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Abstract The action of the orthogonal group Oð2Þ
on the space of plane elasticity tensors has been the

subject of some recent investigations. It is shown here

that the approach based on the ‘‘harmonic decompo-

sition’’ technique, which is also used in a three-

dimensional setting, gives a unified perspective on this

issue. We construct explicit relationships between

invariants and quantities derived from such an

approach and what was found earlier by Tsai and

Pagano and, more recently, through the ‘‘polar

method’’ and the use of complex variables.
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1 Introduction

Recent years have seen some renewed interest about

the material symmetries and orthogonal invariants of

plane elasticity tensors, which linearly map the strain

E into the stress T for infinitesimal deformations of

elastic plane bodies. Such renewed interest is mostly

concentrated on the class of anisotropic tensors, which

are investigated in respect both to their subdivision

into symmetry classes and to the set of functions which

can be constructed from their components and shown

to be invariants under the action of the plane

orthogonal group.

As a significant and interesting example of this

recent literature we mention some new articles by de

Saxcé and Vallée [3], by Vannucci [8, 9] and by

Vannucci and Verchery [11] (and quite a few other

references mentioned therein).

This topic was also investigated in some detail in

earlier work, as in the important contribution by

Blinowski et al. [2] and the subsequent and strictly

related article by Vianello [13], which are unfortu-

nately missing among the references listed by de

Saxcé and Vallée in [3].1 In particular, as we shall see,

a part of the treatment and some results found in [3]

were anticipated in [2] and [13].

The goal of this research is to put some of this

literature into a proper perspective and, above all, to

show that most results scattered here and there can be

shown to be nothing but special cases of what is

obtained through the application of the powerful

method of harmonic decomposition for elasticity

tensors, which, in a three-dimensional context, has
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2 Plane elasticity tensors

We use quite standard notation: small (a; b; . . .) and

capital (A;B; . . .) boldface latin letters denote vectors

and tensors of a two-dimensional Euclidean space V,

while a blackboard bold font ðS;C;H; . . .) is used for

fourth order tensors, elements of the space Lin. An

orthonormal basis for V is B ¼ feig (i ¼ 1; 2), while

fei � ejg is a basis for Lin, the space of second-order

tensors, where the symbol � denotes the tensor

product. The set of orthogonal tensors Q is Oð2Þ and

the subgroup of rotations (orthogonal tensors with

determinant equal to one) is written as SOð2Þ. Sym is

the set of symmetric second-order tensors (a three-

dimensional subspace of Lin) while Sym is the

subspace of Lin of all tensors which are symmetric

with respect to any permutation of the indexes of their

cartesian components.

Cartesian components of a second- and fourth-

order tensor T and C are given by

Tij ¼ ei � Tej; Cijkl ¼ ðei � ejÞ � C½ek � el�;

where the same symbol ‘‘�’’ is used for the inner

product between vectors and between tensors.

When needed, we may look at a second- or fourth-

order tensor as multilinear maps on the space of

vectors, through

T½a; b� ¼ Tijaibj;

C½a; b; c; d� ¼ a� b � C½c� d� ¼ Cijklaibjckdl:

By I we denote the identity, with components dij, and

by QðhÞ the rotation such that

Qe1¼ coshe1þ sinhe2; Qe2¼�sinhe1þ coshe2:

ð1Þ

Finally, ~Q is the reflection with respect to e1:

~Qe1 ¼ e1; ~Qe2 ¼ �e2:

The group Oð2Þ is generated by SOð2Þ and ~Q and is the

disjoint union of two sets. Using the matrix represen-

tation of its elements with respect to the fixed basis B:

Oð2Þ ¼ cos h � sin h
sin h cos h

� �� �

[ � cos h sin h
sin h cos h

� �� �

with 0� h\2p.
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been successfully exploited by Backus [1] and later on, 
with the additional help of Cartan decomposition, by 
some other Authors (see additional references cited in 
[4]).

In particular, we show that the harmonic decom-

position of a plane elasticity tensor, as suggested and 
presented in [2, 13], gives directly most of the 
quantities which were found, in other disguise, in 
some recent and less recent articles by means of 
alternative and, we believe, less transparent 
approaches.

We first summarize the basic ideas behind the 
harmonic decomposition of a plane elasticity tensor C, 
which makes possible to split it into an isotropic part, 
depending on two (well-known) scalar invariants, and 
two completely symmetric and traceless tensors H 
(second-order) and K (fourth-order), known as the 
harmonic components of C, belonging to the two-

dimensional spaces Hrm and Hrm. Next, we show that 
the action of the plane orthogonal group Oð2Þ on both 
H and K can be described through rotations and a 
reflection acting on such spaces. This part of our 
presentation is included here only for completeness, 
and is borrowed with some modification from earlier 
work [13]. Indeed, such results originated outside the 
field of continuum mechanics (see, e.g., [5]) and, 
basically, are just applications of group representation 
theory carried over from harmonic polynomials to 
harmonic tensors.

The central part of this research comes next, 
when, first, it is shown that a complete set of 
invariants for C can be deduced quite easily and 
naturally through an explicit geometric view of the 
action of Oð2Þ on Hrm and Hrm and, second, that from 
such a straightforward approach we can find, as 
already shown in [13], most, and perhaps all, of the 
relevant quantities deduced elsewhere, as in [3, 8, 9, 
11].

