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Abstract. The aim of this paper is to study two models for a bacterial population subject to antibiotic
treatments. It is known that some bacteria are not sensitive to antibiotics. These bacteria, called persisters,
are in a state called persistence and each bacterium can switch from this state to a non-persistent (or
susceptible) state and back (with rates b and a respectively). Our models extend those introduced in [11] by
adding a random natural life cycle for each bacterium and by allowing bacteria in the susceptible state to
escape the action of the antibiotic with a fixed probability 1− p (while every bacterium in a persistent state
survives with probability 1). This last mechanism of survival to the antibiotics differs from the persistent
state one (where reproduction is forbidden) since in this case the bacterium can replicate. We study two
different models. In the first model we “inject” the antibiotics in the system at fixed, deterministic times
while in the second one the time intervals are random. We show that, in order to kill eventually the
whole bacterial population, these time intervals cannot be “too large”. The maximum admissible length is
increasing with respect to p; we see that, even when p is close to 1, this interval length can be significantly
smaller than in the case p = 1. While in the case p = 1 switching back and forth to the persistent state is
the only chance of surviving for bacteria, when p < 1 and the death rate in the persistent state, say dr , is
positive then the situation is more complex. In this case our model suggests that if dr and b are positive
(and fixed) then for higher values of p there is an interval for the rate a, say (0, ap) where switching to
the persistent state is a good strategy while for a > ap the situation is less favorable than a = 0. On the
other hand, for smaller values of p the best strategy is a = 0, that is, not switching. Finally, when dr = 0,
switching to the susceptible state is always a better strategy, from the bacterial point of view, than staying
in the susceptible state all the times.
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1. Introduction

It is well known that some bacteria are not sen-

sitive to antibiotics (see [8]). This state, called per-

sistence, is not permanent and each bacterium can

switch during its lifetime from persistent to suscep-

tible and back to persistent many times (see for in-

stance [14, 15]). In the persistent state it does not

reproduce, while in the susceptible state it breeds

but it is also vulnerable to antibiotics. Antibiotic

resistant bacteria are a major health concern. Study-

ing the mechanism of switching to a persistent state

is the key to understanding how to fight efficiently

certain diseases. Indeed, in many cases treatment

failures may be explained by the presence of bacte-

ria in a persistent state (see for instance [15, 16]).

Clearly the efficiency of the antibiotic treatment and

the comparison of the natural death rates in the two

states (persistent and susceptible) play a fundamen-

tal role here. In this paper we mainly investigate two

questions. How is the treatment strategy going to be

changed if the antibiotic is not perfectly efficient? Is

switching to a persistent state always a good strategy,

from the bacterial point of view, in order to increase

the probability of survival as a population?

Two models for this phenomenon have been intro-

duced in [11]. In those models, bacteria are immor-

tal except when subject to an antibiotic while in the

susceptible state: in that case it is assumed that the

antibiotic performs a perfect job and kills them all.

Bacteria in the persistent state, on the other hand,

are untouched. Without natural death rates (in both
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the persistent and susceptible states) it turns out that

switching between the two states is a better strategy

than staying in the susceptible state, from a bacterial

point of view. Indeed, despite the fact that replica-

tion is forbidden in the persistent state, the protec-

tion from the action of the antibiotic (which kills all

susceptible bacteria) represents an advantage for the

colony. Hence it seems quite natural to introduce a

death rate for bacteria for different causes other than

antibiotics (such as, for instance, immune system ac-

tion, temporary local unfavorable environment con-

ditions etc.) and to suppose that, also in the persis-

tent state, bacteria have a finite (random) life cycle.

The addition of a death parameter in the persistent

state, in particular, deeply modifies the evolution of

the colony and it is no longer clear which strategy

is the best (switching between states or remaining in

the susceptible state).

Another simplification of the previous models, that

we are going to remove in the present work, is the

perfect efficiency of the antibiotic action. It seems

unrealistic to assume that all susceptible bacteria are

killed by a single antibiotic dose. It is plausible that,

even while in a susceptible state, a bacterium can sur-

vive some doses of the antibiotic and still being able

of reproducing. One reason may be that, since the

action of the antibiotic depends on the direct inter-

action with the target, some (susceptible) bacteria

might not be reached before the antibiotic decom-

poses and ceases to be effective; this prevents the

completion of the mass-killing of all susceptible bac-

teria. Moreover it is well known that not all bacteria

are equally sensitive to antibiotics.

All these reasons suggest an opportunity of en-

hancing the models in [11]. In this paper we extend

these models by adding (1) a life cycle for each bac-

terium (that is, individual deaths) and (2) a possibly

positive probability 1 − p for each bacterium in the

susceptible state to survive the action of the antibi-

otic (p is the efficiency of the antibiotic). Roughly

speaking, the parameter p takes into account all sur-

vival mechanisms for bacteria which do not turn the

reproduction rate to zero. A similar parameter can be

found, for instance, in a deterministic model studied

in [10] where they call it relative nonpersister survival

through catastrophes and it is denoted by s.

To be precise, in our models each bacterium has

an independent random lifetime represented by two

exponentially distributed random variables with pa-

rameters dn and dr for the susceptible state and the

persistent state respectively. As in [11], bacteria in

the susceptible state are allowed to reproduce (with

rate λ) while they cannot replicate in the persistent

state. Bacteria switch independently from the sus-

ceptible state to the persistent one and back at rates

a and b respectively, At certain times, that we call

mass killing times or simply killing times, an antibi-

otic is injected in the system; the time intervals are

deterministic and equally spaced in the first model

and random in the second one. The action of the an-

tibiotic does not affect the persistent population but

it kills each bacterium in the susceptible state inde-

pendently with probability p ∈ [0, 1]; p = 0 means

that there is no target for the antibiotic in the bacte-

rial genome, p = 1 means that the antibiotic performs

a “perfect” mass-killing action in the susceptible state

population. The models in [11] can be recovered by

setting dn = dr = 0 and p = 1. Let us emphasize here

the difference between these two survival mechanisms

in our models: in the persistent state, bacteria are not

killed by the antibiotics and their reproduction rate

is 0; in the susceptible state some bacteria, selected

independently with probability 1− p, survive the an-

tibiotic action and they can still reproduce at rate λ
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(clearly these bacteria and their offsprings could be

killed by a subsequent antibiotic injection). Hence

in our model we call persisters only those bacteria

which are in the persistent state, which temporarily

prevents them by being killed by the antibiotic and,

at the same time, does not allow any reproduction;

besides, we have susceptible bacteria which can sur-

vive an antibiotic dose while retaining their ability to

replicate (they are randomly selected with probabil-

ity 1− p, independently at each killing time).

For some values of the parameters (see Section 2.1

for details), the system dies out almost surely even

without the action of the antibiotics; thus, we need

to study only the so-called supercritical case, which

is the case when the natural evolution of the system

allows survival with positive probability.

