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Abstract Glioblastomas represent a challenging prob-

lem with an extremely poor survival rate. Since these

tumour cells have a highly invasive character, an ef-

fective surgical resection as well as chemotherapy and

radiotherapy are very difficult. Convection-enhanced de-

livery (CED), a technique that consists in the injection

of a therapeutic agent directly into the parenchyma,

has shown encouraging results. Its efficacy depends on

the ability to predict, in the pre-operative phase, the

distribution of the drug inside the tumour. This paper

proposes a method to compute a fundamental parameter

for CED modelling outcomes, the hydraulic permeability,

in three brain structures. Therefore, a bi-dimensional

brain-like structure was built out of the main geometri-

cal features of the white matter: axon diameter distri-

bution (ADD) extrapolated from electron microscopy
images, extracellular space (ECS) volume fraction and

ECS width. The axons were randomly allocated inside a

defined border and the ECS volume fraction as well as

the ECS width maintained in a physiological range. To

achieve this result, an outward packing method coupled
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with a disc shrinking technique was implemented. The

fluid flow through the axons was computed by solving

Navier-Stokes equations within the computational fluid

dynamics solver ANSYS. From the fluid and pressure

fields, an homogenisation technique allowed establishing

the optimal representative volume element (RVE) size.

The hydraulic permeability computed on the RVE was

found in good agreement with experimental data from

literature.

Keywords Convection-enhanced delivery · Hydraulic

permeability · Representative volume element · White

matter

1 Introduction

The most common brain malignant tumours, glioblas-

tomas multiforme (GBMs), leave patients a median

overall survival rate ranging from 12 to 18 months, as

reported in Mehta et al (2015). Moreover, despite af-

fecting only 6 in 100000 people, the treatment cost in

Europe in 2010 was about 5.2 billion Euro (Olesen et al,

2012). Conventional treatment options such as surgery,

chemotherapy and radiation have not proved themselves

as decisive, despite being highly aggressive for the pa-

tients (Crawford et al, 2016). Therefore, Bobo et al

(1994) introduced a new technique, namely CED, which

has shown encouraging results with recurrent glioblas-

toma in the last twenty years (Crawford et al, 2016).

Indeed, it allows overcoming the main obstacle to phar-

maceutical treatment of tumour, the blood-brain barrier,

by injecting a therapeutic agent under positive pressure

directly into the parenchyma.

A key aspect to reach good results is the ability

to predict, in the pre-operative phase, the distribution

of the drug inside the tumour (Raghavan et al, 2006,
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2016). This would allow planning the infusion point

and the flow rate to optimise the treatment. Several

studies have been conducted in the last fifteen years

proposing numerical models which were based on differ-

ent assumptions (Ehlers and Wagner, 2013; Støverud

et al, 2012; Linninger et al, 2008; Kim et al, 2012; Sarnti-

noranont et al, 2006; Chen and Sarntinoranont, 2007;

Morrison et al, 1999; Raghavan et al, 2006; Raghavan

and Brady, 2011; Smith and Garćıa, 2009). Nonetheless,

the cerebral tissue complex structure has represented

a formidable challenge to modelling and more studies
should be conducted to reach a satisfying level of accu-

racy. As suggested by Ehlers and Wagner (2013) and

Støverud et al (2012), this could be due the fact that the

constitutive parameters which are used in the models

vary significantly across the scientific literature (up to

three orders of magnitude). Therefore, in this paper, we

aimed to shed light on the hydraulic permeability which

is one of the key parameters affecting CED outcomes.

Indeed, it drives the convective flux through the brain

thus determining the pharmaceutical agent ability to

spread within the cancerous tissue.

The brain could be divided in three main compo-

nents characterised by different properties: cerebrospinal

fluid (CSF), grey matter and white matter. The CSF

can be found in all the empty spaces within the skull

thus comprising the gap between the brain and the skull,

the ventricles and the ECS. The grey matter consists

of neuron cell bodies which are highly packed making

the tissue very dense. In contrast, the white matter can

be found in the inner part of the brain and presents a

more regular structure made of elongated parallel ax-

ons with a quasi-circular cross section (Støverud et al,

2012). In addition, the blood vessel system runs through

the parenchyma to supply oxygen and nutrients. This
simplified description of the brain is not meant to be ex-

haustive but highlights that the brain is a multi-phasic

material (Ehlers and Wagner, 2013). Nevertheless, as

pointed out by Tavner et al (2016), the correct math-

ematical framework to model the brain parenchyma

is still a controversial subject which depends on the

specific phenomenon studied.

