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(Received 25 July 2017; accepted 2 February 2018; published online 12 March 2018)

The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-
element method. In particular, we study the acoustic emissions generated by the flow past the bluff body
at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible
linearized Navier-Stokes equations. The resulting direct global mode provides detailed information
related to the underlying hydrodynamic instability and data on the acoustic field generated. In order
to recover the intensity of the produced sound, we apply the self-consistent model for non-linear
saturation proposed by Mantič-Lugo, Arratia, and Gallaire [“Self-consistent mean flow description
of the nonlinear saturation of the vortex shedding in the cylinder wake,” Phys. Rev. Lett. 113, 084501
(2014)]. The application of this model allows us to compute the amplitude of the resulting linear
mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent
agreement with those obtained by a full compressible simulation direct numerical simulation and those
derived by the application of classical acoustic analogy formulations. Published by AIP Publishing.
https://doi.org/10.1063/1.4997536

I. INTRODUCTION

The flow past bluff bodies has been extensively studied for
its significance in flow physics and its fundamental importance
in aerodynamics, acoustics, wind engineering, and electronics
cooling. Their wakes are able to generate unsteady (periodic or
non-periodic) forces that can even damage structures. The flow
past a circular cylinder is the prototypical configuration that
captures the dominant features of bluff-body wake flows; it
has received a great deal of attention and has acted as a proxy
for a wide range of more complex situations.1 It has been
one of the major topics in hydrodynamics and acoustics since
the first seminal work on aeolian tones made by Strouhal.2

He performed an experimental investigation to characterize
the frequency of the sound generated by the flow past a cir-
cular cylinder. The main finding was that the dimensionless
number fD/U∞, later named the “Strouhal number,” is almost
constant for such a kind of flow. Gerrard3 studied the fre-
quency and the intensity of the sound produced by the flow
past circular cylinders. He recognized that the sound resulting
from the production of a vortex street possesses a dipole field
which consists of a dominant frequency accompanied by its
harmonics.

From a theoretical point of view, Lighthill4 laid the foun-
dations of the theory of aerodynamic sound. He was con-
cerned with the sound field generated by the unsteady motion
of an unbounded fluid. The interaction between the fluid
flow and the sound waves was not considered because of
the weak feedback that exists from the acoustic field to the
fluid flow. He showed that aerodynamic sound sources can be
modeled as a series of monopoles, dipoles, and quadrupoles.

a)Electronic mail: vcitro@unisa.it

Subsequently, Curle5 was able to account also for the effect of
solid boundaries.

From a numerical point of view, on the other hand, several
techniques were developed to simulate the compressible flow
past bluff bodies. It is possible to classify these approaches as
follows:

(i) Semi-analytic methods: The computation of the aero-
dynamic source term is separated from that of the sound
propagation (see, e.g., the work of Williams6,7).

(ii) Hybrid numerical methods: The flow field is divided
into a mean and a perturbation which, in the far field,
is equivalent to sound.8

(iii) Direct noise computation: The fluid motion and sound
are computed together by solving the fully compress-
ible equations in time.

The first group of methods are the most efficient ones, but
they cannot shed light on the noise generation mechanism that
characterizes each configuration. The second group, instead,
uses an acoustic/viscous splitting method. This method splits
the computation into two parts, but it does not use any acoustic
analogy. Hardin and Pope8 discussed the application of this
method for noise computations in low Mach number flows.
They represented the total flow state by an incompressible
mean flow part and a perturbation about this mean flow. The
first step is to solve the incompressible equations for the mean
flow and then compute the perturbation field. Since this last
field represents the difference between the fully compressible
flow state and the incompressible one, it is linked to the acous-
tic quantities in the far field. However, this theory received
serious criticisms in the past because of the slow decay of
dilatation away from the source region.9,10 Finally, we remark
that the compressible direct numerical simulation (DNS)11 is

1070-6631/2018/30(3)/036102/12/$30.00 30, 036102-1 Published by AIP Publishing.
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the most accurate method but is also the most expensive one,
especially for low Mach number computations where the CFL
(Courant-Friedrichs-Lewy) condition becomes exceedingly
restrictive for the large wavelength of the acoustic waves.