In the deterministic killing times case we suppose

that the mass-killings occur at times Sn := nT where

T > 0. We show that if the interval T between each

killing time is too large (strictly larger than a crit-

ical value Tc ∈ (0,+∞)), the bacterial population

has a positive probability of survival, while if T ≤ Tc

there is almost sure extinction (see Theorem 3.1). We

are also interested in the dependence of Tc from p:

the critical time interval length Tc is a nondecreasing

function of p (as expected, a more efficient medication

can be administered less frequently). In particular it

may increase rapidly when p is close to one: this im-

plies that the “perfectly efficient case p = 1” might

not be a good approximation for the case “p close to

1”. Moreover as p converges to 0, Tc converges to 0

as well; thus there is not a positive minimum time

interval which guarantees the extinction of the bac-

terial population for all p ∈ (0, 1]. When the death

rate dr is positive, for some set of parameters it might

happen that switching from the susceptible to the re-

sistant state is not a good strategy from the bacteria

point of view, since it results in a longer critical time

Tc. More precisely, if dr = 0 then switching to the

persistent state is a good strategy for bacteria since

we are forced to increase the treatment frequency

in order to wipe them out. On the other hand, if

dr > 0 and the switching rate from susceptible to

persistent is large (compared to the switching rate

from persistent to susceptible) then eventually Tc be-

comes very large and the treatment frequency can be

lowered (which means that switching is no longer a

good strategy). In particular our results suggest that

if the efficiency p is sufficiently close to 1 then, in a

finite interval of positive values for the switching rate

a, Tc is smaller than in the case a = 0 while, if the

efficiency is sufficiently small, then there are no ben-

efits whatsoever, from the bacterial point of view, in

switching to the persistent state (since, in that case,

Tc is increasing with respect to a).

In the random killing time case we suppose that

the mass-killings are separated by a sequence of ran-

dom time intervals {Tn}n≥1; these variables are in-

dependent and identically distributed (from now on,

i.i.d.) and the distribution is given by a probabil-

ity measure μβ , where {μβ}β>0 is a one-parameter

stochastically increasing family of probability mea-

sures satisfying some mild conditions (see Section 4

for details). The expected time interval is a nonde-

creasing function of β, hence β plays here the same

role played by T in the deterministic killing times

model. In this case we have two randomizations, so

to speak: first we choose a realization ξ of the se-

quence {Tn}n≥1 (we call ξ a realization of the envi-

ronment) and then we have a random evolution of

the system with killing times given by ξ. We show

that if β is large enough (β > β1
c (p)) the population

survives with positive probability for almost every re-

alization of the environment (see Theorem 4.1). On

3



the other hand if β is small enough (β < β2
c (p)) then

the population dies out almost surely for almost every

realization of the environment (see Theorem 4.2). As

in the deterministic case, limp→0 β
2
c (p) = 0. Roughly

speaking, since the expected time between two con-

secutive mass-killings is a nondecreasing function of

β, we have that, in order to kill almost surely the

bacterial population, the expected time between two

injection of antibiotics in the system cannot be too

large. According to Example 4.4, it might happen

that β2
c (p) < β1

c (p). that is, there is almost sure ex-

tinction of the bacteria for β = β̃ and a positive prob-

ability of survival for the bacteria for β = β̂ for some

β2
c (p) < β̂ < β̃ < β1

c (p). Heuristically, from a math-

ematical point of view, this is due to the fact that

the system is not stochastically monotone due to the

switching between the states (see for instance [17, 18]

for stochastic monotonicity and stochastic coupling).

More details are given in Section 4 before Exam-

ple 4.4. This example relies on a fairly particular

distribution for the time intervals {Tn}n≥1. One can

reasonably expect that for most regular and single-

peaked distribution β2
c (p) = β1

c (p). This is the case,

for instance, when μβ ∼ Exp(1/β) (where Exp(1/β)

is the exponential distribution with expected value

β), that is, the interval between two consecutive in-

jections is exponentially distributed. In that case,

according to Theorem 4.3, β1
c (p) = β2

c (p) =: βc(p)

and limp→0 βc(p) = 0.

2. The dynamics

This is a modification of the model described in

[11] with the introduction of individual deaths for

each type of bacteria; indeed, it is quite natural to as-

sume that each bacterium has its own life cycle in the

absence of an antibiotic treatment. Another addition

to the dynamics is the possibility for each susceptible

bacterium (independently from the others) to survive

the action of the antibiotics with a fixed probability

1− p (where p ∈ [0, 1]). We denote by Nt and Rr the

number of susceptible and persistent bacteria respec-

tively. This is a 2-type process in continuous time,

with the following (nonnegative) rates:

(Nt, Rt) → (Nt + 1, Rt) at rate λNt

(Nt, Rt) → (Nt − 1, Rt + 1) at rate aNt

(Nt, Rt) → (Nt + 1, Rt − 1) at rate bRt

(Nt, Rt) → (Nt − 1, Rt) at rate dnNt

(Nt, Rt) → (Nt, Rt − 1) at rate drRt.
(2.1)

We recall that a change of state takes place at rate

α if it takes place after a random exponentially dis-

tributed time intervals T ∼ Exp(α): due to the lack

of memory of the exponential distribution, this means

that whenever we start looking at the system, the

random time to wait before the change of state is

a Exp(α)-distributed random variable. In particular

the probability of the change of state in an interval of

time [t, t+Δt] is asymptotic to α ·Δt as Δt goes to

0. A more precise construction of the model is given

in the proof of Theorem 4.3. Roughly speaking, we

can imagine that each particle has five clocks which

ring at exponentially distributed time intervals with

parameters λ, a, b, dn and dr (the clocks are indepen-

dent). When a particle is in a susceptible state we

have different possibilities: if its Exp(λ)-clock rings

it breeds, if its Exp(dn)-clock rings it dies and if its

Exp(a)-clock rings it changes into a persistent state

(it is not affected by the other clocks). On the other

hand when a particle is in a persistent state we ob-

serve the following behaviors: if its Exp(dr)-clock

rings it dies and if its Exp(b)-clock rings it moves

to a susceptible state (and, again, it is not affected

by the other clocks).
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When a = 0 and b = 0 the two populations are

completely separated, the N -population is a branch-

ing process with mass killing and the R-population is

stable if dr = 0 or dying out if dr > 0 (see [4, 5, 6, 3]

for some results on continuous-time branching-like

processes). If a > 0 and b = 0 then the N -population

is a branching process with mass killing and individ-

ual death rate a+dn, while the R-population survives

if and only if either dr = 0 or the N -population sur-

vives. The interesting case is b > 0. We note that

this process is not monotone with respect to the pa-

rameters a and b; on the other hand, it is monotone

with respect to the other parameters and to the initial

condition.

Without the mass deaths caused by the antibi-

otics, the process has a discrete-time branching ran-

dom walk counterpart (similar to the one described

in [22]). When the antibiotic is injected in the system

the dynamics is the following

(Nt, Rt) → (B(Nt, 1− p) , Rt)

which means that the number of surviving susceptible

bacteria is a binomial-distributed random variable;

thus, at a killing time each susceptible bacterium is

killed (independently from the others) with probabil-

ity p ∈ [0, 1]. After a mass killing the system per-

forms a new evolution starting from the survivors.

If we consider just the surviving population at these

mass killing times, we have a discrete-time process; it

turns out to be a 2-type branching process or a 2-type

branching process in random environment depending

on our choice of the killing times (deterministic or

random). Our choice will be either an increasing se-

quence of killing times {Sn}n≥1 where Sn = nT (for

a fixed T > 0) or Sn =
∑n

i=1 Tn where {Tn}n≥1 is an

i.i.d. sequence (S0 := 0).

According to [1, 12, 22] the long-term behavior of

this discrete-time branching process depends only of

its first-moment matrix M = (mij)i,j=1,2. where mij

is the expected number of offsprings of type j from

a particle of type i (see for instance [22]). In order

to compute M we need to consider the mean field

model (this is done in Secton 2.1). The main results

on the deterministic case and the random case are in

Sections 3 and 4 respectively. We note that all these

results hold for any finite (non-void) initial condition.

All the proofs and technical Lemmas can be found in

Section 6.