In this work, since the blood vessels occupy less than

3% of the total volume (Duval et al, 2016), we describe

the white matter as a biphasic continuum in which

the axons represent the solid phase which is immersed

in the ECS which constitutes the fluid phase. Under

the hypotheses of incompressible fluid and very low

Reynolds number, the convective flux through the axons

can be described by means of Darcy’s law, which relates

the pressure loss across a porous medium with its average

velocity according to the hydraulic permeability (Dullien,

2012; Kim et al, 2012; Støverud et al, 2012; Ehlers and

Wagner, 2013). The latter depends only on the porous

media geometry and the fluid properties (Yazdchi et al,

2011), and it can be computed in three different way:

(i) Experimentally: numerous experimental techniques

have been developed and described in the geotech-

nical literature (Türkkan and Korkmaz, 2015) but,

to the best of our knowledge, only a limited number

of studies can be found concerning human tissues

(Swabb et al, 1974; Netti et al, 2000; McGuire et al,

2006; Franceschini et al, 2006).

In particular, Swabb et al (1974) conducted the first

in vitro experimental campaign which aimed to infer

the hydraulic permeability of hepatocarcinoma, the

most common liver cancer. Netti et al (2000) per-
formed confined compression test on slices of freshly

excised tissue belonging to four tumour lines. Then,

they estimated the permeability fitting the experi-

mental data with a poroviscoelastic model. McGuire
et al (2006) followed a similar approach implanting

three tumour lines in mice. Then, after the injection

of a controlled flow of Evans blue-labeled albumin

in the centre of the cancerous tissue, the latter was

excised and sliced. Finally, the albumin distribution

was fitted by means of Darcy’s law for unidirectional

flow in an infinite region around a spherical fluid cav-

ity. Franceschini et al (2006) conducted an extensive

and comprehensive work in which they performed

several types of mechanical tests on human brain

samples within 12 hours of death. Without entering

into details, we will just focus on the permeability

extraction. They performed an oedometric test on

12 cylindrical specimens harvested in the parietal

lobe. The average ratio between initial and final

specimen’s shortening under a loading step, namely

consolidation ratio, was depicted as a function of

time. These data were fitted according to Terzaghi

theory thus allowing to infer the permeability.

Despite the works cited above being extremely valu-

able, they are affected by two important limitations.

First, the permeability in not measured directly but

it is inferred from a model which is based on certain

assumptions and, second, the hydraulic permeability

decreases with time post-mortem and its estimation

is therefore affected by the exact time measurements

have taken place (Tavner et al, 2016).

(ii) An alternative methodology with respect to the ex-

perimental one is using the Kozeny-Carman equation

which relates permeability to other geometrical pa-

rameters such as porosity and specific surface; for

details the reader can refer to Xu and Yu (2008) and

citation therein. However, the major drawback of

the analytical approach is that it is only suitable for
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simple and regular geometries but cannot be applied

to complicated structures such as the white matter.

(iii) Finally, in the numerical approach, Navier-Stokes

equations are solved to obtain the permeability under

some hypotheses. It has been proven to be a powerful

tool to analyse random arrangements of fibres as

shown in (Hitti et al, 2016; Nedanov and Advani,

2002; Takano et al, 2002) or other porous media

(Pinela et al, 2005; Kolyukhin and Espedal, 2010;

Dias et al, 2012; Zeng et al, 2015; Eshghinejadfard

et al, 2016). For example, Hitti et al (2016) computed
the permeability of a unidirectional disordered fibres

array with constant diameter by first assessing the

velocity and the pressure fields of the convective flow

through them. Then, by means of an homogenisation

method they obtained the permeability of the whole

domain.

In this paper, we develop an approach that for the

first time applies numerical techniques to the study
of the brain microstructure. The brain geometry and

spatial organisation are considered to describe the inter-

axons convective flux.

We present an outward packing method to create

a bi-dimensional random geometry based on the ADD

provided by (Liewald et al, 2014) that ensures a ECS

volume fraction and a ECS width in the physiological

range (Syková and Nicholson, 2008). Moreover, a spatial

analysis, by means of Ripley’s k-function (Hansson et al,

2013; Marcon et al, 2013), is conducted to guarantee that

the overall geometrical organisation is consistent with

the one of the experimental data. Then, a computational

fluid dynamics (CFD) model is implemented within the

commercial software ANSYS (ANSYS, Lebanon, NH) to

compute the white matter hydraulic permeability which

will be compared with other data available from the

relevant literature.

