ties for λc = 0.81: principal stress at x = 2.75 m.

above expression takes a minimum in the interval 0 ≤ z ≤ 2.4 m, for z = 2.15 m with λc = 0.85.

Investigations on the collapse of the panel reinforced with ties have been performed through the

proposed energy–based approach implementing the linear elastic masonry–like material model.

Figure 15 shows the principal stresses arising in a vertical section of the panel for λc = 0.81,

value above which no-tension–free equilibrium solution is found by the implemented algorithm.

No assumption is required to detect the position of the central hinge, herein approximately at

z = 2.00 m.

Finally, Figure 16 shows history plots of the non–dimensional objective function for the solution

of the equilibrium of the considered panel under different loads and boundary conditions. The

simulation for dead loads (λ = 0) requires only ten iterations. When looking at the horizontal

actions, the handling of loads that precede an incipient collapse requires a few additional steps. In
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Figure 16: Example 2. History plot of the non–dimensional objective function for the solution of the equilibrium
of the panel under different loads and boundary conditions.

the case of both the unreinforced wall and the retrofitted one, curves remain smooth and exhibit

a convergence rate that is approximately comparable.

4.3. Example 3. Equilibrium of a cracked hemispherical dome

The hemispherical dome in Figure 17 is considered. The dome has an external radius Re = 5 m,

an internal radius Ri = 4 m and a thickness t = 1 m, i.e. an average radius R = 4.5 m and a

thickness ratio t/R=0.2. The masonry dome is subject to self–weight, where γm = 20 kN/m3.

Displacements are fully restrained for all the nodes at z = 0. A quarter of the dome has been

discretized using a mesh of 2592 six–node and eight–node finite elements. Each element spans

Δφ = 3.75◦ in terms of polar angle (colatitude) and Δθ = 5◦ in terms of azimuthal angle. To

enforce a compatible load, the i–th node of the extrados is loaded by the weight of the “voussoir”

highlighted in Figure 17, i.e.:

wi = γ
Δθ

3
(R3

e −R3
i )(cosφ− cos(φ+Δφ)), (17)

32



Figure 17: Example 3. Geometry of a hemispherical dome and a typical “voussoir” in section and plan.

see e.g. [51]. Thin uncracked domes under self–weight are generally handled resorting to the

membrane theory equations that highlight the meridional and hoop forces that develop. While the

former are compressive, the latter take a maximum in compression at the crown and a maximum in

tension at the base, with sign reversal at φ = 51.8◦, see e.g. [9]. When tensile stresses in the hoop

rings at the springing overcome the masonry’s weak tensile strength, the membrane equilibrium is

lost. Meridian cracks are expected to spread along the lower band of the dome for a latitude that

is much higher than the one identifying the tensile–stressed region found in the uncracked dome,

see [28].

Cracked domes have been extensively dealt with by resorting to the rigid no–tension material

model, see in particular [29] and [30]. In this regard, reference is made to [49] that provides a

comprehensive review of the methods derived from the lower and upper bound theorems of limit

analysis, i.e. inspired by the concepts of equilibrium and occurrence of failure respectively. Among

the others, the work in [16] extends the problem of the catenary to the three–dimensional framework

to investigate pressure surfaces of minimum thrust with zero hoop stresses. The modified thrust
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Figure 18: Example 3. Equilibrium of a cracked emispherical dome under self weight: principal compressive stresses
in the dome.

line method in [31, 51] allows the designer to search for different combinations of meridional and

hoop forces among the infinite range of compressive solutions that the hyperstatic dome can exhibit.

The assessment is performed in the spirit of the lower bound theory, meaning that the detection of

any feasible equilibrium solution results in the conclusion that the structure is safe. Reference is

also made to [23] where cracked masonry domes are considered as no–tension membranes (thrust

surfaces) carrying a discrete network of compressive singular stresses.