2.1. Mean field model. This section is a useful ex-

ercise which allows us to obtain some explicit ex-

pressions the we need in the sequel. The linear sys-

tem of equations for the expected values (nt, rt) :=

E[(Nt, Rt)] is{
d
dtnt = (λ − a− dn)nt + brt
d
dtrt = ant − (b + dr)rt,

(2.2)

where b > 0 and λ, a, dn, dr ≥ 0. The eigenvalues x+,

x− (where x+ ≥ x−) of the corresponding matrix

A :=

(
λ− a− dn b

a −(b+ dr)

)
are the solutions of the equation

h(x) := x2 + x(b + dr − λ+ a+ dn)

− ((b+ dr)(λ − dn)− adr) = 0.
(2.3)

We note immediately that, since h(−(b + dr)) =

h(λ− a− dn) = −ab ≤ 0, the eigenvalues are always

real numbers and x− ≤ min(−(b + dr), λ − a − dn),

x+ ≥ max(−(b + dr), λ − a − dn) (when ab = 0

the previous inequalities become equalities, otherwise

they are both strict inequalities). Moreover, the basic

branching process theory tells us that if the maximum

eigenvalue x+ ≤ 0 then we have almost sure (spon-

taneous) extinction. Hence if the determinant of the

matrix h(0) = −(b+dr)(λ−dn)+adr ≥ 0 we have ex-

tinction for all p and for any choice of {Tn}n≥1 (even
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when T1 = +∞). From now on we assume

(b + dr)(λ− dn)− adr > 0, (2.4)

that implies immediately x+ > 0; hence x+ > x−. A

corresponding pairs of eigenvectors is Z = (1, a/(b+

dr + x+)), C = (1, a/(b + dr + x−)). The generic

solution can be written as(
n(t)
r(t)

)
= eAt

(
n(0)
r(0)

)
where eB :=

∑∞
i=0 B

i/i! for every matrix B and

(n(0), r(0)) is the initial state. The explicit compu-

tations of eAt are easy: one simply needs to evaluate

the solution of the system starting from (1, 0) and

(0, 1). Note that x+ + x− = λ− b− dr − dn − a and

that x+x− = adr − (b + dr)(λ− dn). We have(
ñ(t)
r̃(t)

)
:=

(
b+dr+x+

x+−x−
a

x+−x−

)
etx

+ −
(

b+dr+x−
x+−x−

a
x+−x−

)
etx

−
,

(
n̄(t)
r̄(t)

)
:=

(
b

(x+−x−)

− b+dr+x−
x+−x−

)
etx

+

+

(
− b

(x+−x−)
b+dr+x+

x+−x−

)
etx

−

(2.5)

(remember that b + dr + x− < 0). We note that

limt→∞ n̄(t) = limt→∞ ñ(t) = +∞; if, in addition,

a > 0 then limt→∞ r̄(t) = limt→∞ r̃(t) = +∞. Hence

eAt =

(
ñ(t) n̄(t)
r̃(t) r̄(t)

)
(2.6)

note that eAteAs = eAseAt = eA(t+s).

3. Deterministic mass killing times

Between killing times, the bacterial population

evolves randomly according to the rates (2.1), each

time starting from the set of survivors of the pre-

vious killing time. We choose fixed time intervals

Tn = T , where T > 0; hence mass killings occur

at Sn = nT . We follow the strategy of [11]. For all

n ≥ 0, we let the system evolve between Sn−1 and Sn

and we count the number of survivors of each type at

time Sn. This is a 2-type branching process, whence

we have survival if and only if the Perron-Frobenius

eigenvalue γ+
T of its first-moment matrix

M(T ) :=

(
(1− p)ñ(T ) (1 − p)n̄(T )

r̃(T ) r̄(T )

)
=

(
1− p 0
0 1

)
eAT

(3.7)

satisfies γ+
T > 1 (see [7]). Note that the entries of the

j-th column of the matrix are the average number

of survivals after a mass killing at time T starting

from one particle of type j (j = 1 being a susceptible

particle, j = 2 being a persistent particle).

The following theorem holds for any (non-void) fi-

nite initial condition and the critical time Tc(p) does

not depend on the initial condition (clearly it depends

on all the parameters of the system, even though,

here, we emphasized only the dependence on p).

Theorem 3.1. Let λ, a, dn, dr ≥ 0, b > 0 such that

equation (2.4) holds and a+1−p > 0. For any p > 0

there exists Tc(p) ∈ (0,+∞) such that the process dies

out almost surely if and only if T ≤ Tc(p). More-

over p �→ Tc(p) is a continuous, strictly increasing

function such that limp→0 Tc(p) = 0, limp→1 Tc(p) =

Tc(1) < +∞ (when a > 0) and limp→1 Tc(p) = +∞
(when a = 0).

Requiring the inequality (2.4) is quite natural,

since if it does not hold, the bacterial population

would become extinct almost surely even without the

action of the antibiotic. Analogously, if a+1− p = 0

(that is, p = 1 and a = 0) there cannot be sur-

vival since at the first killing time the whole suscep-

tible bacterial population is killed and the persistent

population decreases (since they cannot reproduce

without switching to susceptible state and there is

no switching back from susceptible to persistent). If

p < 1 there can be survival even when switching form

susceptible to persistent state is forbidden (that is,

a = 0).
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Since p �→ Tc(p) is increasing we have that if

t > Tc(1) then there is survival with positive proba-

bility for all p, while if t ∈ (0, Tc(1)) there is a critical

value pc(t) ∈ (0, 1) such that there is almost sure

extinction if and only if p ≥ pc(t).

From the bacterial point of view, a good situation

would be when Tc is as small as possible. Here are

three plots of Tc where b = 0.01 and dn = dr = 0.025.

Figure 1 is the function (λ, p) �→ Tc (a = 0.01). Fig-

ure 2 represents the functions p �→ Tc (where λ = 3.7)

for a = 0 (solid line), a = 0.01 (dot-dashed line),

a = 0.1 (dotted line) and a = 1 (dashed line); note

that on the x-axis we put 1 − p and we are using a

logarithmic scale. This figure shows, for small values

of a, a fast increase of Tc with respect to p as p is

close to 1. This means that, for these values of a, if

the antibiotic is slightly less than perfectly efficient

(that is, p < 1) then the maximum admissible time

interval Tc to kill the bacterial population is rapidly

decreasing as p decreases. The same is shown also

by Figure 3, which represents the functions λ �→ Tc

for p = 1 (solid line), p = 0.95 (dot-dashed line) and

p = 0.9 (dashed line).

When a = 0 (which implies r̃ = 0) the results

of Theorem 3.1 are straightforward. Indeed, we can

just consider starting with one susceptible particle

(if the initial particle is resistant the result is anal-

ogous). In this case it is sufficient to consider only

the susceptible population and Tc can be computed

explicitly as Tc = (λ − dn)
−1 log(1/(1 − p)) (note

that the inequality (2.4) is equivalent to λ > dn).

Indeed the expected size of the susceptible popu-

lation at time t (before the antibiotic injection) is

ñ(t) = exp((λ − dn)t) hence there is survival if and

only if (1− p) exp((λ− dn)t) > 1.

Let us discuss briefly the behavior of Tc with re-

spect to a, in order to understand if a > 0 is a better

strategy than a = 0 from the bacterial point of view.

First of all, when p = 1 the only hope for survival for

the bacterial population is when a > 0. On the other

hand, of p < 1 there might be a positive probabil-

ity of survival even if a = 0, since a small fraction of

susceptible bacteria may survive the action of the an-

tibiotics (indeed, when p < 1 we have that Tc < +∞
even if a = 0). Hence in this case, it is not trivial

to decide whether a > 0 is a better strategy than

a = 0 or not. We note that, if dr > 0, then by equa-

tion (2.4) we have that a ≥ (λ−dn)(b+dr)/dr implies

a.s. extinction. More precisely one can prove that as

a → (λ − dn)(b + dr)/dr then x+ → 0 which implies

Tc → ∞ (see the proof of Theorem 3.1 for details)

and eventually the situation becomes less favorable

for the bacteria.