In this context, we discuss the application of a new method
to compute the noise intensity, the frequency, and the noise
directivity of the flow past a generic bluff body. Different
from previous methods, we suggest computing these quantities
by using the framework of the linear global stability analy-
sis. Thus, we need to compute a mean flow and the inherent
global modes. The amplitude of such modes, then, is com-
puted, thanks to the method recently proposed by Mantič-Lugo
et al.12 They proposed a simple, self-consistent model that
quantitatively predicts the saturated amplitude and flow fields.
The mean flow together with the resulting most unstable eigen-
mode is governed by a single system of equations. Since these
equations are independent of time, they allow the calculation
of the mean flow approximation without requiring the inte-
gration of the time-dependent Navier-Stokes equations. The
details of this approach will be given in Sec. II D.

II. THEORETICAL FRAMEWORK
A. Flow configuration and governing equations

We investigate the flow developing in the compressible
regime past the circular cylinder shown in Fig. 1. It models
a bluff body of diameter D placed into a uniform flow and is
identical to the one investigated by Inoue and Hatakeyama.13

The dynamics of a compressible Newtonian fluid is described
in a Cartesian frame of reference (see Fig. 1). In particular,
we consider a gas with a Prandtl number Pr = µcp/κ equal
to 0.7, where cp is the constant specific heat, κ is the thermal
conductivity, and µ is the dynamic viscosity.

The fluid motion is described by the velocity field u(x, t),
the pressure p(x, t), the fluid density field ρ(x, t), and the
temperature T (x, t) which satisfy the unsteady compressible
Navier-Stokes equations,

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0, (1a)

ρ
∂u
∂t

+ ρu · ∇u + ∇p −
1

Re
∇ · τ(u) = 0, (1b)

ρ
∂T
∂t

+ ρu · ∇T + (γ − 1)ρT∇ · u − γ(γ − 1)
M2

Re
τ(u) :

d(u) −
γ

Pr Re
∇2T = 0, (1c)

FIG. 1. Mesh structure for the cylinder flow.

ρT − 1 − γM2p = 0, (1d)

where γ is the ratio of specific heats (here equal to 1.4),
d(u) = 1

2

(
∇u + ∇uT

)
is the strain tensor, and τ(u) = [2d(u)

− 2
3 (∇ · u)I] is the stress tensor per unit viscosity. Here, we

assume that the viscosity and the thermal conductivity of the
fluid are constant and independent of the temperature.

Equations (1) are made non-dimensional by using the
cylinder diameter D as length scale and the upstream quan-
tities U∞, ρ∞, T∞; the dimensionless pressure is defined as
p−p∞
p∞U2

∞

. Thus, the Reynolds (Re) and Mach (M) numbers can be

expressed as

Re =
ρ∞U∞D

µ
, M =

U∞
√
γRT∞

,

where R is the ideal gas constant.

B. Stability analysis

The instability of the flow is here investigated within the
classical framework of linear theory and normal-mode analy-
sis. The solution [u, p, T, ρ] is decomposed into a steady state
[Ub, pb, Tb, ρb](x) and a small unsteady perturbation field
[u′, p′, T ′, ρ′](x, t) as

u(x, t) = Ub(x) + εu′(x, t), (2a)

p(x, t) = pb(x) + εp′(x, t), (2b)

T (x, t) = Tb(x) + εT ′(x, t), (2c)

ρ(x, t) = ρb(x) + ε ρ′(x, t), (2d)

where the amplitude ε is assumed to be small. In order to
investigate the long-term (asymptotic) stability of the cylinder
wake, the evolution of the perturbation is here expressed by
means of the classical normal mode form14

[u′, p′, T ′, ρ′](x, t) =
∑

n

[ûn, p̂n, T̂n, ρ̂n](x) exp{λnt} + c.c.,

(3)
where c.c. is the complex conjugate. The disturbances are then
described by the complex eigenmodes [ûn, p̂n, T̂n, ρ̂n] and the
corresponding complex eigenvalues λn = σn + iωn, where ωn

is the eigenfrequency and σn represents the growth rate. By
introducing the flow decomposition (2) into the system (1), the
two following problems are obtained:

(i) at order 0, the steady version of compressible Navier-
Stokes equations determining the spatial structure of the
base flow,

Ub · ∇ρb + ρb∇ · Ub = 0, (4a)

ρbUb · ∇Ub + ∇Pb −
1

Re
∇ · τ(Ub) = 0, (4b)

ρbUb · ∇Tb + (γ − 1)ρbTb∇ · Ub − γ(γ − 1)
M2

Re
τ(Ub) :

d(Ub) −
γ

Pr Re
∇2Tb = 0, (4c)

ρbTb − 1 − γM2Pb = 0, (4d)

