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Abstract—Expanding the market of mobile network services

and defining solutions that are cost efficient are the key chal-

lenges for next generation mobile networks. Network slicing is

commonly considered to be the main instrument to exploit the

flexibility of the new radio interface and core network functions.

It targets splitting resources among services with different re-

quirements and tailoring system parameters according to their

needs. Regulation authorities also recognize network slicing as a

way of opening the market to new players who can specialize

in providing new mobile services acting as “tenants” of the

slices. Resources can also be distributed between infrastructure

providers and tenants so that they meet the requirements of the

services offered. In this paper, we propose a model for dynamic

trading of mobile network resources in a market that enables

automatic optimization of technical parameters and of economic

prices according to high level policies defined by the tenants.

We introduce a mathematical formulation for the problems

of resource allocation and price definition and show how the

proposed approach can cope with quite diverse service scenarios

presenting a large set of numerical results.

Index Terms—Network slicing, infrastructure sharing, wireless

market, pricing mechanism, dynamic resource sharing

I. INTRODUCTION

T
HE traditional business model of mobile networks is
centered on operators who acquire licenses for spectrum

use, build their own infrastructure, and control the resource
allocation according to their needs. This model is currently
being challenged by a number of economic, regulatory, and
technical circumstances, which are expected to change the
mobile landscape in the near future.

The first well known factor that is challenging this model is
the exponential growth of mobile traffic (cf. [1]) that is pushing
operators to rapidly expand the capacity of their network with
technology upgrades, coverage densification, and spectrum
refarming. Unfortunately, the average revenues per user are not
growing with the same pace (in some countries they are even
decreasing) and the number of traditional users can no longer
be increased. This is leading to an aggressive cost optimization
and reduction that is not sustainable in the long run. A possible
solution to the problem is the evolution of the technology
towards supporting a larger set of applications beside the
traditional mobile broadband. It is important, that not only
the market expands but we use the network infrastructure
intelligently as well to further stimulate the digital growth.

Research and standardization work items on 5G networks
during the past few years have similarly been focusing on

Ö. U. Akgül and A. Capone are with Dipartimento di Elettronica, Infor-
mazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy.

I. Malanchini is with Nokia Bell Labs, Stuttgart, Germany.

forming a new technology not only to be able to improve the
performance of the previous network technologies, but also to
support a wide range of vertical applications with diverse and
stringent requirements in terms of throughput, delay, reliability
and energy [2]. However, due to some fundamental technical
limits, increasing the performance significantly, while satisfy-
ing all these heterogeneous constraints, is simply not possible,
and the network must be optimized depending on the specific
application domain. The concept of network slicing has been
introduced with the goal of allowing resource allocation to
different applications and traffic classes so that it meets the
various quality requirements [3].

Even if network slicing can be seen as a precious tool for
operators to manage their new generation networks, it poses
new challenges as well. A straightforward way of allocating
resources to different slices is through (almost) static parti-
tioning, which can however lead to low efficiency. Dynamic
resource allocation can be a solution, but it must accurately
consider traffic evolution and performance constraints of all
applications. Slicing the network might naturally generate new
participants in the market. The operators of the network slices,
named “tenants” in the 5G terminology, acquire resources from
the traditional operators, who are turning into infrastructure
providers in this changing environment. From the regulation
authorities perspective, using slicing as a tool for infrastructure
sharing, is a way of creating new market opportunities and
exploring new spectrum licensing strategies.

The idea of infrastructure sharing among multiple virtual
mobile operators has long been under considerations. Among
the alternative sharing approaches listed by the Organization
for Economic Co-operation and Development (OECD) report,
active sharing is considered to be the most cost-efficient shar-
ing approach [4]. Active sharing includes sharing both active
network elements and spectrum resources. Virtual operators
can then share resources with other operators and decrease
costs [5]. Although a number of different sharing scenarios
exist, the most common one includes a single infrastruc-
ture provider and a set of virtual mobile network operators
(MVNOs) who acquire resources to serve their users. Note
that MVNOs and tenants are similar in the sense that they
both manage resources and can provide specialized services,
the former in legacy networks while the latter as independent
entities. For a given quality target, sharing allows saving
resources by exploiting the multiplexing gain. The increased
efficiency in resource usage and the adaptability to traffic
conditions, are clear advantages [6] [7]. Infrastructure sharing
has some similarities with resource sharing in Cognitive Radio
Networks (CRNs) [8], but with the fundamental difference that
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tenants (or MVNOs) have equal rights to access resources and,
therefore, the problem is basically about resource negotiation
rather than opportunistic access.