2 Materials and Methods

2.1 Dataset

In the study conducted by Liewald et al (2014), the

authors measured the inner diameter of myelinated ax-

ons in three anatomical structure namely corpus callo-

sum (CC), superior longitudinal fascicle (SF) and unci-

nate/inferior occipitofrontal fascicle (IF). Their analysis

was performed on three human brains and a monkey

brain. Since the first ones underwent a late fixation that

could lead to degradation of cellular material and a

reduction of hydraulic permeability as pointed out by

Tavner et al (2016), we used the ADD of the monkey

which guaranteed an higher fixation quality. Moreover,

since we are interested in the external diameter, we

added the average myelin sheath width, measured by

Liewald et al (2014), to the ADD.

2.2 Brain-like geometry

The first objective was to design a geometry which could

mimic the white matter structure and spatial organisa-

tion. Therefore, we created a two-dimensional random

disordered fibres packing with a circular cross section

which met four important geometrical requirements that

drive the convective flux in the extra cellular space: axon

diameter distribution, ECS volume ratio, ECS width

and spatial organisation.

The generation algorithm was based on the closed

form advancing front approach presented by Feng et al

(2003), but with a main difference. This work introduces

an optimisation phase which pushes the ECS volume

fraction at a lower level with respect to the previous

method in order to meet the physiological requirements.

All the algorithm here presented was developed in the

environment provided by MATLAB:

1. The user specifies the total number of fibres, which

are represented by discs of varying diameters in

our two-dimensional representation, and the desired

ADD and ECS volume ratio. Then, he indicates

the shape of the domain inside which he wants to

insert the discs, e.g a square or a rectangle with

a certain ratio between adjacent edges. The initial

domain area and its boundaries are computed from

the sum of each disc area using simple geometrical

arguments and calculations. This initial area is not

big enough to host all the discs because it does

not consider the empty spaces. Therefore, the area

increases iteratively until all the discs have found

space.

2. The algorithm is based on the following geometrical

consideration: given a couple of discs, it is always

possible to add a third one which is tangent to both

of them if the distance between the first two is less

than the diameter of the third; this is schematically

depicted in Figure 1 (a). Figure 1 (b) shows the poly-

gon formed by the disc centres which constitutes the

front along which the generation algorithm propa-

gates. Each new disc is accepted if it is contained

inside the domain boundaries and if no overlapping

with the other discs occurs.

3. Once all the discs are placed in the domain, the ECS

volume ratio is computed as the ratio between the

void spaces between the discs and the total area. The

outcome of this first part of the algorithm is a highly
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packed structure with an ECS volume ratio of about

0.22.

4. However, as stated by Syková and Nicholson (2008),

the ECS volume ratio can reach a minimum of 0.15

in the brain; for this reason we implemented an

optimisation algorithm which fills the empty spaces

in the structure. It could be summarised in four

additional steps:

(i) The original geometry is converted in a black

and white image to allow morphological analyses,

which are a collection of non-linear operations
related to the shape or morphology of features

in an image (Patil and Bhalchandra, 2012).

(ii) The subsequent step is the skeletonization that,

starting from a black and white image, uses the

iterative thinning algorithm to reduces all the

objects to lines, without changing the essential

structure of the image (Haralick and Shapiro,

1992). The branch points of the skeleton represent

the location where the distance between close

discs is maximised. In other words, they are the

best locations where it is possible to add new

discs as can be appreciated in Figure 1 (c).

(iii) Even in this case the new disc is accepted if its

diameter is comprised in the range of the ADD

previously defined.

(iv) The process continues iteratively until reaching

the minimum physiological ECS volume ratio.

5. Finally, the desired porosity is achieved by means of a

shrinking technique as described in Hitti et al (2016).

It is easy to understand that the discs shrinking

affects the desired ADD. However, for the physiolog-

ical porosity range, which does not exceed 0.3, the
shrinking produces a decrease in the axons diameter

of only 2.5% which could be considered negligible.

Fig. 1 Discs generation algorithm: (a) given two discs with
radius r1 and r2 and centred at c1 and c2 respectively, the
centre c3 of the new disc (green) with radius r3 is given by
one of the two intersections of the dotted discs with radius
r1 + r3 and r2 + r3 centred at c1 and c2 respectively; (b) the
first three discs form the initial propagation front, a new disc
is added on the right side of each arrow; (c) in the second part
of the algorithm, new discs are added at the skeleton branch
points (black dot) if their diameter is comprised in the ADD

It must be noticed that the second part of the al-

gorithm, where the empty spaces are filled with discs,

changes the ADD. Indeed, since the void spaces are

small, they are more likely occupied by the discs with a

smaller diameter. Nevertheless, this limitation could be

considered negligible as discussed in Appendix A.