Indeed, it is possible to establish a precise 
connection between quantities which appear in 
different contexts under different names. We shall 
go into some, but not too many, details and shall be 
content of comparing our deduction with what can 
be read in the classical treatise by Tsai and Hahn 
[7], in the articles about the ‘‘polar method’’ as 
introduced by Verchery [12], and in the recent and 
interesting contribution by de Saxcé and Vallée [3], 
which has a strict relation with what was found in 
[13] and elsewhere.



We denote by Ela the space of (plane) elasticity

tensors, which we see as symmetric linear maps from

Sym into itself. Thus, an elasticity tensor is a linear

map C from the set of infinitesimal strains E 2 Sym

into the space of stress tensors T 2 Sym:

Tij ¼ CijklEkl; T ¼ C½E� ð2Þ

for which it is required that

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij:

Similar (left) actions of a subgroup G of Oð2Þ on Lin

and Lin are easily constructed through:

ðQ � AÞpq ¼ QpiQqjAij ¼ ðQAQTÞpq;

ðQ � CÞpqrs ¼ QpiQqjQrkQslCijkl;
ð3Þ

for each Q 2 G, A 2 Lin and C 2 Lin.

The symmetry group gðCÞ of an elasticity tensor C

is defined as

gðCÞ ¼ fQ 2 Oð2Þ : Q � C ¼ Cg;

the collection of all plane orthogonal transformation

which leave it fixed under the action given in (3) and

two such tensors C1 and C2 are said to belong to the

same symmetry class if gðC1Þ and gðC2Þ are orthog-

onally conjugate (for a through discussion see [4]).

The classification of elasticity tensors into symmetry

classes is a classical problem of linear elasticity.

In plane elasticity, a convenient representation of

an elasticity tensor C is given by a symmetric 3� 3

matrix (the so-called Voigt–Kelvin representation)

c ¼
c11 c12 c13

c12 c22 c23

c13 c23 c33

2
4

3
5

where

c11 ¼ C1111; c12 ¼ C1122; c13 ¼
ffiffiffi
2
p

C1112;

c22 ¼ C2222; c23 ¼
ffiffiffi
2
p

C2212; c33 ¼ 2C1212:

Representing the stress tensor by t 2 R3, with

t1 ¼ T11, t2 ¼ T22, t3 ¼
ffiffiffi
2
p

T12 and the infinitesimal

strain by e 2 R3, with e1 ¼ E11, e2 ¼ E22, e3 ¼ffiffiffi
2
p

E12 the constitutive law (2) can be rewritten into

the matrix relation

t ¼ ce: ð4Þ

3 Harmonic decomposition and a geometric view

of isotropic invariants

Tensors (of any order) which are completely symmet-

ric and traceless are sometime called ‘‘harmonic’’, in

view of an isomorphism with the set of harmonic

polynomials. Indeed, to any second-order tensor H

which is symmetric ðHij ¼ HjiÞ and traceless

ðHii ¼ 0Þ, we can associate, in a one-to-one corre-

spondence, a second-degree homogeneous polynomial

wðx; yÞ in two variables

wðx; yÞ ¼ H½r; r� ðr ¼ xe1 þ ye2Þ;

which can be easily shown to be harmonic: Dw ¼ 0.

Similarly, let Hrm 	 Sym be the subspace of

symmetric fourth-order tensors which are traceless:

Hrm ¼ fH 2 Sym : Hiijk ¼ 0g:

To each H 2 Hrm we associate, in a one-to-one

correspondence, an element wðx; yÞ of the space of

fourth-degree homogeneous polynomials in two vari-

ables, defined as

wðx; yÞ ¼ H½r; r; r; r� ðr ¼ xe1 þ ye2Þ;

which is also harmonic: Dw ¼ 0. Thus, since both

Hrm and Hrm are in this sense isomorphic to spaces of

homogeneous harmonic polynomials, then, for such

reason, their elements are frequently denoted as

‘‘harmonic tensors’’.

Harmonic tensors play a fundamental role in the

decomposition of Ela into a direct sum of subspaces

which are irreducible under the action of Oð2Þ. In fact,

there is an Oð2Þ-invariant isomorphism which maps

C 2 Ela into a quadruplet ðk; l;H;KÞ, where k and l
are scalars, while H and K belong to Hrm and Hrm,

respectively. The construction of such an isomor-

phism, which is called harmonic decomposition, is

outlined in great detail in [2, 13] and, for the reader’s

convenience, we only present here the final result.

For a plane elasticity tensor C 2 Ela let k and l be

defined as

k ¼ 3

8
Cppqq �

1

4
Cpqpq; l ¼ 1

4
Cpqpq �

1

8
Cppqq;

and let H 2 Hrm be given by

Hik ¼ 2Cipkp � Cpqpq dik

� �
=12: ð5Þ
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Finally, for K 2 Hrm we take

Kijkl¼Cijkl�½dijCkplpþdklCipjpþdikClpjpþdljCipkp

þdilCjpkpþdjkCiplp�=6þCpqpqð5dijdkl�dikdlj

�dildjkÞ=12�Cppqqð3dijdkl�dikdlj�dildjkÞ=8:

ð6Þ

Viceversa, the elasticity tensor C which corresponds

to a given quadruplet ðk;l;H;KÞ, is

Cijkl¼Kijklþ½dijHklþHijdklþdikHljþHikdlj

þdilHjkþHildjk�=6þkdijdklþlðdikdljþdildjkÞ:

The harmonic decomposition of an elasticity tensor C

is described through the compact notation

C ¼ ðk; l;H;KÞ

and it is said to be Oð2Þ-invariant because, for each

C 2 Ela and Q 2 Oð2Þ,

Q � C ¼ ðk; l;Q �H;Q �KÞ; ð7Þ

It is important to define appropriate bases for both

such spaces. For Hrm we choose

E1 ¼
ffiffiffi
2
p

2
ðe1 � e1 � e2 � e2Þ;