(ii) at order 1, the generalized eigenvalue problem providing
the eigenvalues and the corresponding eigenmodes
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λn ρ̂n + Ub · ∇ ρ̂n + ûn · ∇ρb + ρb∇ · ûn + ρ̂n∇ · Ub = 0, (5a)

λnρbûn + ρ̂nUb · ∇Ub + ρbûn · ∇Ub + ρbUb · ∇ûn

+∇p̂n −
1

Re
∇ · τ(ûn) = 0, (5b)

ρbT̂nλn + ρ̂nUb · ∇Tb + ρbûn · ∇Tb + ρbUb · ∇T̂n

+ (γ − 1)
(
ρ̂nTb∇ · Ub + ρbT̂n∇ · Ub + ρbTb∇ · ûn

)
− γ(γ − 1)

M2

Re
[τ(ûn) : d(Ub) + τ(Ub) : d(ûn)]

−
γ

Pr Re
∇2T̂n = 0, (5c)

ρ̂nTb + ρbT̂n − γM2P̂n = 0. (5d)

The base flow problem (4) is supplemented by no-slip
boundary condition (u = 0) and adiabatic temperature condi-
tion on the cylinder surface, free-stream flow conditions at the
inlet (u = [1, 0], ρ = 1, T = 1), and natural outflow conditions at
the outlet. The conditions for the stability problem are simply
derived from the ones of the base flow. Finally, we recall that a
negative growth rate, i.e., σn < 0, means linear stability, while
a positive growth rate, i.e., σ > 0, means instability.

C. Stability of the mean flow

One of the main goals of computational fluid dynamics
(CFD) is the prediction of the unsteady features of the flow
like the spatial distribution of the unsteadiness or the inher-
ent frequency that characterizes the nonlinear system. The
linear stability analysis on the base flow performed far from
the critical conditions is not able to provide such information
because it is unable to take into account nonlinear effects.15,16

In order to surmount this difficulty, Pier16 and Mittal17 per-
formed a stability analysis around a mean flow. They found
that the resulting frequency predicts well the frequency of the
saturated limit cycles. Such an analysis, however, provides
accurate results only in the case where the considered limit
cycle is dominated by a single frequency: in other words, the
resulting periodic solution should be almost monochromatic.
However, Mantič-Lugo and Gallaire18 used this approach

to investigate also a selective noise amplifier, the backward
facing step, that is characterized by large linear amplifi-
cation to external perturbations in a particular frequency
range.

Sipp and Lebedev19 focused on self-excited systems
that present a strong dominating frequency. Gudmundsson
and Colonius20 experimentally studied a turbulent jet flow.
They investigated the extent to which pressure and velocity
fluctuations in subsonic, turbulent round jets can be described
as linear perturbations to the mean flow field. The authors used
the parabolized stability equations (PSEs) around the mea-
sured jet mean flow field. They concluded that the evolution of
the largest-scale structures of turbulent jets can be predicted by
just considering perturbations to the mean flow field neglecting
any non-zero frequency disturbance interactions.

Recently Mantič-Lugo et al.12,21 proposed a self-
consistent model for the saturation dynamics of the vortex
shedding around the mean flow in the unstable cylinder wake.
Their model provided an excellent prediction of the mean
flow and the associated vortex street in terms of frequency,
amplitude, and spatial structure. The obtained Reynolds stress
divergence estimates very well the structure of the exact solu-
tion of the full DNS. We will apply this elegant theory in the
present paper. We will describe accurately it in Sec. II D.
Finally, we note that Beneddine et al.22 provided theoreti-
cal conditions for the use and meaning of a stability analysis
around a mean flow.

D. Self-consistent mean-flow model

In the present section, we briefly recall the self-consistent
mean-flow model proposed in Ref. 12; we refer to this ref-
erence for further details. The starting point of this approach
is the decomposition of the total flow state q = [u, p, T, ρ]
in a mean state q = [u, p, T , ρ] and an unsteady perturbation
q′ = [u′, p′, T ′, ρ′],

q = q + q′, (6)

where the time-average operator is defined as α = 1
T̃ ∫

T̃
0 α(t) dt

and T̃ is the limit cycle period of the considered case. Injecting
Eq. (6) in the compressible Navier-Stokes equations (1) and
performing a time average on the resulting system, we get the
following set of equations:

u · ∇ρ + ρ∇ · u = −u′ · ∇ρ′ − ρ′∇ · u′, (7a)