On the other hand, if we rewrite equation (2.3) as

h(x) = (x+b+dr)(x−λ+dn)+a(x+dr) we see that,

when dr = 0, for every fixed x > 0 (resp. x < 0) h

is strictly increasing (resp. decreasing) with respect

to a > 0 and h(x) → +∞ (resp. h(x) → −∞) as

a → ∞. This implies that x− and x+ are strictly

decreasing with respect to a and that x− → −∞ and

x+ → 0 as a → ∞. Hence, when dr = 0, it is easy

to prove that Tc → 0 as a → ∞ (this can be done

by checking that, for every fixed t > 0, the function

Ft,p(1), introduced in the proof of Theorem 3.1, is

negative for all a sufficiently large). Here are two se-

ries of plots: Figure 4 represents the case dr = dn = 0

and Figure 5 the case dr = dn = 1 while the other

parameters, with the exception of p, are fixed (λ = 2,

b = 1): p equals 0.9 (dashed line), 0.95 (dot-dashed

line), 0.99 (dotted line) and 1 (solid line).

We see that if dr = 0 then the best strategy for the

bacterial population is to have a as large as possible

(which means having a large fraction of the popula-

tion in the persistent state). If dr > 0 there seems
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to be a critical value for p, above which, increasing

a is a good strategy, up to a suitable value which

minimizes Tc. Below the critical value for p the best

situation for the bacterial population is a = 0. As

a → (λ − dn)(b + dr)/dr we have x+ → 0 which im-

plies Tc → ∞ and eventually the situation becomes

worse for the survival of the bacteria for all values

of p (in the previous figure (λ − dn)(b + dr)/dr = 2

and it is represented by the black vertical asymptote).

This difference between the cases dr = 0 and dr > 0

has a simple intuitive explanation: when dr = 0 it

is better to enhance the fraction of population which

cannot be killed (even if this slows down the repro-

duction which is performed only by susceptible bacte-

ria); indeed, in the limit a → ∞, we have a stationary

(immortal) population of persistent bacteria. On the

other hand if dr > 0 and a is too large we have a

population where the fraction of persistent bacteria

is very high, hence the total reproduction rate is too

low to counterbalance the death rate (which affects

also persistent bacteria now). From another point

of view, when dr > 0 and p < 1, then bacteria find

more convenient small values of a since they can make

use of other surival mechanisms (represented by the

probability 1−p of surviving a single antibiotic dose)

which are available in the susceptible state and, at

the same time, they can take advantage of the repro-

duction process.

A more rigorous study of the behavior of Tc with

respect to p, a and b is possible but it would exceed

the aim of this paper.

4. Random mass killing times

We consider a sequence of i.i.d. positive ran-

dom times {Tn}n≥1. According to Lemma 6.1,

max{n : Sn ≤ t} < +∞ a.s. for all t > 0, which

means that there are a finite number of killing times

in each finite interval almost surely. Morever, sup-

pose that the law of Tn is μβ, where {μβ}β∈(0,+∞) is

a family of probability measures on (0,+∞) (stochas-

tically nondecreasing1 w.r.to β) satisfying

(1) ∀t0 > 0, lim
β→+∞

μβ((0, t0]) = 0;

(2) ∀β > 0, Eβ :=

∫
t μβ(dt) < +∞;

(3) ∀t0 > 0, lim
β→0

∫
(t0,∞)

t μβ(dt)
/
Eβ = 0.

(4.8)

Clearly, since the family {μβ}β∈(0,+∞) is

stochastically nondecreasing, we have that β �→∫
(t0,∞) t μβ(dt) is a nondecreasing function for ev-

ery t0 ≥ 0. Moreover, (3) implies

(4) ∀t0 > 0, lim
β→0

μβ((0, t0]) = 1.

The expected value of the length of the time intervals

is a nondecreasing function of β. Roughly speaking,

in equation (4.8), (1) implies that as β goes to in-

finity the probability of small time intervals is negli-

gible. On the other hand, (3) tells us that, when β

goes to 0, the contribution of large times to the ex-

pected length of the time intervals is negligible. As

an example, consider the family of exponential laws

Exp(1/β).

In this case, we have two randomizations, first we

choose a realization of the random sequence of times

{Tn}n≥1 (we call it, the environment) and then we

consider the random evolution of the population with

the chosen killing times. More precisely, the sequence

of snapshots of the system taken at the random times

{Sn}n≥0 is a multitype branching process in random

environment (see [21] for the definition). For each

fixed β we call this the β-process and each realiza-

tion ξ of the random time sequence {Ti}n≥1 is our

environment. Henceforth, when we say that some

1The stochastic order is the usual one, meaning that, if ̂β ≤ ˜β then for all x ∈ R we have μ
β̂
((−∞, x]) ≤ μ

β̃
((−∞, x]).
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event A (extinction or survival) has probability 0

(resp. > 0) for almost all realizations of the environ-

ment, we mean that the conditional probability of the

event with respect to the realization ξ of the sequence

of killing times is 0 (resp. > 0) for almost all realiza-

tions ξ, that is, P(ξ : P(A|Ti = ξi, ∀i ≥ 1) = 0) = 1

(resp. P(ξ : P(A|Ti = ξi, ∀i ≥ 1) > 0) = 1).

Clearly if q̄(ξ) = (q̄1(ξ), q̄2(ξ)) is the vector of ex-

tinction probabilities (starting from one susceptible

bacterium or from one persistent bacterium respec-

tively), we have that P(q(ξ) = 1) is either 0 or 1.

This means that there is a.s. extinction for almost

all realizations of the environment or for almost no

realizations of the environment.

Our results hold for any finite (non-void) initial

condition (and, again, the critical values depend on

all the parameters of the system but not on the initial

condition). We assume again the inequality (2.4) to

avoid spontaneous extinction of the bacterial popu-

lation without the action of the antibiotic.

The first theorem states that if β exceeds some fi-

nite critical value β1
c there is survival almost surely,

that is, for almost every realization of the environ-

ment. Roughly speaking, since the expected time is

nondecreasing with respect to β, it means that if the

expected time is too large, the action of the antibi-

otic might not be sufficient to kill the whole bacterial

population.

Theorem 4.1. Let λ, a, dn, dr ≥ 0, b > 0 such

that equation (2.4) holds. Let {μβ}β∈(0,+∞) satisfy

equation (4.8) and a + 1 − p > 0. If β1
c (p) :=

sup{β ∈ (0,+∞) : the β-process dies out a.s.} then

β1
c (p) < +∞ and for all β > β1

c (p) we have survival

with positive probability for almost all realizations of

the environment. Moreover p �→ β1
c (p) is nondecreas-

ing.

The second result tells us that if β is smaller than

some (strictly positive) critical value β2
c then, with

probability 1, the antibiotic will eventually kill the

bacterial population. We show that β2
c tends to 0 as

p tends to 0. We also show (see Example 4.4) that

there are situations where β2
c 
= β1

c , that is, there is

almost sure extinction of the bacteria for β = β̃ and

a positive probability of survival for the bacteria for

β = β̂ for some β2
c < β̂ < β̃ < β1

c .

