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1. Introduction

Lorentz force MEMS magnetometers are currently being studied
for navigation systems and for the creation of multi-axis integrated
microsystems, see e.g. [1–5] among recent publications. Devices
based on Lorentz force appear to be particularly promising for
the measurement of magnetic fields in the direction orthogonal
to the substrate (z-axis magnetometers). With respect to the more
diffused Hall effect sensors, Lorentz-force devices have the advan-
tage of lower power consumption and easier integration with stan-
dard, silicon-based, MEMS fabrication technologies [3].

The authors research group has recently worked on various is-
sues related to the design and fabrication of Lorentz force magne-
tometers in an industrial technology platform. In [5] design criteria
have been discussed, mainly focused on the important problem of
carefully evaluating the fluid-damping caused by the interaction of
vibrating beams with the surrounding gas.

The purpose of the present paper is to discuss preliminary
results concerning the application of efficient topology optimiza-
tion techniques to the design of Lorentz-force magnetometers. A
multi-physics approach is proposed for the optimal design of a
polysilicon microsystem, which exploits the interaction between
an AC input and the earth magnetic field to keep a compliant part
(a clamped–clamped beam) into vibration. In the study, account is
taken of coupling terms arising from: the Joule effect-induced tem-
perature raise caused by the current flowing in the beam; the ther-
mal-induced buckling effects on the stiffness of the beam; the
Lorentz electromagnetic force acting on the beam due to the mag-
netic field; the electrostatic force due to parallel plate sensing.

Through appropriate simplifying assumptions, it is shown that
the equations governing the dynamics of the beam can be recast
in the typical form for a damped Duffing oscillator [6], where
damping is caused by the fluid surrounding the oscillating body.
The geometry of the beam is then optimized through a hybrid ap-
proach, maximizing the sensitivity of the MEMS to the magnetic
field and minimizing its power consumption, keeping also its res-
onance frequency at a target value.

The paper is organized as follows: in Section 2 the multi-physics
model of a beam subject to Lorentz force and electro-thermo-
mechanical loading is described; Section 3 is dedicated to a brief
description of topology optimization applied to the present mul-
ti-physics problem; results are discussed in Section 4, while closing
remarks are given in Section 5.
2. Modeling of a resonating beam-like magnetometer

A SEM image of part of the resonating structure of the MEMS
magnetometer here studied is reported in Fig. 1. This geometry
has been devised to sense the earth magnetic field aligned with
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Fig. 1. Detail of the studied Lorentz-force MEMS magnetometer, and adopted
reference frame.
the out-of-plane direction, orthogonal to the substrate surface
(along axis z, according to the reference frame of Fig. 1). The whole
system is characterized by four beams, all excited by the Lorentz
force resulting from the interaction between the current flowing
along the longitudinal axes of the beams themselves and the mag-
netic field. Sensing is achieved through a couple of parallel plates
attached to the mid-span cross-section of each beam. Due to sym-
metry, all the beams in-plane resonate at the same frequency (or
within a range of frequencies tuned by stochastic effects at the
sub-micron length-scale). Anchors are placed at the four vertices
of the mechanical system, so as current flow, symmetry of the
structure and differential sensing are exploited to achieve mechan-
ical cancelation of acceleration effects.

In this section we focus on a single beam X, featuring length L
and constant cross-section of area A (with A = bh, b being the out-
of-plane thickness and h the in-plane width). The beam is assumed
in a clamped–clamped configuration, with displacements and rota-
tions fully constrained at both its final cross-sections.

The dynamics of the beam in response to the external actions is
formulated by considering the electro-thermo-mechanical cou-
pling as a weak one: the elastic properties of the polysilicon film
constituting the vibrating beam are independent of the electric
and thermal fields, due to their relatively small amplitudes. More-
over, possible dissipation phenomena in the structure, like the
thermo-elastic one [7], are assumed to provide a negligible effect
on the investigated working conditions (see the discussion to fol-
low). On the other hand, Joule effect gives rise to an increase of
the temperature in the beam, which is fully accounted for as it
can lead to a change of the resonance frequency. Finally, no eddy
currents are assumed to develop inside and around the beam;
the earth magnetic field hence forces the beam vibrations through
the relevant Lorentz force effect.