E2 ¼
ffiffiffi
2
p

2
ðe1 � e2 þ e2 � e1Þ:

ð8Þ

Similarly, a basis for Hrm can be constructed from E1

and E2 as

E1 ¼
ffiffiffi
2
p

2
E1 � E1 � E2 � E2ð Þ;

E2 ¼
ffiffiffi
2
p

2
E1 � E2 þ E2 � E1ð Þ:

ð9Þ

More explicitly, by substitution of (8) into (9) we find

that

E1 ¼
ffiffiffi
2
p

4
ðe1 � e1 � e1 � e1 þ e2 � e2 � e2 � e2

� e1 � e1 � e2 � e2 � e1 � e2 � e1 � e2

� e2 � e1 � e1 � e2 � e2 � e1 � e2 � e1

� e1 � e2 � e2 � e1 � e2 � e2 � e1 � e1Þ;

and

E2 ¼
ffiffiffi
2
p

4
ðe1 � e1 � e1 � e2 þ e1 � e1 � e2 � e1

þ e1 � e2 � e1 � e1 þ e2 � e1 � e1 � e1

� e2 � e2 � e2 � e1 � e2 � e2 � e1 � e2

� e2 � e1 � e2 � e2 � e1 � e2 � e2 � e2Þ:

(Fig. 1 gives a graphical representation of such bases

for Hrm and Hrm, and introduces angles a and b
which are of importance for later developments).

The components of H and K in the two dimensional

spaces Hrm and Hrm, defined through

H ¼ H1E1 þ H2E2; K ¼ K1E1 þ K2E2; ð10Þ

can be obtained as

H1 ¼ H � E1 ¼
ffiffiffi
2
p

2
ðc11 � c22Þ;

H2 ¼ H � E2 ¼ c13 þ c23;

ð11Þ

and

K1 ¼ K � E1 ¼
ffiffiffi
2
p

4
½ðc11 þ c22Þ � 2ðc12 þ c33Þ�;

K2 ¼ K � E2 ¼ c13 � c23:

ð12Þ

Fig. 1 Orthonormal bases for Hrm and Hrm
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while it is also called irreducible because Hrm and 
Hrm do not have proper subspaces which are invariant 
under the action of Oð2Þ.

In three dimensional elasticity harmonic (and 
Cartan) decomposition of elasticity tensors have been 
applied to reach different objectives in the study of 
material symmetry properties (see, e.g. [1, 4]). An 
application of harmonic decomposition to two dimen-

sional elasticity is presented in [13], a publication 
which is strongly related to the present research.

Both spaces Hrm and Hrm are two-dimensional. 
Indeed, an element of Sym has three independent 
components and the condition that it be traceless adds 
a linear restriction: thus, we are left with a space Hrm 
of dimension 2 ¼ 3 � 1. Similarly, an element of Sym 
has 5 independent components and the condition that 
puts its trace equal to zero gives 3 linear restrictions, 
leaving us with a space Hrm of dimension 2 ¼ 5 � 3.



The angle a, 0� a\2p, between H and the horizontal

axis directed as E1 in Hrm, and the angle b,

0� b\2p, between K and the horizontal axis directed

as E1 in Hrm, are characterized through the trigono-

metric functions

cos a ¼ 1

jHjH1 ¼
ffiffiffi
2
p

2jHj ðc11 � c22Þ;

sin a ¼ 1

jHjH2 ¼
1

jHj ðc13 þ c23Þ;

cos b ¼ 1

jKjK1 ¼
ffiffiffi
2
p

4jKj ½ðc11 þ c22Þ � 2ðc12 þ c33Þ�;

sin b ¼ 1

jKjK2 ¼
1

jKj ðc13 � c23Þ:

(see Fig. 1).

We notice that K is a traceless, completely

symmetric, fourth order tensor, and it can be seen as

a map from Hrm into itself. Thus, since

K ¼ K1E1 þ K2E2

¼ K1

ffiffiffi
2
p

2
E1 � E1 � E2 � E2ð Þ

þ K2

ffiffiffi
2
p

2
E1 � E2 þ E2 � E1ð Þ;

the 2� 2 matrix representation ~K of such map K is

given by

~K ¼
ffiffi
2
p

2
K1

ffiffi
2
p

2
K2ffiffi

2
p

2
K2 �

ffiffi
2
p

2
K1

" #

so that

~K11 ¼
1

4
½ðc11 þ c22Þ � 2ðc12 þ c33Þ�;

~K12 ¼
ffiffiffi
2
p

2
ðc13 � c23Þ;

~K21 ¼
ffiffiffi
2
p

2
ðc13 � c23Þ;

~K22 ¼ �
1

4
½ðc11 þ c22Þ � 2ðc12 þ c33Þ�:

Later on, in Sect. 6, we shall find that the 2� 2 matrix
~K is coincident with a quantity derived by Saxcé and

Vallée [3].

The important point is to understand how the action

of QðhÞ transforms both spaces of harmonic tensors

Hrm and Hrm, so that we can have an immediate and

geometrical straightforward interpretation of the

orbits of C.