The equilibrium of the cracked dome is handled through the numerical procedure presented

in Section 3. The Young’s modulus of the linear elastic–masonry like material is assumed as

Em = 1, 000 MPa, whereas νm = 0. Figure 18 shows the principal stresses of the compression–only

solution found at convergence for the quarter of the dome under investigation, whereas Figure 19

refers to the typical lune Δθ = 5◦. Meridional forces flow from the crown to the base approaching

the extrados at the crown and at the springer, and the intrados close to the haunches. Hoop
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Figure 19: Example 3. Equilibrium of a cracked emispherical dome under self weight: principal compressive stresses
in a typical lune (side view and plan).

stresses decreases from their maximum value at the crown to zero, approximately at a colatitude

of 40◦. They are not constant in the thickness, decreasing from the extrados to the intrados.

Looking at the base, integrating the vertical and horizontal reactions, one obtains the unit per

length forces V = 93.1 kN/m and H = 15.5 kN/m, respectively.

A wide set of cracked domes is considered in the thesis by Lau [31] that accounts for different

angles of embrace. Neglecting hoop stresses, the minimum thrust to weight ratio for a hemispherical

dome with t/R=0.2 is conservatively around 20%, see also [16]. Accounting for compression–

only hoop forces, the thrust to weight ratio computed using the modified trust line method falls

below 15%. Numerical simulations using the linear elastic masonry–like material model report

H/V = 16.6%, in good agreement with the above analytical investigations based on the Heyman’s

assumption. It must be remarked that in hemispherical domes hoop stresses provide a noticeable

benefit in terms of thrust. In ogival domes they are essential to find a no–tension solution, see
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(a)

Figure 20: Example 3. Equilibrium of a cracked emispherical dome with openings under self weight: principal
compressive stresses in the dome.

[44].

Any perturbation of geometry or loading makes it difficult to use the analytical method de-

scribed above. This is the case of a dome endowed with symmetrical square holes underneath

tensile–resisting lintels. Figure 20 shows the principal stresses of the compression–only solution

found at convergence for this particular geometry. The lintel allows for a deviation of the merid-

ional forces around the hole, inducing a noticeable modification of the stress fluxes also in the upper

part of the dome. Minimum reactions are found below the opening, as expected. With respect to

the original intact dome, maximum reactions increase to V = 105.3 kN/m and H = 21.2 kN/m,

for a thrust to weight ratio H/V = 20%.
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Figure 21: Example 4. Geometry of a groin vault. Dimensions in m.

4.4. Example 4. Load paths in a cracked groin vault

A groin vault with square plan is herein considered. Half of the typical section showing the

impost is given in Figure 21. The vault is generated by the intersection of two perpendicular

barrel vaults. Each of them is formed by the extrusion of a segmental arch, with span S = 4.20 m,

rise Rs = 1.45 m and thickness t = 0.25 m. The linear elastic masonry–like material is that of

the previous example. The cross vault is sustained at its four corners, assuming restraints on the

vertical and horizontal displacements only at the height of the impost.

Funicular analysis has extensively been used to cope with the equilibrium of arcuate masonry

vaults, see the pioneering work [43]. This technique models the principal stresses in a masonry

vault as a discrete network of forces that is constrained to lie within the brickwork and be in

equilibrium with the loads applied to the vault. In general, the plan projection of the network is

assumed, whereas variable horizontal thrusts are used to adjust the funicular polygon handling

the equilibrium. To define a suitable topology, different assumptions can be made referring to

the expected flow of the principal stresses in the cracked regime. Figure 22 refers to the case of
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Figure 22: Example 4. Possible load paths for self weight only for a groined vault according to [43]. Representation
in plan.

self–weight and shows two possible load paths proposed in [43], see also [10]. Both assume that

distributed loads are conveyed by the four segments of the cross vault to the groins, such that the

maximum thrusts arise at all four corner imposts and lie along the diagonals of the square plan.