The elastic response of the beam is modeled according to sec-
ond-order theory, so as to allow for lateral deflections small in
amplitude but indeed affecting the equilibrium state. In the ortho-
normal reference frame depicted in Fig. 1, dynamic equilibrium is
enforced in weak form through (see also [8,9]):
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where according to the Bernoulli–Euler kinematics, shear deforma-
tions have been disregarded as target system geometries are char-
acterized by high slenderness values. In Eq. (1): dm stands for the
variation of field m; x is the longitudinal axis of the beam, whereas
lateral displacements v(x, t), where t is time, take place along axis
y only; v0 = @v/@x and v 00 ¼ @2v=@x2 respectively represent the rota-
tion and the curvature of the beam axis; €v ¼ @2v=@t2 represents in-
stead the lateral acceleration field along the beam axis; E is the
effective Young’s modulus of the beam material in the longitudinal
direction (as the beam is made of polysilicon, we assume that its
length L and cross-section area A allow adopting homogenized
properties for the film); I is the cross-section moment of inertia of
the beam about the out-of-plane z axis, so as EI is the flexural rigid-
ity of the beam relevant to the modeled in-plane bending domi-
nated vibrations; g is the mass per unit length of the beam (i.e.
g = qA, q being the mass density of the material); P is the axial com-
pressive load, to be considered as a state of residual stress due to
the electro-thermo-mechanical coupling; f is the magnitude of the
lateral load per unit length, provided by the external actions. The
first two terms in Eq. (1) therefore represent the small displacement
elastic (deformation) and kinetic (inertial) contributions; as already
stated before, viscous dissipation is assumed instead to provide a
negligible contribution to the dynamics of the beam alone.

If the beam is axially unstressed in the configuration at rest, P is
induced by Joule effect. Because of the current i, flowing in the
beam along its longitudinal axis, the temperature raise is given
by conduction in a one-dimensional heat transfer mechanism,
whereas convection is neglected due to the very low working pres-
sure. Accordingly:

DTðxÞ ¼ 4DTm
x
L

� �
� x

L

� �2
� �

ð2Þ

where DTm ¼ RLi2rms
8AkH

is the relevant value at mid-span, which obvi-
ously depends on the heat conductivity kH and on the electrical
resistance R of the material.

In Eq. (2), we have assumed that the temperature does not
change at beam anchors, as the substrate (die) can locally compen-
sate for the small changes caused by the current. This solution is
time independent; to state it, we have accounted for the difference
between the characteristic times of vibrations and heat conduc-
tion. As the beam is forced to vibrate with a frequency in the re-
gime of kHz, the temperature rise is not allowed to accordingly
vary in time during a single cycle (as the alternate current i is cosi-
nusoidally varying in time, also DTm and P are expected to display
similar fluctuations). A steady-state solution is therefore consid-
ered, governed by the effective root mean square current density
irms over a single period of oscillation (or loading).

To compute the related effective value of P, entering the dy-
namic equilibrium as stated in Eq. (1), we now exploit the additiv-
ity of the longitudinal elastic and thermal (inelastic) deformations,
still valid at second-order. As the beam is axially restrained at both
ends, we get:
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where a is the material coefficient of longitudinal thermal expan-
sion. In this equation, the first term on the right hand side repre-
sents the contribution at first order (i.e. for linearized kinematics),
whereas the second one is linked to the non-negligible axial stretch
at second-order, which actually reduces the axial compressive
deformation. According to what already discussed above, the for-
mer contribution is time-invariant; the latter one is instead contin-
uously varying in time due to the flexural deformation of the beam.