Most of the proposed sharing models rely on pre-negotiated
service level agreements (SLAs) which regulate responsibili-
ties of each party and define the fraction of resources to be
assigned. Obviously, long term agreements with static resource
assignments are not able to follow the fluctuations in the
network demand [9]. Moreover, in wireless networks, there are
some geographical areas that are not profitable for the virtual
operators but still need to be covered by the infrastructure
provider and the associated costs are hard to be mapped into
SLAs. For these reasons, dynamic sharing of infrastructure
resources is a more attractive alternative where virtual oper-
ators or tenants can negotiate resource allocation based on
the needs following traffic and channel fluctuations [5] [10].
As argued in [7], the dynamic adjustment of the allocated
resources, gives operators the possibility to take more business
risks and thus, a dynamically shared wireless market tends to
foster innovation. Considering all these aforementioned factors
though, ensuring quality with heterogeneous traffic and with
different performance parameters still need to be addressed
in order to apply infrastructure sharing to network slicing
scenarios.

Unlike infrastructure sharing, network slicing is a relatively
new concept. Despite the commonly accepted definition of
vertically grouped network resources, the specific negotiable
attributes of each slice and the tools for service differentiation
are still under discussion in the related literature and standard-
ization bodies. In this work, we adopt the concept of a slice
as a set of dedicated network resources assigned for specific
services in a time interval. In order to assign resources to slices
efficiently, the channel conditions, traffic characteristics and
variations, and service heterogeneity must be considered [11].
The benefits of network slicing are investigated in [12]–[14]
considering static SLAs without dynamic resource adaptation.
The resource sharing among tenants in a sliced network is
also investigated in [15] and [16]. However, built upon well-
defined SLA shares, these works are unable to offer the
needed flexibility in the next generation wireless networks.
Moreover, they do not consider the long-term evolution of the
infrastructure resources, which requires a dynamic resource
pricing in line with the required capacity expansion. On
a different note, [17] focus on the design of an optimum
contract (i.e. SLA) among a set of infrastructure providers
and a single MVNO. However, regardless of how well the
agreed SLA is designed, the proposed over-restrictive structure
prevents the exploitation of the dynamic network conditions
(e.g. variations in the traffic demand or channel conditions).
A virtualization framework is proposed in [18], where the
resources are scaled according to tenants’ dynamic needs
and fairness is guaranteed not only between tenants, but also
between users of different services. The model however does
not consider adaptation to channel conditions and economic
aspects of resource trading. In [19], we have proposed the
first step towards dynamic network slicing in a shared network
where tenants are able to renegotiate their slice sizes. In our
proposed scheme, tenants retain service level guarantees, but

they can revisit the agreements on the allocated resources in a
very short time frame so that they can exploit fluctuations in
traffic and channel condition and can efficiently control costs.

An important element for tenants and their business strate-
gies (i.e. making long term plans, analyzing the possible risks
and performing innovation) is a reasonable and predictable
pricing model [7]. In the conventional network provisioning
model, the infrastructure provider (whether it is a local opera-
tor or a specialized entity) charges tenants according to costs
associated to the long-term infrastructure expansion strategy.
This long-term strategy may not always be in line with the
changes of the market and is definitely not able to meet all
the tenants’ interests [20]. The pricing model of infrastructure
providers can therefore create barriers for the entrance of new
players, as already shown for the traditional virtual mobile
operator approach in [21]. The structure of the competition
based on geographically distributed resources tends to favor
a small number of major operators [22], eventually leading
to a monopoly that can slow down innovation [7]. However,
with dynamic infrastructure sharing, since the resources are
pooled and tenants can adjust their shares dynamically, a
more efficient and neutral pricing framework can be potentially
achieved [23].