The rotation QðhÞ acting as in (1) transforms E1

into E
0

1 given by

E
0

1 ¼ QðhÞ � E1

¼
ffiffiffi
2
p

2
ðQðhÞe1 �QðhÞe1 �QðhÞe2 �QðhÞe2Þ

¼
ffiffiffi
2
p

2
½ðcos2 h� sin2 hÞðe1 � e1 � e2 � e2Þ

þ 2 sin h cos hðe1 � e2 þ e2 � e1Þ�
¼ cosð2hÞE1 þ sinð2hÞE2

ð13Þ

and, similarly, E2 into E
0

2, given by

E
0

2 ¼ QðhÞ � E2

¼
ffiffiffi
2
p

2
ðQðhÞe1 �QðhÞe2 þQðhÞe2 �QðhÞe1Þ

¼
ffiffiffi
2
p

2
½�2 sin h cos hðe1 � e1 � e2 � e2Þ

þ ðcos2 h� sin2 hÞðe1 � e2 þ e2 � e1Þ�
¼ � sinð2hÞE1 þ cosð2hÞE2:

ð14Þ

Thus, QðhÞ acts as a rotation of 2h on Hrm:

E01 ¼ cosð2hÞE1 þ sinð2hÞE2

E02 ¼ � sinð2hÞE1 þ cosð2hÞE2

�
ð15Þ

In view of (9) and (15), and in full analogy with (13)

and (14), we conclude that QðhÞ acts on Hrm as a

rotation of 4h

E
0
1 ¼ QðhÞ � E1 ¼ cosð4hÞE1 þ sinð4hÞE2

E
0
2 ¼ QðhÞ � E2 ¼ � sinð4hÞE1 þ cosð4hÞE2

�

Figure 2 shows such an action of QðhÞ on both Hrm

and Hrm). Notice that, as h varies in 0; 2p½ Þ, QðhÞ � C
describes the orbit of C twice, so, without loss of

generality, we can limit the interval of variation of h to

0; p½ Þ.
In order to complete the picture, we are left to

consider of the action of ~Q. Since ~Q changes the sign

of e2, in view of (8) and (9)

~Q � E1 ¼ E1

~Q � E2 ¼ �E2

(
and

~Q � E1 ¼ E1

~Q � E2 ¼ �E2

(
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Hence ~Q acts in both planes Hrm and Hrm as a

reflection with respect to the ‘‘horizontal’’ axes

spanned by E1 and E1.

In a sense, we might say that Fig. 2 provides a

graphical representation of all the basic ideas behind

the approach developed here, and should make all

further details in the discussion a straightforward

consequence.

How can we construct a set of invariants which

characterize the orbits of a given tensor C? It was

shown in [13] that through the geometric interpreta-

tion of the action of the orthogonal group Oð2Þ on Ela

(briefly outlined here above) it is almost straightfor-

ward to obtain a polynomial integrity basis.

Two linear invariants are deduced as a straightfor-

ward consequence of (7):

I1 ¼ k ¼ 1

8
ðc11 þ c22 þ 6c12 � 2c33Þ;

I2 ¼ l ¼ 1

8
ðc11 þ c22 � 2c12 þ 2c33Þ:

ð16Þ

We also immediately notice that the magnitude of the

‘‘vectors’’ H and K respectively, does not change

under the action of Oð2Þ. Therefore, there are two

additional invariants, which are quadratic polynomial

functions of the components of C

I3¼ jHj2¼H2
1 þH2

2 ¼
1

2
ðc11� c22Þ2þðc13þ c23Þ2;

I4¼ jKj2¼K2
1 þK2

2 ¼
1

8
½ðc11þ c22Þ�2ðc12þ c33Þ�2

þðc13� c23Þ2:

Since a rotation QðhÞ acts as a rotation of 2h on Hrm

and as a rotation of 4h on Hrm, the angle c¼ b�2a is

not changed by the action of SOð2Þ. Indeed

c ¼ b� 2a 7!bþ 4h� 2ðaþ 2hÞ ¼ b� 2a ¼ c

(see Fig. 2).

Since ~Q acts in both planes as a reflection with

respect to the ‘‘horizontal’’ axes directed as e1 and E1

from Fig. 2 b� 2a becomes�ðb� 2aÞ. The cosine is

an even function of its argument and gives a further

invariant under the action of Oð2Þ

I5¼ jHj2 jKjcosðb�2aÞ
¼ jHj2jKj½cosbðcos2 a� sin2 aÞþ2sinbcosasina�
¼K1ðH2

1 �H2
2Þþ2K2H1H2

¼
ffiffiffi
2
p

8

�
ðc11þ c22Þ�2ðc12þ c33Þ½ �

ðc11� c22Þ2�2ðc13þ c23Þ2
h i

þ8ðc2
13� c2

23Þðc11� c22Þ
�
;

which is a cubic polynomial function of the compo-

nents of C.

Since sinðb� 2aÞ changes its sign under the action

of ~Q, but it is left unchanged by SOð2Þ, we can

introduce an SOð2Þ invariant I6

I6¼jHj2jKjsinðb�2aÞ
¼jHj2jKj sinbðcos2a�sin2aÞ�2cosbcosasina

	 

¼K2ðH2

1�H2
2Þ�2K1H1H2

¼1

2
ðc13�c23Þ ðc11�c22Þ2�2ðc13þc23Þ2

h in

� ðc11þc22Þ�2ðc12þc33Þ½ �ðc11�c22Þðc13þc23Þg:

We notice that I6 is linked to I5 by a syzygy,

consequence of the well known trigonometric relation

sin2hþcos2h¼1.