In Eq. (3) and in the whole formulation, we have assumed that
the silicon material constants, like a and E, do not depend on the
temperature raise DT. Even if not discussed explicitly in the results
Section 4, where focus is placed on relevant features of the objec-
tive functions and on the optimized geometry of the micro-beam,
the analyses have reported that the small amplitudes of the excita-
tion current i and of the earth magnetic field lead to a maximum
variation of the temperature DTm at the mid-span, amounting to
around 20 �C at most. According to the data reported, e.g. in [10],



the corresponding variations of the silicon parameters have been
therefore disregarded.

As far as the external loading term in Eq. (1) is concerned, den-
sity f for unit length stands for the overall contribution over the
(constant) cross-section of the beam. By assuming gravity effects
to be negligible, f is due to the Lorentz force [11]. If the system is
under the action of the uniform and time-invariant earth magnetic
field, of magnitude B and flowing along the out-of-plane axis z, the
current i along the longitudinal axis gives rise to a lateral force
density f = iB, which varies in time just like the current does.

To build upon Eq. (1) a reduced order model of the system, we
assume now the beam to deform according to its first flexural
vibration mode. Due to the nonlinear terms featured by the model
under study and nested inside the buckling-driven term function of
P, this assumption obviously represents an approximation. The dis-
crepancy between the assumed deformation mode and the actual
one keeps anyway small for steady-state vibrations induced by
the (small amplitude) earth magnetic field; such discrepancy
might also be further decreased by enhancing the model through
additional, higher-order modes. Because of the clamped–clamped
boundary conditions, the assumed lateral displacement v reads:

vðx; tÞ ¼ 1
2

1� cos
2px

L

� �� �
VðtÞ ð4Þ

where the variations in space and time are multiplicative decom-
posed, and VðtÞ represents the time history of the lateral displace-
ment at the mid-span cross-section, the one experiencing the
maximum amplitude due to the symmetry. The motion of the beam
is then described by the following ordinary differential equation in
the single degree-of-freedom VðtÞ:

m€V þ d _V þ K1V þ K3V
3 ¼ FðtÞ ð5Þ

where

m ¼ 3
8
gL

d ¼ 0

K1 ¼
2p4

L3 EI � p2

3L
aEADTm

K3 ¼
p4

8L3 EA

F ¼ L
2

iB

ð6Þ

respectively represent the effective mass, damping, linear and cubic
stiffness, and external load terms.

We now focus on the attached sensing plates, which are consid-
ered for simplicity to be of the same length L of the beam (see
Fig. 1). These plates affect the solution by providing contributions
to the mass, damping and stiffness terms of the whole system. As
for the mass, the additional term simply reads:

ma ¼ 2g�L ð7Þ

where g⁄ = qA⁄, A⁄ being the cross-section area of each plate, which
may differ from the beam one because of a different in-plane width
(while the out-of-plane thickness is constant for the whole system
due to technological reasons).

As for the damping due to the air surrounding the movable
parts, we consider the effects arising from the interaction between
the plates and the fixed, sensing electrodes. Squeeze film damping
is hence the dominant source of fluid damping for this resonator,
whereas drag and shear contributions are of smaller magnitude,
and therefore neglected.

For a plate featuring a length L much larger than its out-
of-plane thickness b, the pressure acting over the surface facing
the fixed electrode reads, see e.g. [12]:
pðz; tÞ ¼ 6l
g3

b2

4
� z2

!
_g ð8Þ

where l is the viscosity coefficient of the fluid and g is the gap be-
tween the two surfaces. This solution proves accurate for small gap
values, much smaller than the surface dimensions. The resultant
force acting on a single plate and resisting the beam motion is then
obtained through integration as:

Fd ¼
Z b=2

�b=2
pðzÞLdz ¼ lLb3

8g3
_g ð9Þ

where edge effects close to the tips of the plate have been disre-
garded in view of the considered small b/L ratios. In Eq. (9), because
of the geometry and of the assumed beam kinematics, j _gj ¼ j _Vj.