2.3 Spatial distribution analysis

To compare the permeability evaluated both within the

same ADD and between different ADDs as a function

of ECS volume ratio, it was necessary to ensure that

the spatial organisation of every geometry was consis-

tent. Therefore, the ability of the algorithm described in

subsection 2.2 to create random arrangements of axons

was quantified by means of Ripley’s function (Ripley,

1976). The axon centres represent a spatial point process,

see the contribution by Diggle (2003) for details, and

Ripley’s function was used to differentiate between: (i)

aggregation, where the points tend to stay close to other
points, (ii) inhibition where the points form a regular

pattern and (iii) complete spatial randomness (CSR)

where the points do not follow any specific rule (Jafari-

Mamaghani, 2010; Lang and Marcon, 2010; Marcon et al,

2013).

Moreover, we compared the model spatial organi-

sation with the experimental one analysing the trans-

mission electron microscopy (TEM) images provided by

Liewald et al (2014). Therefore, as a preliminary step,

we manually segmented the microscopy images and com-

puted the centroids for each anatomical structure (Gopi,

2007).

Ripley’s function is defined as:

R(t) = λ−1E (1)

where λ is the number of points per unit area, namely

the intensity, and E is the number of extra points within

a distance t, which is the distance scale considered, of

an arbitrary point (Ripley, 1976). For a homogeneous

Poisson process that characterises the CSR:

R(t) = πt2 (2)

given the location of all points within a domain, the
equation below describes how to compute R:

R(t) = λ−1
∑∑

w(li, lj)
−1 I(dij < t)

N
(3)

where dij is the distance between the ith and jth points,

N is the total number of points and I(x) is a function

whose value is 1 if the distance between the ith and

jth points is less than t and otherwise is zero. Finally,

w(li, lj) provides the edge correction to minimise the
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effects that arise because points outside the boundary

are not counted (Dixon, 2002). Usually, it is convenient

to linearise the R-function as:

L(t) =

√
R(t)

π
(4)

because the L− function plot for a CSR distribution

is a simple line with an angular coefficient equal to

1 and passing from the origin. On the contrary, for

clustering and inhibition the angular coefficient is higher

and lower than 1 respectively. Thus, it is easier to show

the deviation from CSR and the length scale at which

it occurs (Dixon, 2002; Hitti et al, 2016; Chen and

Sarntinoranont, 2007).

2.4 Brain convection model

In the brain the axons represent the solid phase of the

white matter which is immersed in the ECS. As well as

the other cells, they could be modelled as a soft tissue

but a unique answer on which constitutive model is more

appropriate is still missing. For example, for Støverud

et al (2012) the solid phase behaves as an isotropic

linear elastic material whereas Ehlers and Wagner (2013)

used a hyperelastic model. On the other hand, other

authors stated that, if the flow rate is very low the

deformation provoked by the fluid-structure interaction

can be considered negligible and therefore, it is possible

to safely model the axons as a rigid material (Kim

et al, 2012, 2010; Raghavan and Brady, 2011). Since

the interest of this study is to infer the permeability in

a quasi-static condition (creeping flow), we follow the

latter approach and we model the solid phase as a rigid

porous media, whose continuity equation is:

∇ · v = 0 (5)

where v is the fluid superficial velocity.

The well-known Darcy’s law is a macroscopic relation

between the pressure loss ∇p and ṽ which is the velocity

through the pores averaged on the fluid volume Vf
(equation 6 and 7 respectively)

ṽ =
k

µ
∇p (6)

ṽ =
1

V

∫
Vf

vdV (7)

where k is the permeability of the porous media, µ is

the viscosity of the fluid (10−3 Pa ∗ s) (Jin et al, 2016),

V and Vf are the total and fluid volume respectively

(Yang et al, 2014; Hitti et al, 2016). The superficial

velocity though the pores was computed solving the

Navies-Stokes equations by means of the Finite Element

Method (FEM) software ANSYS (ANSYS, Lebanon,

NH) with Semi-Implicit Methods for Pressure Linked

Equations (SIMPLE) (ANSYS, 2017). A no slip condi-

tion was set on each wall and the conduct length was

designed to have a fully developed flow before the porous

zone. The boundary condition at the inlet (velocity inlet

0.0024 m/s) was chosen to have a very low Reynolds

number Re ≈ 10−3 to respect Darcy’s law hypothesis

and to have a velocity close to the one that is usually

used in CED intervention (Barua et al, 2013, 2014). A

zero pressure was applied at the outlet to reproduce
the conventional experimental conditions for measuring

hydraulic permeability (Yazdchi et al, 2011; Truscello

et al, 2012; Hitti et al, 2016).