We could reach the same result, if we consider K as

a linear map in Sym: H7!K½H�

K½H� ¼ K½H1E1 þ H2E2�
¼ ð

ffiffiffi
2
p

=2Þ ðK1H1 þ K2H2ÞE1 þ ðK2H1 � K1H2ÞE2½ �
¼ ð

ffiffiffi
2
p

=2ÞjHj jKj½ðcos a cos bþ sin a sin bÞE1

þ ðsin b cos a� cos b sin aÞE2�
¼ ð

ffiffiffi
2
p

=2ÞjHj jKj cosðb� aÞE1 þ sinðb� aÞE2½ �:

Fig. 2 The action of QðhÞ on Hrm and Hrm
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Now, K½H� and H belong to the same (two dimen-

sional) space Hrm and the action of SOð2) on Hrm

does not vary the angle c between the two ‘‘vectors’’,

where c ¼ b� 2a. Thus we realize that cosðb� 2aÞ
does not vary under the action of Oð2Þ. This suggests

an additional invariant Î5 for the action of Oð2Þ:

Î5 ¼ K½H� �H

¼
ffiffiffi
2
p

2
jHj2 jKjðcosðb� aÞ cos aþ sinðb� aÞ sin aÞ

¼
ffiffiffi
2
p

2
jHj2 jKj cosðb� 2aÞ

¼
ffiffiffi
2
p

2
I5

which, as noted, turns out to be just a multiple of I5.

The geometric interpretation of the collection of

invariants ðI1; . . .; I5Þ makes possible to deduce that

for plane linearly elastic materials there are only

symmetry classes corresponding to groups Z2, D2, D4

and Oð2Þ. We recall this result (derived differently in

[2]), as stated and proved in [13].

Proposition 1 For G 	 Oð2Þ let ElaðGÞ be the set of

plane elasticity tensors C such that gðCÞ is conjugate

with G. Then, the only non empty such sets are

characterized as

C 2 ElaðOð2ÞÞ , I3 ¼ I4 ¼ 0;

C 2 ElaðD4Þ , I3 ¼ 0; I4 6¼ 0;

C 2 ElaðD2Þ ,
I3 6¼ 0; I4 ¼ 0;

I3 6¼ 0; I4 6¼ 0; I2
5 � I2

3I4 ¼ 0;

�

C 2 ElaðZ2Þ , I3 6¼ 0; I4 6¼ 0; I2
5 � I2

3I4 6¼ 0:

The goal of the next sections, where in a sense

the core content of this research lies, is to show

explicitly which kind of relationships exist between

some sets of quantities introduced in significant

articles and books about linear plane elasticity and

what was presented and commented upon here

above. Our main point is that, in one way or

another, very direct connections exist between the

invariants Ij, the horizontal and vertical components

of H and K (as defined in (10) in view of Fig. 1) and

the quantities introduced by Tsai and Pagano (see, e.g.,

[7]), by Verchery (see, e.g. [12]) and, more recently,

by de Saxcé and Vallée (see [3]).

As we shall quickly see, all such quantities have a

direct and straightforward interpretation in terms of

the ‘‘harmonic decomposition’’ of a given plane

elasticity tensor C. Indeed, it is the sum of such

observations which led us to think that it might be

appropriate to think of such an approach as ‘‘unified’’

or ‘‘unifying’’, since it seems to give a coherent and

geometrically easily interpretable point of view on

many problems related with the algebraic and group-

theoretical aspects of the space of plane elasticity

tensors and the action of Oð2Þ on it.

4 The parameters of Tsai and Pagano

A classical representation of plane anisotropy, widely

used in the field of design of composite laminates, is

due to Tsai and Pagano [7].

They investigated the variation of the components

of C, as the plane is rotated through an angle h. The

functions C0ijkl ¼ ½QðhÞ � C�ijkl reveal an interesting

dependence on the angle of rotation. It was noticed

that the components C0ijkl may be expressed, by use of

trigonometric identities, as linear combinations of sine

and cosine of even multiples of the angle of rotation h,

thus providing an invariant form of C0ijkl in terms of

seven parameters Ui (known as the ‘‘parameters of

Tsai and Pagano’’),

C01111 ¼ U1 þ U2 cos 2hþ 2U6 sin 2hþ U3 cos 4h

þ U7 sin 4h;

C01122 ¼ U4 � U3 cos 4h� U7 sin 4h;

C01112 ¼ 2U6 cos 2h� U2 sin 2hþ 2U7 cos 4h

� 2U3 sin 4h;

C02222 ¼ U1 � U2 cos 2h� 2U6 sin 2hþ U3 cos 4h

þ U7 sin 4h;

C01222 ¼ 2U6 cos 2h� U2 sin 2h� 2U7 cos 4h

þ 2U3 sin 4h;

C01111 ¼ U5 � U3 cos 4h� U7 sin 4h;

ð17Þ

where the Ui’s are linear functions of the cartesian

components of the elasticity tensor C, given by
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U1 ¼
1

8
ð3C1111 þ 2C1122 þ 3C2222 þ 4C1212Þ;

U2 ¼
1

2
ðC1111 � C2222Þ;

U3 ¼
1

8
ðC1111 � 2C1122 þ C2222 � 4C1212Þ;

U4 ¼
1

8
ðC1111 þ 6C1122 þ C2222 � 4C1212Þ;

U5 ¼
1

8
ðC1111 � 2C1122 þ C2222 þ 4C1212Þ;

U6 ¼
1

2
ðC1112 þ C1222Þ;

U7 ¼
1

2
ðC1112 � C1222Þ:

The parameters Ui are also known as ‘‘material

invariants’’, even if such name is quite inappropriate.