ρu · ∇u + ∇p −
1

Re
∇ · τ(u) = −ρ′

∂u′

∂t
− ρ′u · ∇u′ − ρu′ · ∇u′ − ρ′u′ · ∇u − ρ′u′ · ∇u′, (7b)

ρu · ∇T + (γ − 1)ρT∇ · u − γ(γ − 1)
M2

Re
τ(u) : d(u) −

γ

Pr Re
∇2T

= − ρ′
∂T ′

∂t
− ρu′ · ∇T ′ − ρ′u · ∇T ′ − ρ′u′ · ∇T − ρ′u′ · ∇T ′ − ρT ′∇ · u′

− (γ − 1)
[
ρ′T∇ · u′ + ρ′T ′∇ · u + ρ′T ′∇ · u′

]
+ γ(γ − 1)

M2

Re
τ(u′) : d(u′), (7c)

ρT − 1 − γM2P = −ρ′T ′. (7d)



036102-4 Fani et al. Phys. Fluids 30, 036102 (2018)

Following Ref. 12, we can write the equation that governs the
unsteady perturbation q′ as

∂q′

∂t
+ L(q, q′) = −F(q′), (8)

where F represents the interactions between the different har-
monics. In this work, we neglect this nonlinear term and the

perturbations are sought in the normal mode form

q′(x, t) = q̃ exp [ηt] + q̃∗ exp [η∗t], (9)

and therefore Eq. (8) reduces to a linear stability analysis
around the state q. Moreover, as a consequence of Eq. (9),
the system of Eqs. (7) can be rewritten as

u · ∇ρ + ρ∇ · u = −2A2
[
<{ ˜̃u∗ · ∇ ρ̃} +<{ρ∗∇ · ũ}

]
, (10a)

ρu · ∇u + ∇p−
1

Re
∇ · τ(u) = −2A2 [

<{ ρ̃∗iηiũ} +<{ ρ̃∗ũ · ∇u} +<{ ρ̃∗u · ∇ũ} +<{ρũ∗ · ∇ũ}
]

, (10b)

ρu · ∇T + (γ − 1)ρT∇ · u − γ(γ − 1)
M2

Re
τ(u) : d(u) −

γ

Pr Re
∇2T

= − 2A2
[
<{ρũ · ∇T̃ } +<{ ρ̃∗u · ∇T̃ } +<{ ρ̃∗ũ · ∇T }

]
+ −2A2(γ − 1)

[
<{ρT̃ ∗∇ · ũ} +<{ ρ̃∗T̃∇ · u}

+<{ ρ̃∗T∇ · ũ}
]

+ −2A2
[
<{ ρ̃∗iηiT̃ } − γ(γ − 1)

M2

Re
<{τ(ũ)∗ : d(ũ)}

]
, (10c)

ρT − 1 − γM2P = −2A2<
{
ρ̃∗T̃

}
, (10d)

where <{ } is the real-part operator and A is the amplitude
of the perturbation. Here the perturbation is normalized by
the L2 inner product computed on the computational domain,
namely, (a, b) = bHBa, where B is the mass matrix of the
stability problem. Thus the amplitude of the fluctuation is
defined as A = ∫Ω〈ρu′2 + ρT ′2 + ρ′2〉dΩ. Note that when
the Mach number is approaching the incompressible case
limit, the temperature T ′ and density ρ′ fluctuations become
negligible, leading to the same amplitude definition used by
Mantič-Lugo et al.12 The mean flow and the shedding fluctu-
ations with their amplitude are retrieved by solving Eqs. (10)
together with the stability equations around the forced base
state and by imposing that the perturbation is marginally
stable.

III. NUMERICAL METHOD

A finite-element method is used to solve the problems
involved in the present paper. The unknown [u, 3, p, T, ρ] is
spatially discretized on an unstructured mesh obtained by a
Delaunay triangulation procedure. In particular, we used the
built-in mesh generator (Bamg) implemented in Freefem++
(http://www.freefem.org). We adopted P2 elements for the
velocity components and P1 elements for the pressure, tem-
perature, and density fields. The discretization of the systems
has been performed by using the Freefem++ libraries. The
nonlinear system of algebraic equations, deriving from the dis-
cretization of the nonlinear equations along with their bound-
ary conditions, is solved by a Newton–Raphson procedure.

TABLE I. Compressible flow past a circular cylinder. We performed several tests to check the influence of the
mesh parameters on the accuracy of the results. Here xin and xout are the locations of the inlet and the outlet,
while yext is the location of the lateral boundaries of the computational domain. We built 4 different mesh groups:
(M1)–(M2)–(M3, M4, M5)–(M6, M7, M8). The last two groups (M3, M4, M5)–(M6, M7, M8) have, respectively,
the same spatial extent but with different mesh refinement. Finally, ntr . is the total number of triangles inside the
computational domain.