2.5 RVE size determination

According to Drugan and Willis (1996) an RVE is:

“the smallest material volume element of the composite

for which the usual spatially constant (overall modu-

lus) macroscopic constitutive representation is a suffi-

ciently accurate model to represent the mean constitu-

tive response”. However, as stated by Du and Ostoja-

Starzewski (2006), a lot of studies are based on the

existence of a so-called RVE but only a few of them

have quantitatively determined its size with respect to

the microheterogeneity. As previously described in sub-

section 2.2, the ECS volume ratio can range between

0.18 and 0.3, however, we decided to limit our study

to geometries with the highest value for the following

reason. Since the space between each axon is propor-
tional to the ECS volume ratio, choosing a value equal

to 0.3 leads to a geometry with a larger ECS width. This

characteristic is strongly desirable from a computational

point of view, indeed the smaller the inter-axons space

is, the more the meshing process becomes challenging

and the simulation dramatically more time-consuming.

In this work, we created 6 (n) random structures for

each ADD (CC, SF and IF). The mean permeability k̄

and the standard deviation σ were computed for each

brain zone as a function of the RVE size.

k̄ =
1

n

n∑
i=1

ki (8)

σ =

√√√√ 1

n− 1

n∑
i=1

(ki − k̄) (9)

The RVEs size was determined dividing the height of

each model geometry by 20 as shown in Figure 2 which

also depicts a comparison between the model geometry

and a TEM image belonging to the SF. However, only

the first 16 RVEs were considered for the calculation



6 Marco Vidotto et al.

as a consequence of the channelling effect described

in Nield and Bejan (2013) which rises at the walls. A

detailed explanation can be found in Appendix B.

3 Results

3.1 Geometry

Figure 3 shows the relationship between two geomet-
rical parameters that are fundamental in determining

the fluid dynamics within a porous media, namely, the

ECS volume ratio α and the ECS width d. The latter

has been identified by Syková and Nicholson (2008) as

an “atmosphere” surrounding every axon which can be

quantified by the following equation:

d =
Vaxon
Saxon

α

1− α
(10)

where Vaxon and Saxon are the average axon volume and
surface area for an ideal thin slab of length equal to 1

µm. As depicted in Figure 3 the ECS width in our model

increases in a quasi-linear fashion with the ECS volume

ratio from a minimum of 16 nm to a maximum of 35 nm
which is comparable with the range identified by Syková

and Nicholson (2008). The minimum ECS volume ratio

that we were able to reach with our method was equal to

0.18, which is very close to the experimental minimum

value of 0.15 (Syková and Nicholson, 2008).
Figure 4, depicts the results of Ripley’s function anal-

ysis applied to the TEM images and to the geometry

generated through the algorithm described in subsec-

tion 2.2. Moreover, it is possible to compare them with

the ideal case of CSR. We can observe that in all the

anatomical structures the spatial organisation of both

real and model axons is almost coincident to the CSR

as we approach the final part of the curve. It should

be noted that there is an initial discrepancy between

the experimental and the model trend. However, this

could be easily explained since the number of axons for

each image was significantly lower than the one in the

model. Therefore, the presence of big axons in the TEM

images strongly affects the analysis whereas their effect

is mitigated in the model geometries. Nonetheless, for

t equal to 1 which is a normalised value corresponding

to the 25% of the image length as suggested in Jafari-

Mamaghani (2010), both experimental and model data

converge to CSR.

3.2 Grid sensitivity analysis

The first important step is to perform a grid-sensitivity

analysis to find the correct trade-off between the dis-

cretisation error reduction and the cost of the simulation

in terms of computational time (Montazeri and Blocken,

2013). The grid resolution depends on different parame-

ters; we varied separately the maximum face size allowed

for each cell and the edges’ discretisation in the porous

zone (ANSYS, 2017). We compared 6 grids with an

increasing number of nodes, from a coarse one, charac-

terised by 14862 nodes and an average element size of

0.16 ∗ 10−2 µm2, to a finer one corresponding to 153496

nodes and 0.015 ∗ 10−2 µm2 average element size. In

Figure 5, it is possible to appreciate the geometry used

for the grid-sensitivity analysis and the lines along which
the velocity has been computed, the results of the anal-

ysis are shown on the right. The independence of the

average velocity from the grid resolution is achieved for

a number of nodes close to 105. Indeed, the percentage

error between the grids with 100155 and 147016 nodes

ranges between 0.08 and 0.4%, which can be considered

negligible (Montazeri and Blocken, 2013). Therefore, fur-

ther analysis were performed following the discretization

features of the 100155 nodes grid which has been proven

to assure high accuracy and adequate computational

cost. The simulations took 3 hours on a workstation

with a i7-6800K 6 cores 3.60 GHz CPU and 16 GB of

memory.