Theorem 4.2. Let λ, a, dn, dr ≥ 0, b > 0

such that equation (2.4) holds. Let {μβ}β∈(0,+∞)

satisfy equation (4.8). If β2
c (p) := inf{β ∈

(0,+∞) : the β-process survives with positive probability}
then β2

c (p) > 0 such that for all β < β2
c (p) we have

a.s. extinction for almost all realizations of the envi-

ronment. Moreover, p �→ β2
c (p) is nondecreasing and

infp→0 β
2
c (p) = 0.

The case a = 0 is very easy. Again, as in the

case of deterministic time intervals, it is enough to

consider only the susceptible population and to as-

sume one susceptible bacterium at time 0. It is pos-

sible to show (see the end of Section 6 for details)

that there is survival for the bacteria if and only if

Eβ [log((1 − p)ñ(T ))] > 0. In this case Eβ [log((1 −
p)ñ(T ))] = Eβ [log

(
(1−p) exp((λ−dn)T )

)
] = log(1−

p)+(λ−dn)Eβ . Since β → Eβ is nondecreasing, then

β2
c = βc

1 = inf{β : Eβ > (λ − dn)
−1 log(1/(1 − p))}.

Moreover, if β → Eβ is continuous then there is al-

most sure extinction when β = β2
c .

Sharper results can be obtained if we assume that

the random times have a exponential distribution

with expected value 1/β. In this case there is a unique

critical threshold βc separating almost sure extinction

from survival with positive probability.

Theorem 4.3. Let λ, a, dn, dr ≥ 0, b > 0 such

that equation (2.4) holds and a + 1 − p > 0. Let
9



{μβ}β∈(0,+∞) be a sequence of exponential laws μβ ∼
Exp(1/β). There exists βc(p) ∈ (0,+∞) such that

for all β > βc(p) we have survival with positive prob-

ability for almost all realizations of the environment

and for all β < βc(p) we have a.s. extinction for al-

most all realizations of the environment. Moreover

p �→ βc(p) is nondecreasing and limp→0 βc(p) = 0.

We conjecture that in the critical case β = βc(p)

there is a.s. extinction for almost all realizations of

the environment; this can be easily proven when

p = 1 (see the remarks at the end of Section 6). When

p < 1, the critical case is still open. Moreover the

main difference between Theorems 4.1-4.2 and Theo-

rem 4.3 is that in the last case β2
c (p) = β1

c (p) while in

general this is not true. The intuitive reason behind

this, is that the model is not stochastically monotone.

In particular, this means that the probability of sur-

vival does not need to be monotone with respect to β.

More details can be found at the end of the next ex-

ample which shows, that for a generic {μβ}β∈(0,+∞)

satisfying our hypotheses, we cannot always expect

β2
c (p) = β1

c (p).

Example 4.4. Let us take λ = (
√
21 + 3)/4, b =

(
√
21 − 3)/4, a = dn = dr = 1/2 and p = 1. Since

p = 1 it is enough to consider the expected size of

the persistent population (at each killing time, sus-

ceptible bacteria are killed). We note that x+ = 1,

x− = −1 and r̄(t) = et(5−√
21)/8+e−t(3+

√
21)/8.

From equation (6.9), the Perron-Frobenius eigenvalue

of M(t) is γ+
t = r̄(t); moreover the only strictly pos-

itive solution of r̄(t) = 1 is Tc = log(3 +
√
21) −

log(5 − √
21). We have r̄(t) < 1 for all t ∈ (0, Tc)

and r̄(t) > 1 for all t > Tc. Consider the following

family of measures

μβ :=

{
1
2δβ/10 +

1
2δ3min(β,1) β ∈ (0, 15]

1
2δβ−13.5 +

1
2δβ−12 β ∈ (15,+∞)

where δα is the Dirac measure at α ∈ R. Roughly

speaking, for any fixed β, every time interval Ti is

chosen independently between two values with proba-

bility 1/2 each. This is a model of a patient which

forgets to take his/her antibiotic dosage after a pre-

scribed fixed time with probability 1/2 and in that case

he/she takes it after another fixed time interval. It is

straightforward to see that the family {μβ}β∈(0,+∞)

is stochastically nondecreasing and satisfies equa-

tion (4.8). According to [19, Theorem 3.1] (see also

Remark 6.2 for details) if E[log(r̄(T1))] ≤ 0 there is

a.s. extinction for almost every realization of the en-

vironment, while if E[log(r̄(T1))] > 0 there is posi-

tive probability of survival for almost every realiza-

tion of the environment. Observe that E[log(r̄(T1))]

depends on β since μβ represents the law of T1. Here

we have extinction if β is close to 0 (take for in-

stance, β = 0.5), we have survival if β = 1, we

have extinction again if β = 15 and we have sur-

vival if β is large (take for instance, β = 16.5).

Thus the probability of survival is not monotone and

β2
c (p) ≤ 1 < 15 ≤ β1

c (p).

The main reason behind this behavior is that the

model is not monotone. This implies, in particular,

that in general the map t �→ γ+
t is not monotone.

Nevertheless it is continuous and there is only one

strictly positive solution to the equation γ+
t = 1. This

implies that in the deterministic time-interval case

discussed in Section 3, which can be retrieved by set-

ting μβ := δβ, there is only one critical threshold (see

Theorem 3.1) corresponding to the unique solution

(with respect to β) of the equation E[log(γ+
T1
)] = 0

(or, equivalently, of the equation γ+
β = 1). One can

expect to obtain a similar behavior in most single-

peaked distribution families {μβ}β∈(0,+∞) (such as

the exponential family considered in Theorem 4.3).

The heuristic explanation is that, in the general case,
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even when p = 1, there might be multiple solutions

(with respect to β) of the equation E[log(γ+
T1
)] = 0

due to the fact that, roughly speaking, the function

E[log(γ+
T1
)] is a mixing of all possible values of γ+

T1
.

5. Conclusions

The model shows important differences between

the evolution of the bacterial population in the case

p = 1 and in the case p < 1. First of all, the maximum

admissible time interval between antibiotic injections

is strongly dependent on p. Indeed, on the one hand

it can be significantly smaller in the second case even

when p is close to 1 and, on the other hand, its length

converges to 0 as p tends to 0. This means that we

cannot find a strictly positive time interval which en-

sures the extinction of the bacteria for all values of p.

This suggests that, in the applications, an estimate

of p could be important.

In the case of random intervals of injection, our

model shows that, for a generic choice of the laws of

the time intervals, even when p = 1 it can happen

that we succeed in killing the bacteria (with proba-

bility 1) when the expected time length between in-

jections is large while the bacteria can survive with

positive probability for some smaller expected times.

This does not happen when the intervals are deter-

ministic.

Finally this model suggests an answer to the ques-

tion whether switching from a state to the other one

is always a good strategy for the bacteria (a good

strategy here means to reduce the maximum admis-

sible time interval between injection). Switching is a

winning strategy if the death rate dr in the persistent

state is 0. On the contrary, in the case dr > 0 we show

that, when the transition rate a from the susceptible

to the persistent state is too large, eventually the sit-

uation becomes less favorable for the bacteria since

the maximum time interval between injections tends

to infinity when a tends to a suitable finite value (see

Section 3). In particular, as expected, for small val-

ues of p the best strategy for the bacteria is to stay

in the susceptible state (a = 0), while if p is close to

1 then the best choice is a strictly positive value for

a which minimizes the time interval length. We con-

jecture that, when dr > 0 there is a critical value pc

separating these two different situations. We recall

that, in our models, in the persistent state cells are

dormant and do not reproduce; hence when switching

is not a good strategy, it means that bacteria can take

advantage of other survival mechanisms (represented

by the probability 1−p of surviving a single antibiotic

dose) which are “available” in the susceptible state.