M1 M2 M3 M4 M5 M6 M7 M8

x1 �5 �5 �5 �5 �5 �7 �7 �7
x2 17 25 25 25 25 30 30 30
x3 �15 �20 �25 �25 �25 �30 �30 �30
x4 40 65 80 80 80 100 100 100
xin �150 �250 �300 �300 �300 �350 �350 �350
xout 250 350 500 500 500 600 600 600
y1 2.5 3 3 3 3 3.5 3.5 3.5
y2 10 15 18 18 18 20 20 20
yext 175 250 300 300 300 350 350 350
ntr . 132 498 143 165 162 089 305 643 606 323 203 024 423 762 921 018

http://www.freefem.org


036102-5 Fani et al. Phys. Fluids 30, 036102 (2018)

TABLE II. Convergence test on the leading eigenvalue at Re = 150.

Mesh Eigenvalue (σ + iω)

M1 +0.151 096 ± i0.645 211
M2 +0.152 003 ± i0.645 379
M3 +0.152 811 ± i0.645 388
M4 +0.152 983 ± i0.645 403
M5 +0.152 991 ± i0.645 409
M6 +0.152 977 ± i0.645 397
M7 +0.152 984 ± i0.645 402
M8 +0.152 994 ± i0.645 408

At each step of this method, we solve the arising linear systems
by the multifrontal, sparse LU solver MUMPS (Ref. 23).

Figure 1 shows the mesh structure that we used for our
simulations. We can distinguish 3 different regions: (i) an inner
region (dark gray), near the cylinder surface, (ii) a middle
region, and (iii) an outer region (white) far from the bluff body.
In this last region, we introduced a sponge zone to damp the
acoustic waves and avoid reflections. We follow the approach

proposed by Rowley et al.24 which consists in adding a forc-
ing term on the right-hand side of the governing equations.
In particular, we introduced the term − β̃(x, y)(q − qfs), where
qfs is the free-stream field imposed at the inlet. The damping
function β̃(x, y) must be a decaying function as proposed by
Rowley et al.24 Here, we use the same function adopted by
Yamouni et al.,25

β̃(x, y) = 0, if x3 ≤ x ≤ x4 and |y| ≤ y2, (11a)

β̃(x, y) =
�����
1 −

1
M

�����
f (x3, x), if x < x3 and |y| ≤ y2,

(11b)

β̃(x, y) =
�����
1 +

1
M

�����
f (x, x4), if x > x4 and |y| ≤ y2,

(11c)

β̃(x, y) = β̃(x, y2) +
�����

1
M

�����
f (y, y4), if |y| > y2, (11d)

with

f (a, b) =
2α

l2
s

(a − b),

FIG. 2. Base flow: contour plots of (a)
streamwise velocity Ub, (b) pressure
field pb, (c) temperature Tb, and (d) den-
sity ρb. Parameter settings: M = 0.2,
Re = 150.
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FIG. 3. Linear stability results at
M = 0.2: (a) growth rate σ and (b)
eigenfrequency ω as a function of the
Reynolds number.

FIG. 4. (a) Critical Reynolds number
and (b) critical eigenfrequency ω as a
function of the Mach number.

FIG. 5. Direct global mode. Contour
plot of (a) <{û}, (b) <{ρ̂ }, and (c)
<{T̂ }. Parameter settings: M = 0.2,
Re = 150.
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where α is a parameter related to the attenuation rate of the
propagating wave. We performed several tests to properly
choose the size of the domain and of the value of the parameter
α. For the computations presented in this paper, we selected
2α/l2

s = 10−4.
We used different meshes to test the influence of the dif-

ferent parameters on the accuracy of our results. Table I shows
the characteristics of these grids and the total number of tri-
angles inside the computational domain. The convergence test
(see Table II) on the leading eigenvalue at Re = 150 clearly
shows that the mesh M4 provides accurate results.

A. Self-consistent model solution

In the work of Mantič-Lugo et al.,12 the nonlinear system
of equations of the self-consistent model is solved iteratively
by means of a nested iteration loop. In the inner loop, they fix
the amplitude A and they solve sequentially the forced base-
state equations and the stability analysis around the mean flow
until convergence. In the outer loop, the amplitude is varied
until the perturbation becomes marginally stable.