3.3 RVE size

Figure 6 represents k̄ as a function of the RVE size for

CC, SF and IF. The standard deviation is very high

at the beginning when the RVE size is less than 8 µm;

then, as the RVE size increases, the standard deviation

decreases progressively until it becomes two orders of

magnitude less than the mean permeability. This is due

to the fact that, the bigger the area considered for the

homogenisation is and the more it is representative of the

porous media behaviour. On the other hand, a large area

can increase dramatically the computational cost of the

simulations. The best trade-off between accuracy and

simulation time is identified by the optimal RVE size. In

each anatomical area, we found the RVE critical value

as the point that satisfies two requirements: the average

permeability is constant and the standard deviation

becomes a small fraction of the average value. It is

worth noticing that the minimum standard deviation

is about 2% of the permeability, thus confirming that

6 geometries for each ADD provide a sufficient level of

accuracy. The results are summarised in Table 1.

Furthermore, Figure 6 shows examples of velocity

and pressure contours for each ADD. In each geometry

the flow paths as well as the maximum velocity are

very similar since the average ECS width, which drives

the convective flux in CC, SF and IF, is comparable.

Moreover, the pressure field decrease linearly along the
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Fig. 2 On the left: each model geometry was divided in 20 square RVEs whose edge length is a fraction of the porous media
height. The picture shows 5/20 (red), 10/20 (green) and 20/20 (blue); On each RVE the permeability was computed by means
of Darcy’s law. On the right: TEM image of the SF, with courtesy of Prof. Dr. Almut Schüz (Liewald et al, 2014)

Fig. 3 The ECS width is represented as a function of the ECS
volume fraction for CC, SF and IF. The ECS width increases
in quasi-linear way from a minimum of 16 to a maximum of
35 nm

Table 1 RVE size and average hydraulic permeability in CC,
SF and IF

CC SF IF

RVE (µm) 17.5 16.8 15.2
k̄ (m2) 1.33 ∗ 10−16 1.32 ∗ 10−16 1.22 ∗ 10−16

porous media with an overall pressure drop of about

30000 Pa.

3.4 Comparison with previous studies

In the literature there exist a few studies concerning

hydraulic permeability in human tissues, which report
a wide range of values. Table 2 lists three of the major

experimental papers where the authors used different

types of tissue (Netti et al, 2000; Swabb et al, 1974;

Franceschini et al, 2006). The obtained results vary sig-

nificantly and cover a range of three orders of magnitude.
This suggests a strong correlation between permeability

and histological features. Our results are well within the

experimental range.

4 Discussion

The relevant literature concerning fibrous porous me-

dia has seen many attempts to describe the hydraulic

permeability of unidirectional fibres; the models can

be roughly divided in ordered and disordered where

the analytical or numerical approach has been followed

respectively. In the former category, an analytical rela-

tionship between hydraulic permeability and porosity

can be established according to the fibres packing (trian-

gular, square, hexagonal) as described by Gebart (1992)

and Tamayol and Bahrami (2009). On the contrary, in

the second category, computational methods have been

used to understand how permeability is influenced by

other geometrical factors such as the mean nearest inter-

fibres distance and the degree of disorder (Chen and

Papathanasiou, 2007, 2008; Hitti et al, 2016). Although

the contributions of the researches cited above are valu-

able and underline the importance of the geometry on
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Fig. 4 In each graph is possible to appreciate the comparison between the L− function under ideal CSR hypothesis (red
line), the L− function obtained with model described in section 2.2 and the L− function computed on the TEM images of
CC (blue), SF (light blue) and IF (green)

(a) (b)

Fig. 5 (a) Geometry used to perform the mesh sensitivity analysis, also showing the lines along which the velocity has been
averaged. (b) Effect of the grid resolution on the area-weighted average velocity is shown. Note that convergence is reached
after about 100000 nodes

the overall behaviour of the porous media, they use a

population of fibres with the same diameter which is not

the case of the white matter as explained in subsection

2.1. Therefore, the presence of a geometry which is able

to mimic the main geometrical characteristics of the

white matter is fundamental to model effectively the

flow through the axons. In subsection 3.1, we demon-

strated how we achieved this task implementing a model

geometry in which the main histological features of the

white matter are considered. Indeed, the ECS volume

fraction covers 87% of the physiological range. More-

over, the ECS width is in very good agreement with

the experimental data presented in the literature, also

considering the inter-species variability, since they anal-

ysed murine brain, and the differences between grey and

white matter (Nicholson et al, 2011; Ohno et al, 2007;

Nicholson and Hrabětová, 2017; Syková and Nicholson,

2008).