6. Proofs

Proof of Theorem 3.1. Define

Ft,p(x) := x2 − x((1 − p)ñ(t) + r̄(t))

+ (1− p)(ñ(t)r̄(t)− n̄(t)r̃(t))

= x2 − x

(
etx

+

(
1− p

b+ dr + x+

x+ − x−

)
+ etx

−
(
1 + p

b+ dr + x−

x+ − x−

))
+ (1− p)et(x

++x−)

(6.9)

where x++x− = λ− b−dr−a−dn. Let γ
+
t ≥ γ−

t be

the solutions of Ft,p(x) = 0. In order to check the in-

equality γ+
t > 1 we study the differentiable function

t → Ft,p(1) for every fixed p ∈ (0, 1]; in particular we

look for the solutions of the equation Ft,p(1) = 0 with

respect to t. Clearly γ+
0 = 1 and the other solution of

F0,p(x) = 0 is γ−
0 = 1− p < 1. Using equations (6.9)

and (2.2) we have d
dtFt,p(1)|t=0 = p(dr + b) > 0.

Hence there exists ε > 0 such that Ft,p(1) > 0 for

all t ∈ (0, ε); thus, by continuity and since γ−
0 < 1,

we have that γ+
t < 1 for all t ∈ (0, ε). Since

limt→∞ Ft,p(1) = −∞ for all p ∈ (0, 1], there is at
11



least one strictly positive solution to Ft,p(1) = 0 with

respect to t. In order to show that it is unique, ob-

serve that, since x− < 0,

d

dt
Ft,p(1) = et(x

++x−)
[
(1− p)(x+ + x−)

−
(
x+et|x

−| (1− ph)

− |x−|e−tx+

(1 + p(1− h))
)]

where h = (b + dr + x+)/(x+ − x−). Clearly

sgn( d
dtFt,p(1)) = sgn(L(t, p)) where L(t, p) :=

Ft,p(1)e
−t(x++x−) Since x+ > 0 we have that (for

every fixed p) t �→ L(t, p) is a strictly decreasing

function such that L(0, p) > 0 and limt→+∞ L(t, p) =

−∞; thus there exists a unique Tc = Tc(p) ∈ (0,+∞)

such that Ft,p(1) > 0 (resp. Ft,p(1) < 0) if t ∈ (0, Tc)

(resp. t ∈ (Tc,∞)). This implies that γ+
t < 1 for all

t ∈ (0, Tc) and γ+
t ≥ 1 for all t ∈ [Tc,+∞) (clearly

FTc(p),p(1) = 0 and γ+
Tc(p)

= 1).

By elementary analysis p �→ Tp is a differentiable

function (for every fixed t ≥ 0). Moreover, by con-

vexity, since (b+ dr + x+)/(x+ − x−) ∈ [0, 1],

d

dp
Ft,p(1) = etx

+ b+ dr + x+

x+ − x−

+ etx
−
(
−b+ dr + x−

x+ − x−

)
− et(x

++x−)

≥ et(x
+(b+dr+x+)/(x+−x−)−x−(b+dr+x−)/(x+−x−))

− et(x
++x−) = et(x

++x−+b+dr) − et(x
++x−) > 0

for all t > 0. Hence p �→ Ft,p(1) is strictly increas-

ing which implies that p �→ Tc(p) is strictly increas-

ing. Since limp→0 Ft,p(1) = Ft,0(1) < 0 for all t > 0

(indeed the process is supercritical in the absence of

mass-killing), we have that limp→0 Tc(p) = 0. By con-

tinuity, if a > 0, limp→1 Tc(p) = Tc(1) which is finite

according to the first part of the proof. On the other

hand, if a = 0 then Tc = (λ − dn)
−1 log(1/(1 − p))

ahd the conclusion follows.

Finally, if a > 0 then there is survival starting

from 1 persistent particle if and only if there is sur-

vival starting from 1 susceptible particle; thus, since

the process is monotone with respect to the initial

state, the long-term behavior is the same as long as

the initial state is finite. If a = 0 then p < 1 and the

Perron-Frobenius eigenvalue x+ = m11(t), hence our

result holds starting from 1 susceptible particle; nev-

ertheless, since b > 0, even if we start from 1 persis-

tent particle there is a positive probability it becomes

a susceptible one, hence there is a positive probabil-

ity of survival starting from 1 susceptible particle if

and only if there is a positive probability of survival

starting from any finite initial state. �

The proof of the following Lemma is very easy,

nevertheless we include it for completeness.

Lemma 6.1. Let {Ti}i∈N be nonnegative i.i.d. ran-

dom variables. If P(T1 > 0) > 0 then E[Nt] < +∞
where Nt := max{n : ∑n

i=0 Ti ≤ t}.

Proof. Let Sn :=
∑n

i=0 Ti and suppose that E[T 4
i ] <

+∞: in this case define E[Ti] =: μ > 0, E[(Ti−μ)2] =:

σ2 and E[(Ti − μ)4] =: r4. Clearly, eventually as

n → ∞,

P(Nt ≥ n) = P(Sn ≤ t) = P(Sn/n− μ ≤ t/n− μ)

≤ P(|Sn/n− μ| ≥ μ/2)

≤ E[|Sn/n− μ|4]/(μ/2)4

=
16

n4μ4
E

[
(

n∑
i=1

(Ti − μ))4

]
= (∗).

Now (
∑n

i=1(Ti − μ))4 =
∑

i∈{1,...,n}4

∏4
j=1(Tij −

μ); moreover the independence of {Ti}i∈N yields

E[
∏4

j=1(Tij−μ)] = 0 if there exists j such that ij 
= ik
12



for all k 
= j. Hence

(∗) = 16

n4μ4
E

[ n∑
j=1

(Tij − μ)4

+
∑

h,j : h �=j

(Tih − μ)2(Tij − μ)2
]

=
16

n4μ4
[nr4 + n(n− 1)σ4] ≤ C/n2

thus E[Nt] =
∑

n∈N
P(Nt ≥ n) < +∞.

In the general case, define T i := min(Ti, 1). Then

E[T
4

i ] < +∞ hence E[Nt] ≤ E[N̄t] < +∞ where

N̄t := max{n : ∑n
i=0 T̄i ≤ t}. �

Remark 6.2. In the random killing time case we

deal, in general, with a multitype branching process in

random environment where the sequence of environ-

ments is i.i.d. hence, if we denote by Mn := M(Tn)

the first-moment matrix (3.7) with T = Tn, by King-

man Subadditive Theorem, we have (see for instance

[2, 9, 13, 20, 21])

lim
n→∞n−1 log

(∥∥∥∥∥
1∏

i=n

Mi

∥∥∥∥∥
)

= δβ = E[δβ ], a.s.

and δβ = limn→∞ n−1
E

[
log
(∥∥∥∏1

i=n Mi

∥∥∥)]
where ‖M‖ := maxj

∑
i |Mij | and

∏1
i=n Mi :=

MnMn−1 · · ·M1. This plays the role of the Perron-

Frobenius eigenvalue of the deterministic case and it

will be useful in the next proofs (where we use [21,

Teorems 9.6 and 9.10]; in the case p = 1 one may

use also [19, Theorem 3.1] instead).