Finally, let us consider the electrostatic forces resulting from the
sensing system. The two massive sensing electrodes, shown in
Fig. 1 as placed on the two (top and bottom) in-plane sides of
the vibrating beam, are assumed to be held at a fixed potential
V0, while the beam is instead held at V = 0. If the plates attached
to the beam do not deform while the beam itself is kept in reso-
nance, symmetry allows modeling the sensing system as two par-
allel-plate capacitors. The force per unit length of the attached
plates can be therefore written as:

fEðVÞ ¼
1
2

V2
0
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dV
þ dCB

dV

� �
ð10Þ

where CT and CB are the (top and bottom) capacitances between the
beam and the two aforementioned sensing electrodes, given by:

CT ¼
b

g � V
e0; CB ¼

b
g þ V

e0 ð11Þ

and e0 is the permittivity of vacuum. Accordingly, it turns out that fE

can be approximated as:

fEðVÞ ffi
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where the terms in 1/(g � V) and 1/(g + V), respectively appearing in
CT and CB, have been expanded in Taylor series about V ¼ 0 up to the
fourth order. The two resulting terms in Eq. (12) provide, once inte-
grated over the whole length L of the plates, additional contribu-
tions to the linear and cubic stiffness terms of Eq. (5).

Accounting for the multi-physics governing the vibration of the
whole structure, the system-dependent coefficients can be recast
as:
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The nonlinear dynamics of the beam, while vibrating according
to its first (linear) mode, is therefore governed by relation (5),
known as the Duffing equation. As detailed here above, nonlinear-
ities are a result of the coupled electro-thermo-magneto-mechan-
ical physics of the problem at hand.

Moving now to the optimization strategy, we assume the beam
length L and the in-plane width h to be the design variables, sub-
ject to constraints of the type Lm 6 L 6 LM and hm 6 h 6 hM where
minima (Lm and hm) and maxima (LM and hM) are a priori set to



avoid too stiff or too compliant (and probably excessively big)
mechanical parts. L and h are optimized to achieve two goals: (i)
maximizing the sensitivity to the magnetic field by maximizing
the amplitude V of the oscillations; (ii) minimizing the power con-
sumption by minimizing the electric resistance of the whole beam.

As for the former optimization goal, the maximum amplitude of
the oscillations of the single degree-of-freedom Duffing system is
provided, at varying circular frequency X of the forcing term F
(which therefore varies in time according to F = F0 cosXt), by [13]:
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where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K1=m

p
. For X = x0, the magnitude of maximum oscil-

lation is obtained through Eq. (14) as:
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As for the latter optimization goal, as said the solution guaran-
teeing minimal power consumption is here considered to be di-
rectly related to a minimal electric resistance of the conductive
beam. Due to the homogeneity and constant cross-section of the
beam, power consumption results to be proportional to:

p ¼ L
bh

ð16Þ

The next section will show how a powerful topology optimizer
can simultaneously account for the possibly contrasting require-
ments of enhancing jVmaxj and minimizing p, and for an additional
constraint to keep the resonance frequency x0 of the beam within
a pre-assigned interval.

3. Topology optimization

As we have to handle two different goals in the proposed opti-
mization approach, the objective function is defined through a
weighted sum of the functions jVmaxj and p defined in Section 2.
Such functions can take values in very different intervals (poten-
tially differing by orders of magnitude); hence, we introduce rele-
vant normalizing (or scaling) factors jVmaxjref and pref, so as the
ratios jVmaxj=jVmaxjref and p/pref can be comparable in amplitude
within the whole domain of variation for L and h. Accordingly, non-
dimensional weighting factors are set as 0 6 bV 6 1 and 0 6 bp 6 1,
with the obvious constraint bV þ bp ¼ 1.