Indeed, only U1, U4, U5 are really invariant: U4, U5

coincide with I1 ¼ k and I2 ¼ l, appearing in the

harmonic decomposition ofC (16) and U1 is nothing but

U1 ¼ U4 þ 2U5 ¼ kþ 2l ¼ I1 þ 2I2:

The remaining parameters are not invariant, but are

related to the components of H, and K. More

precisely, U2 and U6 are proportional to H1 and H2

respectively (11)

U2 ¼
1

2
ðc11 � c22Þ ¼

ffiffiffi
2
p

2
H1;

U6 ¼
ffiffiffi
2
p

4
ðc13 þ c23Þ ¼

ffiffiffi
2
p

4
H2;

while U3 and U7 are proportional, respectively, to K1

and K2 (12)

U3 ¼
1

8
ðc11 � 2c12 þ c22 � 2c33Þ ¼

ffiffiffi
2
p

4
K1;

U7 ¼
ffiffiffi
2
p

4
ðc13 � c23Þ ¼

ffiffiffi
2
p

4
K2:

5 The polar method by Verchery

In order to describe, through invariant quantities, the

behaviour of a plane anisotropic elastic material,

Verchery introduced in 1978 the so called ‘‘Polar

Method’’ [12], which makes use of complex variables.

Here, we summarize this method, with an approach

which follows a more recent critical review by Vannucci

[8]. The technique is based upon a clever complex

variable change, which was used before by Green and

Zerna [6]. In the complex plane let z ¼ xþ iy and

X1 ¼ 1ffiffiffi
2
p e�ip

4z ¼ xþ y� iðx� yÞ
2

;

X2 ¼ �X1 ¼ xþ yþ iðx� yÞ
2

;

(this transformation can be interpreted as a change of

frame).

When applied to a tensor C 2 Ela, the transforma-

tion of Verchery leads to

~C1111

~C1112

~C1122

~C1212

~C1222

~C2222

2
6666664

3
7777775
¼ 1

4

�1 �4i 2 4 4i �1

�i 2 0 0 2 i

1 0 �2 4 0 1

1 0 2 0 0 1

i 2 0 0 2 �i

�1 4i 2 4 �4i �1

2
6666664

3
7777775

C1111

C1112

C1122

C1212

C1222

C2222

2
6666664

3
7777775
:

Notice that the components ~C1111 and ~C1112 are

complex, while ~C1122 and ~C1212 are real. Moreover,
~C1222 is the complex conjugate of ~C1112 and ~C2222 is

the complex conjugate of ~C1111.

An important feature of the complex variable

change of Verchery lies in the transformation rule of

the components ~Cijkl under a rotation. For r ¼ e�ih, the

equation z0 ¼ rz describes a rotation in the complex

plane through an angle h. It can be proved that the

rotation matrix is diagonal, namely

~C01111

~C01112

~C01122

~C01212

~C01222

~C02222

2
6666664

3
7777775
¼

r4 0 0 0 0 0

0 r2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 �r2 0

0 0 0 0 0 �r4

2
6666664

3
7777775

~C1111

~C1112

~C1122

~C1212

~C1222

~C2222

2
6666664

3
7777775
:

ð18Þ

From Eq. (18) it is quite easy to recognize six polyno-

mial invariants, which are denoted by capital letters L, Q
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Interestingly, the geometric perspective provided 
through Fig. 2 makes obvious the reason why such 
quantities U2, U6, U3, U7 are not invariant.

The parameters of Tsai and Pagano Ui are then shown 
to be strictly related to the harmonic components of 
C ¼ ðk; l; H; KÞ. In fact U4 and U5 are nothing but the 
linear invariants k and l, U1 ¼ k þ 2l, U2 and U6 are 
proportional to the components of H and, finally, U3 
and U7 are proportional to the components of K.

We thus conclude that (17) is just a manifestation of 
the harmonic decomposition of Ela.



and C, where L stands for linear, Q for quadratic and C

for cubic (as functions of the components of C):

L1 ¼ ~C1122; L2 ¼ ~C1212;

Q1 ¼ ~C1111 ~C2222; Q2 ¼ ~C1222 ~C1112;

C1 þ iC2 ¼ ~C1111 ~C1222
	 
2

:

ð19Þ

The six invariants are linked by the syzygy

C2
1 þ C2

2 ¼ Q1 Q2
2:

The invariants (19) can be rewritten, with respect to

the cartesian components of C, as:

L1¼
1

4
ðC1111�2C1122þ4C1212þC2222Þ

¼1

4
ðc11�2c12þ2c33þc22Þ;

L2¼
1

4
ðC1111þ2C1122þC2222Þ¼

1

4
ðc11þ2c12þc22Þ;

Q1¼
1

16
ðC1111þC2222�2C1122�4C1212Þ2

þðC1112�C1222Þ2

¼ 1

16
ðc11þc22�2c12�2c33Þ2þ

1

2
ðc13�c23Þ2;

Q2¼
1

16
ðC1111�C2222Þ2þ

1

4
ðC1112þC1222Þ2

¼ 1

16
ðc11�c22Þ2þ

1

8
ðc13þc23Þ2;

C1¼
1

64
ðC1111þC2222�2C1122�4C1212Þ

½ðC1111�C2222Þ2�4ðC1112þC1222Þ2�

þ1

4
ðC2

1112�C2
1222ÞðC1111�C2222Þ

¼ 1

64
ðc11þc22�2c12�2c33Þ

½ðc11�c22Þ2�2ðc13þc23Þ2�

þ1

8
ðc2

13�c2
23Þðc11�c22Þ;