Moreover, it is easy to check that the conditions

of [21, Teorems 9.10] are satisfied. Indeed, the en-

tries of the first-moment matrix satisfy mi,j(t) > 0

for all t > 0 and for all i, j = 1, 2. Moreover,

since μβ((0,+∞)) = 1 for all β ∈ (0,+∞), we have

P(mini,j(M1)i,j > 0) = 1. Finally, if we start with

a susceptible particle then P(N(t) ≥ 1) ≥ e−(a+dn)t

hence

E[| log(1− P(N(t) = 0))|]
≤
∫
(0,+∞)

(a+ dn)tμβ(dt) < +∞, ∀β ∈ (0,+∞).

On the other hand, if the initial condition is a persis-

tent particle we proceed by using R(t) instead of N(t).

One can check analogously that our branching process

in random environment is strongly regular (see [21,

Definition 9.1]). Hence, according to [21, Theorem

9.10], we have:

(1) δβ ≤ 0 implies a.s. extinction for almost all

realizations of the environment,

(2) δβ > 0 implies survival with positive probabil-

ity for almost all realizations of the environ-

ment.

Clearly the probability of survival is 0 if and only if the

conditional probability of survival is 0 for almost all

realizations of the environment. On the other hand,

since P(q(ξ) = 1) is either 0 or 1 (see Section 4),

then the probability of survival is strictly positive if

and only if the conditional probability of survival is

strictly positive for almost all realizations of the en-

vironment.

Proof of Theorem 4.1. First of all we check the inte-

grability condition, that is, for all n ≥ 1,

E

[
n−1

∣∣∣ log(∥∥∥ 1∏
i=n

Mi

∥∥∥)∣∣∣]
=

∫
n−1

∣∣∣ log(∥∥∥ 1∏
i=n

M(ti)
∥∥∥)∣∣∣ n∏

i=1

μβ(dti) < +∞,

where
∏n

i=1 μβ is a probability product measure on

R
n. Below we show that if p < 1 then

∥∥∥∏1
i=n Mi

∥∥∥ ≥
(1 − p)nεn (for some ε > 0) while if a > 0 then∥∥∥∏1

i=n Mi

∥∥∥ ≥ εn (for some ε > 0). Hence if a+1−p >

0 , for some ε′ > 0,∫
n−1 log−

(∥∥∥ 1∏
i=n

M(ti)
∥∥∥) n∏

i=1

μβ(dti)

≤ log−(ε′) < +∞
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since log− is nonincreasing (where log−(·) :=

max(0,− log(·))). Thus we just need to prove that∫
n−1

∣∣ log+ (∥∥∏1
i=n M(ti)

∥∥)∣∣∏n
i=1 μβ(dti) < +∞

(where log+(·) := max(0, log(·))). From equa-

tion (2.5) we have ‖M(t)‖ ≤ Ketx
+

; hence, since

log+ is nondecreasing,
∥∥∏1

i=n Mi

∥∥ ≤∏n
i=1 ‖Mi‖ and

the expected value of μβ is finite (for all β) we have∫
n−1

∣∣ log+ (∥∥∏1
i=n M(ti)

∥∥)∣∣∏n
i=1 μβ(dti) < +∞.

Suppose p < 1 and a > 0. For all t, τ > 0 there

exists β0(τ, t) such that μβ([t,+∞)) > 1 − τ for all

β > β0(τ, t). By continuity and compactness we have

that, for some ε > 0,

M(t) ≥
(
(1− p)ε 0

0 ε

)
=: M0, ∀t ≥ 0

where, by definition, A ≥ B if and only if Aij ≥ Bij .

It is easy to show, by using equation (2.5), that there

exists tp ∈ [0,+∞) such that

M(t) ≥
( 4

ε(1−p) 0

0 4
ε

)
=: M1, ∀t ≥ tp.

Let β > β0(1/2, tp) and {Mi}i≥1 the corre-

sponding sequence of random first-moment matri-

ces (Mi := M(Ti)); thus, according to the Law

of Large Numbers, with probability 1, as n →
∞, #{i ≤ n : Mi ≥ M1} ≥ n/2 which implies

that
∏1

i=n Mi ≥ M
n/2

0 M
n/2

1 = 2n1l almost surely.

Hence lim infn→∞ n−1 log
(∥∥∥∏1

i=n Mi

∥∥∥) ≥ log 2 > 0

a.s. which, according to [21, Theorems 9.10], implies

survival with positive probability for almost every re-

alization of the environment. Hence, by definition,

β1(p) ≤ β0(1/4, tp).

The usual coupling technique shows that for any

fixed choice of the parameters λ, a, b, dn, dr and for

any realization of the environment, the probability

of survival is nonincreasing with respect to p. Hence

p �→ β1
c (p) is nondecreasing.

If p = 1 then a > 0 and we are dealing essentially

with a single population (the persistent bacteria as in

[11]), since after each killing time we have just per-

sistent bacteria left. The first moment, starting with

a susceptible bacterium, is r̄(t). The proof is essen-

tially the same since r̄(T ) ≥ ε > 0 for all t ≥ 0 and

r̄(T ) ≥ 4/ε for all t ≥ tp. The result follows from

[19, Theorem 3.1]. Since a > 0 then there is sur-

vival starting with a persistent bacterium if and only

if there is survival starting with a susceptible one.

Finally if a = 0 (hence p < 1) again we are deal-

ing essentially with a single population: the suscep-

tible bacteria. The first moment, starting with a sus-

ceptible bacterium, is ñ and the result follows (from

[19, Theorem 3.1] as before) from the inequalities

ñ(t) ≥ (1 − p)ε for all t ≥ 0 and ñ(t) ≥ 4/((1 − p)ε)

for all t ≥ tp. �

Proof of Theorem 4.2. If p = 1 and a = 0 the process

becomes extinct almost surely. We suppose hence-

forth that a+ 1 − p > 0. Since log is increasing and

{Mi}i≥1 are identically distributed, we have

E

[
n−1 log

(∥∥∥ 1∏
i=n

Mi

∥∥∥)] ≤ n−1
E

[
log
( 1∏

i=n

∥∥∥Mi

∥∥∥)]
≤ log(E[‖M1‖]).

Thus, if we prove that log(E[‖M1‖]) < 0 for every

sufficiently small β then [21, Theorem 9.6] guaran-

tees a.s. extinction for almost all configurations (if

p = 1 one can also use [19, Theorem 3.1] instead).

It is straightforward to show that t �→ ‖M(t)‖
is differentiable from the right at 0. By elementary

computations, since M(0) = 1l, d
dt log ‖M(t)‖

∣∣∣
t=0

=

d
dt‖M(t)‖

∣∣∣
t=0

=: −m < 0. Hence, there exists t0 > 0

such that log(‖M(t)‖) ≤ −tm/2 for all t ∈ [0, t0]. On

the other hand, log(‖M(t)‖) ≤ Cx+t for all t > 0

and some C > 0. Finally note that in equation (4.8),

condition (3) is equivalent to

∀t0 > 0, lim
β→0

∫
(t0,∞)

t μβ(dt)
/∫

(0,t0]

t μβ(dt) = 0,
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thus∫
log(‖M(t)‖)μβ(dt) =

∫
(0,t0]

log(‖M(t)‖)μβ(dt)

+

∫
(t0,∞)

log(‖M(t)‖)μβ(dt)

≤ −
∫
(0,t0]

tm

2
μβ(dt) +

∫
(t0,∞)

Cx+tμβ(dt)

≤ −
∫
(0,t0]

tm

2
μβ(dt)

(
1−

∫
(t0,∞)

tμβ(dt)∫
(0,t0]

tμβ(dt)

2Cx+

m

)
< 0

for every sufficiently small β. Hence β2(p) > 0.

As in the proof of Theorem 4.2, for every realiza-

tion of the environment, the probability of survival is

nonincreasing with respect to p. Hence p �→ β2
c (p) is

nondecreasing.