Since the sought optimal solution has to feature maximum dy-
namic compliance and minimum power consumption, the optimi-
zation problem can be formally stated as:

min
f

u ¼ �bV
jVmax j
jVmax jref

þ bp
p

pref

s:t: wm 6 wðfÞ 6 wM

fm 6 f 6 fM

8>><
>>: ð17Þ

where f = {L h}T is the vector gathering the design variables; u is the
objective function, to be minimized in order to achieve the best de-
sign; w represents the resonance frequency of the nonlinear beam.
The two sets of constraints added to the formulation in Eq. (17)
have different meanings: the one relevant to the design variables
has been already discussed in Section 2, and is usually referred to
as side constraints; the one relevant to the resonance frequency w
is instead accounted for to guarantee that every optimal solution
obtained (possibly depending on bV and bp) provides a working fre-
quency of the device compliant with manufacturer’s standard, if
any.

The solution of the so-called primary optimization problem (17)
is generally a very difficult task, due to the computational burden
tied to the evaluation of the objective function and to the relevant
sensitivity analysis. This becomes a crucial issue in structural opti-
mization problems, where u may be a highly nonlinear function of
the design variables. To overcome this, the optimization problem
may be replaced with a sequence of explicit, approximate sub-
problems having a simple algebraic structure of the form:

min
f

~u

s:t: wm 6
~wðfÞ 6 wM

fm 6 f 6 fM

8>><
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where ~u and ~w may be seen as Taylor expansions of u and w around
the current design point. The sub-problems arising in Eq. (18) can
be handled through mathematical programming algorithms, like
the so-called dual method [14] with the CONLIN minimizer, also
exploited in the method of moving asymptotes, MMA [15].

Dual methods extensively exploit convexity and separability,
features that are both peculiar to the sub-problems in Eq. (18).
The convexity of the approximation ensures that the solution of
the dual problem is the same solution of the original problem.
The separability allows to derive an uncoupled system of equations
between the primal variables and the dual unknowns, meaning
that the problem can be solved independently for each primal var-
iable. MMA provides the above features adopting a convex linear-
ization scheme that may be regarded as a first-order Taylor series
expansion in terms of the intermediate variables 1= fU

j � fj

� �
and

1= fj � fL
j

� �
, where j is an index running over the component of

the design variables vector. fU
j and fL

j are termed vertical asymp-
totes, and ensure that at the current iteration k one has fL < fk < fU.
After normalization, the MMA approximation may be written as:

min
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The above objective function calls for the computation of the values
rj0 and sj0 as:

rj0 ¼max 0; fU
j � fk
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� �2 @u
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while the constraint is written in terms of an approximated right-
hand side along with analogous terms of the type:

rj ¼ max 0; fU
j � fk

j

� �2 @w
@fi
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sj ¼ max 0;� fk
j � fL

j

� �2 @w
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� � ð21Þ

Once the approximated form of the constrained minimization
setting has been defined, one may straightforwardly derive the
Lagrange function associated to the problem, weighting also the
constraint with a relevant multiplier c. This transforms the optimi-
zation into an unconstrained problem with a new objective func-
tion U(f, c) that depends on both primal design variables f and
dual one c. Because of the separability property, the n-dimensional



Fig. 2. bV ¼ 1, bp = 0: objective function (beam dimensions L and h in lm); the
continuous blue and black lines respectively represent its intersections with the
lower bound wm and the upper bound wM on the resonance frequency. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
problem can be split into n one-dimensional problems relative to
each variable fi. The Karush–Kuhn–Tucker conditions enforce sta-
tionarity of the Lagrange function U(f, c) with respect to f as nec-
essary conditions of optimality for the constrained statements. The
solution of this problem can be therefore solved explicitly for each
variable, to give rise to the primal–dual relations.