In the current work, we used a monolithic approach.
The fully coupled system of equations (forced base state,
linear stability, perturbation normalization, and a phase

constraint) is solved by using a Newton-Raphson method
where the Jacobian is analytically determined and the
unknowns are [q,<(q̃),=(q̃), A,ω]. Note that we split the per-
turbation into its real and imaginary parts and in the stability
problem the growth rate is assumed to be null. The equations
for the amplitude and the frequency are, respectively, the mode
normalization and a condition on the value of the perturbation
phase. At each step, the arising linear system is solved by the
multifrontal, sparse LU solver MUMPS. Compared to the seg-
regated procedure, here we have an increased computational
cost but on the other hand we do not have the convergence
problem described by Mantič-Lugo et al.21 as the Reynolds
number increases. The procedure converged in the considered
range of Reynolds and Mach numbers in about 5 iterations,
given a reasonable initial guess, which is typically a previous
self-consistent solution.

IV. RESULTS
A. Base flow and global modes

We focus our attention on the stability characteristics of
the base flow, i.e., the solution of the steady form of the com-
pressible Navier-Stokes equations (1). We show the typical

FIG. 6. (a) Real and (b) imaginary parts
of the global p̂ mode.
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FIG. 7. Self-consistent model results.
We depict (a) the amplitude A and (b)
the frequency ω as a function of the
Reynolds number for a Mach number
equal to 0.2. We report also the DNS
frequency extracted from Inoue and
Hatakeyama’s13 data (see, e.g., Fig. 9).

shape of the base flow through contours of (a) streamwise
velocity Ub, (b) pressure pb, (c) temperature Tb, and (d) den-
sity ρb in Fig. 2. In particular, we focus our attention on the
most unstable eigenvalue provided by eigenproblem (5). We
show the evolution of the real part of the leading eigenvalue
in Fig. 3(a), while Fig. 3(b) shows the imaginary part of the
eigenvalue, i.e., the linear frequency of the global mode. The
critical Reynolds number is then identified by checking where
the real part of the leading eigenvalue changes its sign. We
found that the onset of the instability is Recr ≈ 47 which is
very similar to the threshold reported in the incompressible
case Recr ≈ 46.7 (see the work of Giannetti and Luchini26

for the numerical prediction or the work of Williamson1 for
the experimental results). Figure 4 shows the critical Reynolds
number and the associated frequency as a function of the Mach
number. We found that the onset of the instability occurs at a
larger Reynolds number as the Mach number increases, while
the eigenfrequency at the critical condition becomes smaller.

We chose to adopt a Mach number M = 0.2 and a
Reynolds number Re = 150 to be consistent with the parame-
ters adopted in the mean-flow stability analysis. In this way, we
can easily compare the results provided by these two different
approaches.

We depict the spatial structure of the direct global mode
in Fig. 5. In particular, Fig. 5(a) shows the distribution of
the real part of the streamwise velocity component <{û} of
the leading eigenmode at Re = 150 and M = 0.2. We note
that the spatial features of the global mode weakly change in
the range of Reynolds numbers reported in Fig. 3 (not shown
here for the sake of brevity). Generally, as for the incompress-
ible case, the maximum value of the streamwise fluctuations
moves upstream when the Reynolds number is increased. The
density <{ ρ̂} and the temperature <{T̂ } components of the
global mode are dominated by streamwise fluctuations located
downstream of the circular cylinder. Both these fields are
antisymmetric with respect to the x-axis.

Figure 6 depicts separately the real (a) and imaginary
(b) part of the global pressure p̂ mode. The development of
the fluctuation pressure field shown in these figures clearly
indicates that the pressure waves are generated from both the
upper and lower sides of the cylinder in response to the vortex
shedding. The same behaviour was found in the work of Inoue
and Hatakeyama13 by using direct numerical simulations.

B. Self-consistent model results: Sound propagation,
frequency, and noise intensity

Mantič-Lugo et al.12 proposed the self-consistent model
summarized in Sec. II D which consists of a semi-linear cou-
pling where the perturbation equation is linearized, while the
quadratic Reynolds stresses are kept in the mean flow equation.
They suggested adopting a monochromatic approximation of
the limit cycle for the flow past a circular cylinder.