C2¼
1

16
ðC1112�C1222Þ½ðC1111�C2222Þ2
n

�4ðC1112þC1222Þ2��ðC1112þC1222Þ

ðC1111�C2222ÞðC1111þC2222�2C1122�4C1212Þ
o

¼ 1

16
ffiffiffi
2
p
n
ðc13�c23Þ ðc11�c22Þ2�2ðc13þc23Þ2

h i

�ðc13þc23Þðc11�c22Þðc11þc22�2c12�2c33Þ
o
:

A direct comparison with the invariants obtained from

the harmonic decomposition of Ela shows that L1 and

L2 are linear combination of the invariants k and l, the

quadratic invariants Q1 and Q2 are multiples of jHj2,

and jKj2 respectively and finally the cubic invariants

C1 and C2 are multiples of I5 and I6 respectively. More

precisely

L1 ¼ 2l; L2 ¼ kþ l;

Q1 ¼
1

2
jKj2 ¼ 1

2
I4; Q2 ¼

1

8
jHj2 ¼ 1

8
I3;

C1 ¼
1

8
ffiffiffi
2
p I5; C2 ¼

1

8
ffiffiffi
2
p I6:

ð20Þ

Again, we see that most quantities introduced in [8,

12] are without any doubts explicitly and directly

related with what was derived through the method of

harmonic decomposition. We wish to emphasize,

however, how the approach presented in Sect. 3

gives a more complete and easily interpretable

picture.

An interesting link between the polar method of

Verchery and the approach through harmonic decom-

position lies in the representation of elasticity tensors

through vectors in the complex plane. Verchery

introduced what he called the polar components T0,

T1, R0, R1, U0, U1 of an elasticity tensor C, where T0

and T1 are defined by

T0 ¼ L1=2; T1 ¼ L2=2;

and, in view of (20), are obvious combinations of the

basic invariants: T0 ¼ l and T1 ¼ ðkþ lÞ=2.

The polar components R0, U0, R1, and U1

are defined by Verchery through two complex

numbers

v0 ¼ R0e4iU0 ¼ � 1

2
~C1111; v1 ¼ R1e2iU1 ¼ 1

2
i ~C1112:

We notice, here, that Verchery’s complex numbers v0

and v1 are just multiples of the ‘‘vectors’’ K and H,

defined in (5) and (6) from the harmonic decomposi-

tion of C. Indeed, once we identify both with a number

in the complex plane, by direct comparison with (11)

and (12) we have
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v0¼
1

8
ðC1111�2C1122�4C1212þC2222Þ½

þ4iðC1112�C1222Þ�

¼
ffiffiffi
2
p

4

ffiffiffi
2
p

4
ðc11�2c12�2c33þ c22Þþ iðc13� c23Þ

� �

¼
ffiffiffi
2
p

4
ðK1þ iK2Þ;

v1¼
1

8
C1111�C2222ð Þþ2i C1112þC1222ð Þ½ �

¼
ffiffiffi
2
p

8

ffiffiffi
2
p

2
c11� c22ð Þþ i c13þ c23ð Þ

� �

¼
ffiffiffi
2
p

8
ðH1þ iH2Þ:

Thus, the modulus of Verchery’s numbers are propor-

tional to the magnitude of vectors K and H

R2
0 ¼

1

8
jKj2; R2

1 ¼
1

8
jHj2;

and, moreover, recalling that, as shown in Fig. 2, b is

the angle between K and the ‘‘horizontal’’ axis in Hrm

and a is the angle between H and the ‘‘horizontal’’ axis

in Hrm, it follows that

4U0 ¼ b; 2U1 ¼ a:

From (18), it can be shown that a rotation of amplitude

h acts on v0 as a rotation of 4h and on v1 as a rotation of

2h, making the identification of Verchery’s numbers

with H and K an Oð2Þ-invariant isomorphism.

We finally recall an interesting result which can be

found in the literature (for references see [8]). The

three complex numbers lþ v0, 3lþ kþ 2v1, and

3lþ kþ 4v1, describe, under a rotation, three circles,

called ‘‘generalized Mohr’s circles’’. Just like Mohr’s

circle for the Cauchy stress tensor, the generalized

Mohr’s circles give a graphical representation of the

transformation law for the cartesian components of C

under a rotation of frame.

6 A comparison with recent results by De Saxcé

and Vallée

order to avoid any source of confusion, we use a

superscript SV for the set of invariants Ii as found in

[3], to make a distinction with the invariants intro-

duced here. As we shall see, there is a close

relationship between the sets fIig and fISV
i g.

First, we repeat the main steps of the procedure

found in [3]. Let

P�1 ¼

ffiffi
2
p

2

ffiffi
2
p

2
0ffiffi

2
p

2
�
ffiffi
2
p

2
0

0 0 1

2
64

3
75;

the constitutive law (4), by a change of variables

~t ¼ P�1t, ~e ¼ P�1e, becomes

~t ¼ ~c~e;

where ~c ¼ P�1cP, with

~c11 ¼
1

2
ðc11 þ c22 þ 2c12Þ;

~c12 ¼
1

2
ðc11 � c22Þ;

~c13 ¼
ffiffiffi
2
p

2
ðc23 þ c13Þ;

~c22 ¼
1

2
ðc11 þ c22 � 2c12Þ;

~c23 ¼
ffiffiffi
2
p

2
ðc13 � c23Þ;

~c33 ¼ c33:

Then, the matrix ~c is decomposed into blocks

~c ¼ ~c11 ~vT

~v ~A

� �
;

where ~v 2 R
2 and ~A is a symmetric 2� 2 real matrix:

~v ¼ a

b

� �
¼ ~c12

~c13

� �
~A ¼ ~c22 ~c23

~c23 ~c33

� �
:

For r2h the matrix

cosð2hÞ � sinð2hÞ
sinð2hÞ cosð2hÞ

� �

de Saxcé and Vallée show that the action of QðhÞ on C

translates into

~c11 7!~c11; ~v 7!r2h ~v; ~A 7!r2h
~A ðr2hÞT : ð21Þ

In view of (21) they easily recognize that ~c11 and tr ~A

are linear invariants related to k and l, defined in

(16), by
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In a recent paper [3] de Saxcé and Vallée obtain an 
irreducible invariant decomposition of Ela. In this 
section we show the equivalence between the har-

monic decomposition of Ela (as summarized here in 
Sect. 3) and the irreducibles subspaces used in [3]. In



~c11 ¼ 2ðkþ lÞ; tr ~A ¼ ~c22 þ ~c33 ¼ 4k:

Next, the symmetric matrix ~c is additively decom-

posed into its isotropic and deviatoric parts

~c0 ¼
2ðkþ lÞ 0 0

0 2l 0

0 0 2l

2
4

3
5;

~cd ¼
0 a b

a �2f �2g

b �2g 2f

2
4

3
5;

where (after some computations)

f ¼ l� 1

2
~c22 ¼

1

8
ð2ðc12 þ c33Þ � ðc11 þ c22ÞÞ;

g ¼ � 1

2
~c23 ¼ �

ffiffiffi
2
p

4
ðc13 � c23Þ:

The action (21) shows that ~v belongs to a 2-

dimensional space E1 on which a rotation QðhÞ acts

as a rotation of 2h. We notice that the components of

~v ¼ ða; bÞ are related to the components (11) of H in

Hrm, namely

a ¼
ffiffiffi
2
p

2
H1; b ¼

ffiffiffi
2
p

2
H2:

The norm of ~v gives the third invariant I
ðSVÞ
3 of de

Saxcé and Vallée I
ðSVÞ
3 , which is related to the third

invariant I3 obtained through the harmonic decompo-

sition method,

I
ðSVÞ
3 ¼ a2 þ b2 ¼ 1

2
ðH2

1 þ H2
2Þ ¼

1

2
I3:

De Saxcé and Vallée decompose the deviatoric part of

~c into blocks

~cd ¼ 0 ~vT

~v ~A0

� �
;

where ~A0 is a symmetric and traceless 2� 2 real

matrix

~A0 ¼
�2f �2g

�2g 2f

� �
:

We expect the existence of a relation between ~A0 and

K in Hrm. In fact, by a direct comparison, ~A0 ¼ ~K and

thus

f ¼
ffiffiffi
2
p

4
K1; g ¼

ffiffiffi
2
p

4
K2:

De Saxcé and Vallée remark in [3] that ðf ; gÞ may be

considered as the components of a vector ~k in a two

dimensional space E2 on which SOð2Þ acts as a

rotation of 4 h, hence

I
ðSVÞ
4 ¼ f 2 þ g2

is invariant and related to I4 by

I
ðSVÞ
4 ¼ 1

8
I4:

Nevertheless, in order to characterize the planar

elasticity tensors a fifth invariant is needed. De Saxcé

and Vallée remark that the orbits of ~v and ~k are

coupled, in the sense that a rotation of / of ða; bÞ
corresponds to a rotation of 2/ of ðf ; gÞ. Using

complex numbers, let z2 ¼ aþ ib and z4 ¼ f þ ig.

The action is given by

z02 ¼ e�2ihz2; z04 ¼ e�4ihz4:

Eliminating the parameter h they obtain the relation

ðz02Þ
2 �z04 ¼ z2

2 �z4;

that leads to the complex invariant

n ¼ z2
2 �z4 ¼ ðaþ ibÞ2ðf � igÞ;

which is linked to the quadratic invariants by the

syzygy

jnj2 ¼ I
ðSVÞ
4 I

ðSVÞ
3

� �2

:

(The arguments developed here, following [3], should

be compared with the approach of Ref. [13, §4,

pp. 204–205])

The complex invariant n is equivalent to two real

cubic invariants

I
ðSVÞ
5 ¼ nr ¼ 2bgaþ f ða2 � b2Þ

¼ 1

32
8 ðc23Þ2 � ðc13Þ2
� �

ðc11 � c22Þ
h

þð2c33 þ 2c12 � c11 � c22Þððc11 � c22Þ2

�2ðc23 þ c13Þ2Þ
i
;

I
ðSVÞ
6 ¼ ni ¼ 2bfa� gða2 � b2Þ

¼ 1

8
ffiffiffi
2
p
h
ðc23 þ c13Þð2c33 þ 2c12 � c11 � c22Þ:

ðc11 � c22Þ � ðc23 � c13Þððc11 � c22Þ2

�2ðc23 þ c13Þ2Þ
i
;
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It is easy to check by direct comparison that the cubic

invariants of de Saxcé and Vallée are related to the

cubic invariants obtained through the method of

harmonic decomposition

I
ðSVÞ
5 ¼ � 1

4
ffiffiffi
2
p I5; I

ðSVÞ
6 ¼ 1

4
ffiffiffi
2
p I6:

In conclusion, de Saxcé and Vallée obtain an irreduc-

ible decomposition of the representation of SOð2Þ into

subspaces of Ela, which is equivalent to the harmonic

decomposition, and derive the same set of invariants

ðI1; . . .; I6Þ. In particular, their approach leads to

results which are significantly equivalent to what

was found in [2] and [13].
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