MMA is ideally tailored to work with large set of unknowns, as
in the optimal placement of sensors investigated in [16], and to
handle equality-constrained problems, as in the herein considered
setting. As shown in the next section, the iterative method searches
for the optimal solution while robustly enforcing the constraints
throughout the whole optimization procedure. It must be re-
marked that this feature is not shared by other optimization algo-
rithms when tested on the same kind of constrained problems, like
e.g. genetic approaches.

4. Results

To test the procedure here proposed, the Lorentz force micro-
resonator of Fig. 1 has been considered. The values of the adopted
physical properties of the polysilicon film constituting the sensor
movable parts, and of the other geometrical, actuation and sensing
parameters affecting the solution are reported in Table 1.

Side constraints on the design variables have been set as:
Lm = 100 lm; hm = 2 lm; LM = 1000 lm; and hM = 20 lm. Within
this variable domain, the beam slenderness results to be L/h P 5;
the optimal designs reported in what follows feature instead L/
h > 125, which is surely enough to avoid considering shear defor-
mations in the problem formulation. For technological reasons,
the resonance frequency has been instead constrained in the do-
main 22 6 w 6 28 kHz.

A first optimization has been carried out by assuming bV ¼ 1
and bp = 0 in Eq. (17), thereby investigating the optimal design in
terms of dynamic performance only. The relevant objective func-
tion u is shown in Fig. 2: the feasible design domain, according
to the handled constraints on the resonance frequency, is bounded
by the lower bound (blue line) and by the upper one (black line) on
w. The objective function displays a well-type asymptotic behavior
for very slender beams, i.e. for high values of L and small values of
h. According to the developed second-order theory as for the beam
dynamics, such well obviously represents solutions triggering a
buckled state. The adopted constraints on w thus help avoid the
optimizer to point toward buckled configurations of the system.

A global minimum of u is shown to arise within the considered
domain for h = 2 lm and L = 562.2 lm, just along the lower bound
constraint on w. Fig. 3 shows two-dimensional side views of the
intersections between objective and constraint functions: even if
only one design variable (either L or h) is shown to vary in the
two graphs, it must be borne in mind that both are to be tuned
so as to belong to the mentioned intersection lines. Fig. 4 shows
an exemplary optimization path followed by MMA when starting
from the initialization guess h = 11 lm and L = 550 lm (red dotted
Table 1
Adopted values of the physical, geometrical, actuation and sensing
parameters.

Property Value

Young’s modulus (GPa) 170
Thermal conductivity (W/mK) 34
Resistivity (Xm) 3.4 � 10�5

Thermal expansion coefficient (K�1) 2.5 � 10�6

Mass density (kg/m3) 2330
Air viscosity (Ns m2) 6 � 10�8

Biased voltage (V) 2
Gap (m) 2 � 10�6

Excitation current (mA) 1
line), and also provides a comparison with the bounds on the
constrained objective function. Even if moving from a point violat-
ing the prescribed constraints, the optimizer soon provides a set of
Fig. 3. bV ¼ 1, bp = 0: side views of the intersections of the objective function with
the lower bound wm (blue line) and the upper bound wM (black line) on the
resonance frequency, at varying (a) L and (b) h. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)



Fig. 4. bV ¼ 1, bp = 0: optimal path followed by the minimization algorithm (red
dotted line), and intersections of the objective function with bounds wm (blue line)
and wM (black line) on the resonance frequency. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 5. bV ¼ 0, bp = 1: objective function; like in Fig. 2, the continuous blue and black
lines respectively represent the intersections with the lower bound wm and the
upper bound wM on the resonance frequency. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. bV ¼ 0, bp = 1: side views of the intersections of the objective function with
the lower bound wm (blue line) and the upper bound wM (black line) on the
resonance frequency, at varying (a) L and (b) h. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. bV ¼ 0, bp = 1: optimal path followed by the minimization algorithm (red
dotted line), and intersections of the objective function with bounds wm (blue line)
and wM (black line) on the resonance frequency. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
feasible solutions to the arising sub-problems (see Section 3), and
finally attains the global minimum as expected.