One can assume that loads are conveyed to the groins along paths that are parallel to the side of

the vault’s plan (left diagram), or with increasing inclination when approaching the center (right

diagram). Both diagrams can be combined to generate a network’s topology that is rich enough to

approximate with reasonable accuracy the stress pattern that is expected in the cracked regime.

It is worth remarking that the first diagram is in agreement with the statically admissible stress

field derived in [5]. Moreover, it can be used to implement an extension of the thrust line method

originally conceived for simple arches that can be handled analytically, see e.g. [17].

Load paths and principal stresses can alternatively be recovered resorting to the linear elastic

masonry–like material model. A mesh of 2008 six–node and eight–node finite elements is used

to model a quarter of the vault under self–weight (symmetry with respect to the segments’ axes
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Figure 23: Example 4. Principal stresses in the vault under self weight.

(a) (b)

Figure 24: Example 4. Principal stresses in the vault under self weight: extrados (a) and intrados (b).
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(a) (b)

Figure 25: Example 4. Principal stresses in a section of the vault at y = 2.4 m loaded by: self–weight (a) and
self–weight and infill (b).

holds both for geometry and loads). The weight is applied as a surface pressure on the elements

at the extrados of the vault, depending on γm and t. Displacements are fully restrained for all

the nodes at z = 0.80 m. Figure 23 shows a three–dimensional view of the principal compressive

stresses found at convergence by the proposed algorithm, whereas Figure 24(a) and (b) refer to

the extrados and intrados, respectively.

Stress–free regions are found at the extrados (at the haunches of the vault segments) and,

especially, at the intrados (around the crown of the segments): extended cracks are expected

to arise there. A biaxial stress state is found in the central zone of the extrados. However, a

significant portion of the vault undergoes an almost uniaxial compression: the crucial role of the

groins conveying the diagonal thrust to the imposts is recovered, as expected. Uniaxial stresses

flow parallel to the sides of the vault far from the center and the haunches, while steering towards
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Figure 26: Example 4. In–plane boundary conditions to investigate the effect of lateral loads in case of stiff
abutments at A B and compliant ones at A′ B′.

the diagonals in those regions. Hence, features of both diagrams in Figure 22 can be recognized

in the computed solution.

Figure 25 shows a vertical section of the vault at y = 2.4 m (parallel to the side of the vault,

close to the boundary), comparing stresses computed when only self–weight is considered (a) to

those found adding to it the weight of the infill. It is assumed that the infill reaches the height

zi = 2.6 m and its specific weight is γi = 18 kN/m3. As expected, the vault benefits remarkably

from this additional load. In the latter case, the resulting line of pressure is closer to the center of

the section, thus allowing for a reduction of the extension of the cracked regions.

A final investigation is performed considering the seismic behaviour of the vault. It is as-

sumed that the vault belongs to the side aisle of a church. Due to the remarkable difference in

terms of lateral stiffness of the supporting elements (inner columns/external wall), an in–plane

horizontal shear distortion is expected in case of an earthquake, see in particular [24]. Figure 26

shows in–plane boundary conditions that may be adopted to investigate this particular scenario:

corners A and B abut a stiff wall, whereas corners A′ and B′ lean on more compliant columns.
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(a) (b)

Figure 27: Example 4. Principal stresses in the vault under vertical and horizontal loads: extrados (a) and intrados
(b).

Both transversal and longitudinal displacements are fully constrained in A and B, whereas only

transversal displacements are fully restrained in A′ and B′. Additionally, the (nonzero) longitudinal

displacement in A′ is forced to be the same as in B′.

A mesh of 8032 elements is used in the simulation. Rightward horizontal loads are added at

the extrados for x < 0: they include 25% of the relevant structural weight and of the weight of

the infill. Additional investigations could be performed combining horizontal components of the

seismic force with a suitable vertical component, thus assessing the funicular equilibrium for any

increase or decrease of the gravity loads.