Let us fix β > 0. It is well-known that

lim
n→∞n−1 log

(∥∥∥ 1∏
i=n

eATi

∥∥∥)
= lim

n→∞n−1 log
(∥∥∥eA∑n

i=1 Ti

∥∥∥)
= x+

Eβ > 0, a.s.

(ex
+

is the maximum eigenvalue of eA). Moreover

M(t) ≥ (1−p)eAt thus
∏1

i=n Mi ≥ (1−p)neA
∑n

i=1 Ti

and

lim
n→∞n−1 log

(∥∥∥∥∥
1∏

i=n

Mi

∥∥∥∥∥
)

≥ log(1 − p) + x+
Eβ a.s.

which is eventually strictly positive, as p → 0. Hence,

according to [21, Theorem 9.10], the process eventu-

ally survives as p → 0; thus, by definition, β2(p) ≤ β

eventually as p → 0.

�

Proof of Theorem 4.3. We use a modification of the

construction shown in [11]. Given β1 ≥ β2, it is possi-

ble to construct two sequences {T 1

i }i≥1 and {T 2

i }i≥1

in such a way that, for every trajectory, {T 1

i (ω) : i ≥
1} ⊆ {T 2

i (ω) : i ≥ 1}. This can be done by using the

classical decimation procedure: take the sequence of

arrival times {T 2
i }i≥1 and a sequence {Bi}i≥1 of in-

dependent Bernoulli variables with parameter β2/β1.

Now, for every trajectory, remove the i-th arrival time

T 2
i (ω) if and only if Bi(ω) = 0; the surviving arrival

times are a realization of {T 1
i }i≥1.

Consider the binary tree T whose vertices are the

set V of finite words of the alphabet {0, 1} and whose

root is the empty word ∅. Every nonempty word

v1v2 . . . vn is connected to its parent v1v2 . . . vn−1 and

its two children v1v2 . . . vn 0 and v1v2 . . . vn 1 (the root

is connected to 0 and 1).

To each vertex v corresponds a variable Sv ∼
Exp(λ) which represents the time interval between

its birth and its splitting (when it gives birth). We

assume that {Sv}v∈V is an i.i.d. family of random

variables. Define T∅ := 0 and, for every nonempty

word v = v1 . . . vn, Tv =
∑n−1

i=1 Sv1...vi . Consider

now the tree T̂ on T × [0,+∞) as follows: the set of

vertices is V̂ := {(v, Tv), (v, Tv + Sv) : v ∈ T}. We

have vertical edges between (v, Tv) and (v, Sv + Tv)

(for all v ∈ V ); we have horizontal edges between

(v, Tv+Sv) and each of its two children (vw, Tv +Sv)

where w ∈ {0, 1} (for all v ∈ V ). The vertical edge

between (v, Tv) and (v, Tv + Sv) represents the time

interval between the birth of the particle v and its

splitting time. The horizontal edge between (v, T v)

and (v1, T v) represent the birth of a child of v while

we consider the other particle, namely v0, as v itself

after giving birth.

Independently of everything constructed so far,

we consider four independent families of Poisson

point processes {W 1
v }v∈V , {W 2

v }v∈V , {D1
v}v∈V and

{D2
v}v∈V on [0,+∞) with intensities b, a, dn and dr

respectively. We color the tree in white (susceptible

state), red (persistent state) and black (dead particle)

as follows: we start with a white vertex (∅, 0) and we

extend the color to the branches along the timeline
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until we reach a point of one of the Poisson processes.

If we meet a D1
v point and the current color is white

we switch to black and there are not modifications

anymore in that subtree along the timeline (death of

the particle), the same happens if we meet a D2
v point

and the current color is red. If the current color is not

black, then everytime we meet a W 2
v point we switch

to red and everytime we meet aW 1
v point we switch to

white. Black color is not modified when we meet new

points in the Poisson processes. At every split point

if the current color is white or black then we use the

same color for the horizontal edges and we continue

starting from the two new vertices. If the color is red

then we use the same color for the horizontal edge

which connects to the child whose name ends with

0 (and we start again from there with a red vertex);

we switch to black for the horizontal edge connecting

to the other son (hence, the whole subtree branch-

ing from this vertex is black, since red (persistent)

particles do not reproduce).

So far we modelled the natural evolution of the sys-

tem; now we add the action of the antibiotics. To this

aim, independently again, we add the coupled Pois-

son processes {T j

i}i≥1 (j = 1, 2) defined above and

we consider two independent families of independent

Bernoulli variables {B1
e}e∈V T̂

with parameter p1 and

{B2
e}e∈V T̂

with parameter p2 where p1 ≤ p2 and V T̂

is the set of vertical edges of T̂. There is an anal-

ogous decimation procedure which allows to couple

these two Bernoulli processes in such a way that if

B1
e = 1 then B2

e = 1. At each time T 1
i (resp. T 2

i ) we

consider all the white vertical edges intersecting the

horizontal plane with time coordinate T 1
i (resp. T 2

i );

for all such edges e, if Bj
e = 1 we switch to black in

the corresponding j model (hence the whole subtree

is black), otherwise nothing happens.

In each model, at any time t ≥ 0, let Nt (resp. Rt)

be the number of white (resp. red) vertical edges

which intersects the horizontal plane with time co-

ordinate t; {(Nt, Rt)}t≥0 is the formal definition of

the process. It is clear that the white/red edges in

the second model have the same color in the first one,

hence the non-black portion of the tree in the second

model is a subtree of the non-black portion of the tree

in the first model. In this construction, the event of

survival is the collection of all the trees which have at

least a red/white branch intersecting the horizontal

plane t for every t > 0. This implies easily that the

probability of survival of a model (β1, p1) is larger

or equal than the probability of survival of a model

(β2, p2) (where β1 ≥ β2 and p2 ≥ p1). More precisely,

we coupled the environments in such a way that the

conditional (with respect to the environment) prob-

abilities of survival of the model (β1, p1) are larger

or equal than the conditional (with respect to the

coupled environment) probabilities of survival of the

model (β2, p2). In particular, for any fixed p, the

probability of survival is nondecreasing with respect

to β and, for any fixed β, is nonincreasing with re-

spect to p.

If we define βc(p) := inf{β >

0: the process survives with positive probability}
then βc(p) > 0 (according to Theorem 4.2). Since the

probability of survival is nondecreasing with respect

to β, we have that for all β > βc(p) there is sur-

vival with positive probability and for all β < βc(p)

we have almost sure extinction. Hence βc(p) =

sup{β > 0: the process dies out almost surely},
thus βc(p) < +∞ (according to Theorem 4.1).

Clearly βc(p) is nondecreasing with respect to p and,

according to Theorem 4.2, limp→0 βc(p) = 0.

�
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Theorem 4.3 does not cover the critical case β =

βc(p). The exact computation of δβ (see Remark 6.2)

is not trivial, unless p = 1, where it is simply

δβ = Eβ [log(r̄(T ))], or a = 0, where it is δβ =

Eβ [log((1 − p)ñ(T ))]. If one were able to prove that

β → δβ is continuous from the left then, from Re-

mark 6.2, it would follow easily that δβc(p) ≤ 0 and

there would be a.s. extinction for almost every real-

ization of the environment in the critical case. This is

straightforward when μβ ∼ Exp(1/β) and p = 1; on

the other hand, proving this continuity when p < 1

does not seem to be an easy task.
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Figure 1: (λ, p) �→ Tc Figure 2: p �→ Tc Figure 3: λ �→ Tc

Figure 4: dr = dn = 0 Figure 5: dr = dn = 1
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