Furthermore, we exploited Ripley’s function to in-

quire the spatial organisation as depicted in Figure 4.

Although a comprehensive analyses that covers the en-

tire parameter space is out of the scope of this work,

the randomness analysis performed on either the exper-

imental images and our model shows a behaviour which

is ascribable to CSR. Moreover, assessing the spatial

organisation of a porous media and ensuring that it is

homogeneous along all the length scale considered is

fundamental in all the studies that aim to estimate the

correct size of an RVE (Hitti et al, 2016).
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(a) (c)(b)

Fig. 6 The hydraulic permeability (a) in the CC, SF and IF is represented as a function of the RVE size along with the
respective velocity (b) and pressure contours (c)

Table 2 Experimental studies on hydraulic permeability with
several types of tissues.

Tissue Type Permeability (m2) Researchers

Hepatic neo-
plastic tissue
in vitro

3.1 ∗ 10−17 Swabb et al (1974)

Hepatic neo-
plastic tissue
in vivo

(2.9− 8.4) ∗ 10−18 Swabb et al (1974)

MCaIV murine
mammary car-
cinoma

1.86 ∗ 10−15 Netti et al (2000)

LS174T human
colon adenocar-
cinoma

3.37 ∗ 10−16 Netti et al (2000)

U87 human
glioblastoma

4.87 ∗ 10−16 Netti et al (2000)

HSTS 26T hu-
man soft tissue
sarcoma

6.9 ∗ 10−17 Netti et al (2000)

Human brain
tissue

2.47 ∗ 10−17 Franceschini et al
(2006)

The sensitivity analysis conducted on the grid reso-

lution allowed us to obtain accurate results as well as a

feasible computational times for a challenging geometry.

The permeability of each ADD was computed on

RVEs of increasing size. The results illustrated in Fig-

ure 6 and Table 1 show outcomes concerning both the

RVE critical size and the permeability values which were

similar in the cases examined. This is probably due to

the fact that, even if we are considering three different

anatomical structures, their ADD as well as the ECS

width are very similar, thus producing a comparable

effect on the fluid flow as suggested also by Chen and Pa-

pathanasiou (2008) in their discussion on the mean near-

est inter-fibres distance. On the other hand, comparing

our results with data presented in literature has proven

to be a more difficult task since a very small amount of

experiments have been conducted. The work which is
closest to our study is that performed by Franceschini

et al (2006), who computed a permeability value which

is slightly lower than ours. However, it must be noticed

that there are four important differences to take into

account. Firstly, there is an inter-species variability, as

suggested by Abbott (2004), since we are analysing a

monkey brain instead of a human one. A second fac-

tor to consider is that the permeability is not a direct

measure but it is inferred from a model which is based

on simplifying hypotheses and, for example, does not

consider non-circular axons and deviation from collinear

bundles, which would both contribute to lower the per-

meability of the tissue. Third, the results obtained by

Franceschini et al (2006) are an average between brain

samples excised in both grey and white matter whereas

we limit our study to white matter. Finally, the average

ECS volume ratio in the brain is about 0.2 (Syková and

Nicholson, 2008), whereas we used the maximum value

of 0.3 for the reasons explained in subsection 2.5. Since

the ECS volume fraction is directly related to perme-

ability, this contributes to the lower value obtained by

Franceschini et al (2006).
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Nevertheless, our results are in good agreement with

the experimental data if compared to the range of val-

ues presented in the literature and represent the first

attempt to estimate the permeability with a numerical

approach which starts from the white matter microstruc-

ture. The method presented in the present contribution

opens the possibility to further extend the study incorpo-

rating more images belonging to normal or pathological

subjects, thus allowing to create a specific database for

the permeability of brain tissue matter.

5 Concluding remarks

We presented a novel method to assess hydraulic per-
meability, starting from the ADD of three white matter

anatomical structures. Moreover, we paid particular at-

tention to estimate the RVE size to ensure the reliability

of the results obtained. The approach consisted of the

following three steps: (i) Generation of a random ge-

ometry in which the cross-sectional area of the neurons

is considered circular. The algorithm created a fibres

assembly according to the experimental ADD of CC, SF

and IF, offering also the possibility to vary the ECS vol-

ume fraction covering almost all the physiological range.