They managed to select the correct amplitude A of the
linear perturbation on the mean flow solution. We recall here
that the closure condition of the self-consistent model is the
marginal stability condition, i.e., the amplitude is selected in
order to have marginal stability of the perturbation field on the
mean flow. In the present paper, we follow their procedure to

FIG. 8. Comparison on the directivity for the compressible flow past a circular
cylinder. Polar plot of the root mean square of the fluctuation pressure∆p̃M (see
the work of Inoue and Hatakeyama13 for further details). Parameter settings:
M = 0.2, Re = 150.
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FIG. 9. Comparison on the time histories of the surface noise (Pa). For the
Re = 150 cylinder, a comparison of the time histories of the surface noise is
plotted versus those of Inoue and Hatakeyama13 and Nitzkorski and Mahesh.27

Parameter settings: Re = 150, M = 0.2, θ = π/2, r = 100D.

correctly describe the acoustic field generated by the flow past
the bluff body.

Figure 7 shows the dependence of the amplitude A and the
related frequency on the Reynolds number for the fixed Mach

number M = 0.2. We note that the DNS frequency extracted
from the work of Inoue and Hatakeyama13 compares well with
the frequency computed by using the self-consistent model.
On the other hand, the eigenfrequency provided by the stan-
dard linear stability analysis cannot predict the DNS frequency.
We chose this particular Mach number because Inoue and
Hatakeyama13 and Nitzkorski and Mahesh27 reported several
numerical results for the same flow configuration considered
in the present paper. Thus we will compare our results with
the DNS data13 and Ffowcs-Williams and Hawkings acoustic
data.27 In particular, Nitzkorski and Mahesh27 proposed a
dynamic end cap methodology to account for spurious contri-
butions to the far-field sound within the context of the Ffowcs-
Williams and Hawkings acoustic analogy. They correlated the
quadrupole source terms over multiple planes to obtain a con-
vection velocity that is then used to determine a corrective
convective flux at the Ffowcs-Williams porous surface.

The amplitude curve [Fig. 7(a)] and the frequency
curve closely resemble the curves reported in the work of
Mantič-Lugo et al.12 for the incompressible case. As in
the case discussed by these authors, we found an excellent

FIG. 10. Spatial structure of the mean
flow field at M = 0.2 and Re = 150: (a)
streamwise velocity, (b) pressure field,
(c) temperature, and (d) density.
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FIG. 11. Leading mode computed on
the mean flow field depicted in Fig. 10:
(a) real part of streamwise velocity per-
turbation, (b) real part of density pertur-
bation, and (c) real part of the tempera-
ture.

approximation of the mean flow field and the perturbation on
it. Figure 8 depicts the polar plot of the root mean square of the
fluctuation pressures obtained by the self-consistent data. We
found a very good agreement with the DNS results (see also
Fig. 9) reported by Inoue and Hatakeyama.13 This polar dia-
gram shows the directivity of the pressure waves generated
by the vortex shedding at the Reynolds number of 150. This
plot confirms the dipolar nature of the sound field produced
by the body. More importantly, we got the same directivity of
Inoue and Hatakeyama13 that is equal to θ ≈ ±90◦. The results
reported here are obtained taking into account the Doppler
effect as discussed by Inoue and Hatakeyama.13 The details of
this procedure can be found in the Appendix.

The time histories of the pressure at θ = π/2 and r = 100D
are compared (see Fig. 9) against those of Inoue and
Hatakeyama13 and Nitzkorski and Mahesh.27 We found a very
good agreement both on the amplitude of the wave and on
its frequency. We underline that the quality of these results is
strongly related to the excellent description of the mean flow
and perturbation field provided by the self-consistent model.
Thus, the application of it can be used to correctly capture both
hydrodynamic and acoustic fields.

Figure 10 shows the velocity (a), pressure (b), temper-
ature (c), and the density (d) mean flow fields. The velocity
field is characterized by a shorter recirculation bubble than the
base flow computed at the same Reynolds number. Significant

differences with respect to the base flow can be observed also
in the other fields of the mean flow.

The marginally stable mode computed on the mean flow
field is shown in Fig. 11. As for the mean flow, the spatial
structure of this mode is largely different from the global mode
depicted in Fig. 5. In particular, the fluctuations are localized
in different positions of the wake region. However, this “mean
flow” mode presents the same symmetries of the global mode.
As we did previously for the mode computed on the base flow
field, we focus our attention to the pressure field because we
are mainly interested in the mechanism of noise generation.

FIG. 12. Real part of the pressure mode computed on the mean flow.
Parameters: Re = 150 and M = 0.2.
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FIG. 13. Self-consistent model results
for various Mach numbers. (a) Ampli-
tude A and (b) the frequency ω as a
function of the Reynolds number for the
Mach number from 0.2 to 0.6.