A second run of the optimizer has been performed by assuming
bV ¼ 0 and bp = 1, so as to assess the effect of the power consump-
tion issue. The relevant objective function is reported in Fig. 5: it
can be neatly seen that an optimal solution to this problem can
be far from the one obtained for the compliance goal. A global min-
imum is shown to arise at h = 7.9 lm and L = 1000 lm, just along
the upper bound on w. As before, Fig. 6 shows two-dimensional
side views of the intersections of the objective function with the
bounds. According to Eq. (16), it results that the optimal solutions
are now characterized by the maximum allowable values of the
beam width h. Fig. 7 compares the bounds on the constrained
objective function with the optimization path followed by MMA,
when departing from the same initialization guess of the former
case (red dotted line). Once again, the optimizer provides a set of
feasible solutions to the arising sub-problems, and ends the analy-
sis at the global minimum of u.

The above investigations allow highlighting that the two partial
objective functions � jVmax j

jVmax jref
and p

pref
provide different optimal
solutions, within the feasible range prescribed for the unknowns.
Anyhow, in both cases the optimal solution has been found to lie
along one of the frequency constraints.



Fig. 8. bV ¼ 0:85, bp = 0.15: objective function, and intersections with bounds wm

(blue line) and wM (black line) on the resonance frequency. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 9. bV ¼ 0:85, bp = 0.15: side views of the intersections of the objective function
with the lower bound wm (blue line) and the upper bound wM (black line) on the
resonance frequency, at varying (a) L and (b) h. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 10. bV ¼ bp ¼ 0:5: objective function, and intersections with bounds wm (blue
line) and wM (black line) on the resonance frequency. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. bV ¼ bp ¼ 0:5: side views of the intersections of the objective function with
the lower bound wm (blue line) and the upper bound wM (black line) on the
resonance frequency, at varying (a) L and (b) h. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)



Even if located along the constraints on u, the optimal solutions
depend on the adopted values of the weighting factors bV and bp.
This is clearly shown in Figs. 8–10, reporting the objective function
and its intersections with the constraints on w, for two different
weight sets: bV ¼ 0:85, bp = 0.15; and bV ¼ bp ¼ 0:5. Weights can
move the optimal solution from one end of the available range
for the parameters (see Fig. 9), to the opposite one (see Fig. 11).
Hence, it can be concluded that the choice of the weights in the
objective function is crucial in a design phase, when importance
is given to optimization goals contrasting in terms of results.

The strategy herein adopted to cope with the multi-objective
optimization leaves the freedom to choose a suitable set of weights
based on (formerly achieved) know-how of the dependence of each
constrained objective function on the parameters, see Figs. 2 and 5.
Alternatively, the optimizer could be adopted to generate sets of
optimal solutions with the aim of computing an approximation
of the entire Pareto front, i.e. the whole set of parameters for which
neither of the objective functions can be decreased unless the other
one is increased. This latter approach is of course more expensive
in terms of computational time, since it requires an increased num-
ber of runs; the other way around, it could be conveniently
adopted in more complex cases for which the choice of a suitable
set of weights is not straightforward.

5. Conclusions

In this paper, a topology optimization technique has been
adopted to design a Lorentz-force MEMS magnetometer. The re-
sults have shown that topology optimization techniques can be ap-
plied also in a multi-physics context, like the one here handled for
the modeling of a beam vibrating under the action of Lorentz force,
Joule-related thermal effects (possibly inducing buckling) and elec-
trostatic loading.

Work in progress concerns the practical exploitation of topol-
ogy optimization potentialities for the design of commercial MEMS
magnetometers. New magnetometers have been re-designed tak-
ing into consideration the results discussed in the present paper,
the behavior of the new devices will be discussed in a future pub-
lication after completing the fabrication process and obtaining
experimental data.
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