(ii) Implementation of a CFD model by means of the fi-

nite element solver ANSYS to compute the velocity and

pressure fields experienced by our model white matter.

Furthermore, we conducted a grid-sensitivity analysis to

ensure high accuracy. (iii) Finally, we used this data to

compute the hydraulic permeability on different RVEs

in order to determine its size.

We found that the RVE size and the hydraulic per-
meability are slightly different for each anatomical struc-

ture suggesting that an RVE characterised by a length

scale of about 17µm can be representative of the over-

all behaviour. Moreover, the permeability values that

we found are consistent with the results provided by

experimental data available in the literature. Albeit

based on simplifying assumptions, we believe that this

work is the first important step towards a combined

experimental and computational approach which aims

to shed light on fundamental constitutive parameters

to model brain matter. Extensions to three-dimensional
domains, consideration of irregular axonal geometries

and osmotic pressure, contribution of glial cells and a

parametric study on the effect of the ECS volume ratio

will constitute the subject of further studies.
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Appendix A

In subsection 2.2, we explained that the the algorithm

to create a brain-like geometry is mainly comprised of

two phases. In the first phase, the fibres are randomly

arranged respecting a prescribed ADD, the minimum

ECS volume ratio reachable in this phase is about 0.22.

In the second phase, whose objective is to minimise

the ECS volume ratio, the empty spaces are filled with

other fibres whose diameter is comprised in the range

of the ADD. Since the axons with a small diameter

are more likely to find room between the others, the

ADD is more skewed towards them with respect to the

original one. That results in a median diameter which
goes from the 0.34 µm of the original ADD to the 0.3

µm of the skewed ADD. To quantify the effect of this

limitation on the permeability calculation, we created a

geometry respecting the ADD of the CC. Then, applying

the shrinking method described in subsection 2.2, we

reached the desired ECS volume ratio equal to 0.3.
We computed the permeability on an RVE of 17.5

µm as suggested by the results reported in subsection

3.3 obtaining a final value equal to 1.4∗10−16 m2 which

is 5% higher than the one presented in Table 1. In

conclusion, our generation algorithm, on the one hand

introduces a very small error, on the other hand al-

lows analysing almost all the physiological range of ECS

volume fraction. We believe that the increased flexibil-

ity obtained by the proposed algorithm and its fidelity

in reproducing realistic ECS volume fractions greatly

overcomes the potential error introduced in the compu-

tation of permeability and therefore, we considered this

limitation acceptable.

Appendix B

In the attempt of filling a volume or an area with solid

particles, a common issue usually rises in the proximity

of the walls. Indeed, here, the particles find it harder

to pack together, with respect of the inner zones of
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(a) (b) (c)

Fig. 7 (a) Velocity contour before the porous media, the channelling effect is clearly visible near the walls. The black lines
indicate the direction along which the velocity profiles have been extracted; (b) Average velocity profile for the CC, even in this
case the sudden increase in the velocity profile points out the beginning of the channelling effect zone; (c) Its exact starting
points have been determined averaging the position of the first and last local minima between the 6 random geometries of the
CC

the porous media, because of the presence of the walls.

Therefore, the free space volume fraction increases; for

an analytical description of this phenomenon the reader

can refer to the work by Nield and Bejan (2013).

As it is easy to imagine, the volume fraction increase

brings, as a consequence, the augmentation of the vol-

ume of fluid flowing near the walls as well as the average

velocity, and this is evident in Figure 7a. Since this phe-

nomenon, which is known as channelling effect (Nield

and Bejan, 2013), affects the permeability computation,
we designed a method to infer and exclude the areas

involved.

In each geometry, we extracted the velocity profile

along 10 lines in the proximity of the porous zone as

indicated in Figure 7a. The threshold of the channelling

effect zone can be identified by the anomalous and sud-

den increase in the velocity profile highlighted in Figure

7b. Mathematically, this operation means finding the

position of the first and last local minima along the

normalised height of the channel h. Finally, Figure 7c

depicts the position of the upper and lower threshold

averaged between the 6 geometries created for the CC.

Equivalent results (not shown in this paper) emerged

for the other anatomical structures.

Accordingly, the porous media areas corresponding

to 10% of the channel height at both ends (top and

bottom in Figure 7a of the computational domain) were

excluded from the hydraulic permeability computation.
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