Figure 27 shows the principal compressive stresses found at convergence by using the proposed

algorithm, both at the extrados and at the intrados of the vault. Stress–free regions detect zones

where noticeable (cracking) strains are expected.
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Figure 28: Example 4. Magnified deformed geometry of the vault under vertical and horizontal loads.

The extended numerical investigation performed in [24] suggests that groin vaults of similar

geometry are likely to collapse under the applied shear distortion because of a four–hinge mecha-

nism. Figure 28 shows the magnified deformed geometry that is in agreement with this outcome.

Indeed, for increased values of the horizontal loads, the deformed geometry becomes a collapse

mode with hinges A-B-C-D.

Finally, Figure 29 provides the history plots of the objective function for a quarter of the

vault analyzed under vertical loads and compared to that of the simulation of the full domain

subjected to vertical and horizontal loads. In both cases, less than 20 iterations are needed to

solve equilibrium.

5. Conclusions and perspectives

A numerical approach has been presented to solve the equilibrium of three–dimensional lin-

ear elastic masonry–like structures exploiting the application programming interface of a general

purpose software package that performs finite element analysis.
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Figure 29: Example 4. History plot of the non–dimensional objective function: vertical loads with 2008 elements
vs. vertical and horizontal loads with 8032 elements.

Masonry is replaced by an equivalent composite with spatially varying elastic properties and

negligible stiffness in the case of cracking strains. The distribution of the equivalent orthotropic

material is found by minimizing the strain energy to achieve a compression–only state of stress

for any given compatible load. Instead of using mathematical programming, the minimization is

performed by adopting a steepest descent–like update scheme that is driven by a set of penalized

sensitivities. Little input and output data are exchanged between the main program and the finite

element software package to run iteratively the analyses on the equivalent space–varying composite.

The energy–based approach handles the equilibrium without accounting for the previous load

history, as conversely required by incremental approaches. The implementation within a finite

element package enables solids of general shape to be considered and exploits efficient sparse linear

solvers.

Applications are shown referring to the preliminary assessment of structural components in

historical masonry constructions. Indeed, the linear elastic no-tension material model is intended

for monotonic loading and can not deal with sliding or crushing mechanisms. Also, the inelastic

strain can not be used to predict crack patterns and crack widths. However, the adopted model calls
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for the definition of a limited number of constitutive parameters and its numerical implementation

is ideally conceived to visualize load paths both at the cracking state (see the hemispherical

domes of Section 4.3 and the groin vault of Section 4.4) and at incipient collapse (see the wall in

Section 4.2 subject to both vertical and horizontal loads). The proposed algorithm retrieves failure

mechanisms that are in agreement with those found from limit load analysis, without requiring

any a–priori assumption on the shape of the collapse mode or adopting any simplification in the

geometry.

It has been shown that the proposed approach can predict horizontal thrusts at the base of

cracked hemispherical domes that match those found through established methods available in the

literature. Additionally, stresses can be evaluated at any point of the domain, regardless of the

presence of peculiar geometrical features such as holes. Load paths found in cracked groin vaults

are in agreement with those expected from the literature on the statics of architectural heritage.

They can be used to assess the safety of the vault looking at the value of the stress peaks and

at the extension of the cracked regions. Such kind of assessment can be performed under vertical

loads, as self–weight and infill weight, or including also horizontal actions, such as for the in–plane

shear test presented in Section 4.4. Alternatively, load paths can inspire refined network topologies

to be used by numerical methods implementing funicular analysis.

Referring to the numerical features of the proposed algorithm, smooth history plots of the

objective function result from the simulations. A limited number of iterations is generally required

to achieve convergence.

The on–going research is mainly concerned with the analysis of structures made of layers

exhibiting abrupt changes in terms of material properties, such as masonry vaults retrofitted

with mortar or concrete layers. Moreover, an extension of the proposed energy–based approach

to the optimal reinforcement of three–dimensional linear elastic no–tension structures is under

investigation, see [14].
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