FIG. 14. Self-consistent model results.
We depict (a) the amplitude A and (b) the
frequency ω as a function of the Mach
number for a Reynolds number equal to
150. We compare a fully compressible
self-consistent model (red circle sym-
bol) and one where only the perturba-
tion part is compressible (blue square
symbol).

Figure 12 shows the real <{p̃} part of the pressure mode. As
for the other components, the structure of this field is quite
different with respect to the global mode. More importantly,
we underline the excellent agreement between the present field
and the one depicted by Inoue and Hatakeyama13 in Fig. 15 of
their work.

C. Effect of the Mach number

We investigate the effect of the Mach number on the results
of the self-consistent model. Figure 13 shows the amplitude A
and the frequency ω as a function of the Reynolds number for
three different values of the Mach number, viz., (0.2, 0.4, 0.6).
We observed that as the Mach number increases the frequency
of the shedding reduces while the amplitude becomes larger.
The effect is more accentuate at M = 0.6, where it is observable
also the shift of the instability onset to Recr ≈ 53.

We now investigate the effect of the compressibility of
the mean flow on the results. In order to do that we used a
self-consistent model where we set M = 0 only at the base
flow level and we used the incompressible definition of ampli-
tude A. Figure 14 shows that there is a small effect on both
the amplitude and the shedding frequency (and therefore on
the emitted-sound characteristics). The relative error for the
amplitude and for the frequency is always lower than 3% and
0.8%, respectively, and increases only when M reaches larger
values.

V. CONCLUSION

We numerically studied the sound generation produced
by a circular cylinder in a uniform compressible flow.

The main idea of the present paper is to apply the new self-
consistent model proposed by Mantič-Lugo et al.12 to recover
the intensity of the sound produced by the circular cylinder.
This model is based on a monochromatic approximation of
the limit cycle and allowed us to compute the amplitude of the
resulting linear mode and the effects of saturation on the mode
structure and acoustic field. This approach works well for the
present configuration because the second harmonic does not
contribute significantly to the limit cycle saturation for this
flow.12 However, should this assumption not be satisfied for
different flow configurations, a new approach recently pro-
posed by Meliga28 to account also for the contribution of other
harmonics could be exploited to extend the present analysis to
more general problems.

For the test case, we chose to adopt a Mach number of
0.2 to compare our approach to the results available in the
literature. For such a low Mach number, the classical linear
stability analysis showed that the eigenvalues and the eigen-
modes of the compressible flow are not very far from those of
the incompressible flow. In particular, we found that the criti-
cal Reynolds number at M = 0.2 is Recr ≈ 47, i.e., very similar
to the incompressible one. This fact confirms the idea that the
mean flow could be computed with an incompressible model
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for such a low Mach number, thus reducing the computational
burden.

Our results showed excellent agreement with those
obtained by a fully compressible, direct numerical simulation
(DNS)13 and those derived by the application of the Ffowcs-
Williams and Hawkings theory.27 Finally, we found that the
Mach number weakly affects the accuracy of the results.

APPENDIX: DOPPLER EFFECT

In this section, we briefly describe the procedure adopted
by Inoue and Hatakeyama13 to remove the Doppler effect
from the polar diagrams. We refer to their paper for further
details.

The procedure starts by defining the fluctuation pressure
∆p̃ as∆p̃(x, t) = p̄(x, t)− p̄mean(x), where p̄ is the flow pressure
(p̄ = p − p∞) and p̄mean is the time-averaged pressure. The
(periodic) fluctuation pressure can be expressed by means of
a Fourier series,

∆p̃ =
∞∑

n=0

An cos(nθ) + Bn sin(nθ).

The first term of this expansion is called the monopole
A0, the second term (n = 1) is called the dipole, and the third
term (n = 2) is called the quadrupole. In the compressible flow
past a circular cylinder, the sound generation is dominated
by the dipole coefficient B1. The Doppler effect modifies the
inherent polar diagram as the Mach number increases. Thus,
it is possible to introduce a modified fluctuation pressure ∆p̃M

as follows:

∆p̃ =
∞∑

n=0

∆p̃M
n

(
r ′

r

)n

,

r ′ = r/(1 −M cos θ),

where the Doppler factor (1 � M cos θ) is introduced. Thanks
to this transformation, we are able to remove the Doppler effect
from the flow field. In particular, we used this transformation
to plot the polar diagram in Fig. 8.
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