A reasonable approach is that of using variable market-
driven prices and allowing tenants trading the resources based
on needs and within short time frames. Unfortunately, it
is not possible to understand the relationship between the
economic aspects and the technical performance without a
well-defined model. Such a model would also enable, tenants
to exploit the full potential of dynamic sharing. Thus, a scheme
able to automatically define prices and resource allocation
based on high level tenant strategies and traffic estimation
is of fundamental importance [9]. Even if there is extensive
literature focused on the economic aspects (such as [21], [24])
and technical considerations (such as [25], [26]) separately, the
definition of techno-economic models for resource sharing in
sliced networks is still an uncovered area.

In this paper, we propose a dynamic wireless market model
that can flexibly adjust the share of resources, assigned to
network slices, to achieve the maximum utility for tenants.
The contributions of this work can be summarized as follows.
We propose:

• an enhanced wireless market model based on different
services and quality requirements using dynamic pricing
through the formulation (1a)-(1h) in Section III-A

• a two-step approach for adapting the network slices
according to the fluctuations of the achievable rate and
the variations of the traffic mix in short time scale in
Section III-B

• a dynamic updating mechanism for optimizing the slice
configuration based on the evolution of the resource dis-
tributions over time and the achieved spectral efficiency
in Section III-C

• exploitation of the anticipatory information of the achiev-
able rates for the resource allocation in Section III-D

The remainder of the paper is organized as follows: Sec-
tion II contains the system model and the main assumptions.
Following the system model, the optimization model is pre-
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Fig. 1. Proposed negotiation platform

sented in Section III. In Section IV, the behavior and the
validity of the optimization model are investigated through
simulations. Section V concludes the paper and discusses
possible extensions of the proposed approach.

II. SYSTEM MODEL

In order to provide a flexible and adaptive resource sharing
algorithm for network slicing in a multi-tenant environment,
we introduce a dynamic negotiation platform, shown in Fig. 1,
which interacts with the different stakeholders and, based on
the received inputs, allocates resources, assesses the perfor-
mance and evaluates the corresponding costs. Table I summa-
rizes the notation adopted in this work. In our system model,
the stakeholders are as follows: a set of tenants M , with index
m, sharing the downlink of a base station, an infrastructure
provider (InP) who provides the shared base station, and a
set of users K, who require heterogeneous services from their
corresponding tenant. Also, let the set Km be the set of users
of tenant m, and thus

P
m2M

|Km| = |K|. In particular, we

assume that each user requests only one type of service and
the number of active users per tenant, i.e. the cardinality of
Km, is the same for all tenants (i.e. tenants have similar market
shares). Note that such assumptions do not limit the generality
of the proposed model, and they are made mainly for the sake
of better understanding how the proposed framework is able
to adapt the resource allocation to different slices based on
different service requirements (and not due to the different
traffic load of each slice). Generally speaking, our algorithm
can cope with nonequivalent user distributions, which would
lead to similar average achieved utilities among users of the
same service type, but different resource distributions among
tenants (scaled according to the total number of users). Time
is discretized into slots, n, where N is the set of all time slots,
i.e. simulation horizon.

Service level agreements regulate the sharing of resources
between the InP and the tenants. We assume that the slice
of tenant m is defined by three parameters, Sm, �m and
Wm. Sm 2 (0, 1), referred to as guaranteed resource share,
indicates the ratio of resources that tenant m expects to
receive on average. Furthermore, to guarantee flexibility, we
assume that the resource allocation can deviate from the
guaranteed resource share. In particular, the maximum average
allowed deviation is denoted as �m (as introduced in [27]).
Namely, �m sets the limit on the maximum deviation from
Sm within a tenant-specific time window, Wm (over which
the average is computed). Therefore, within each time window

TABLE I
SUMMARY OF ADOPTED NOTATION

Symbol Meaning
M Set of tenants
m Index of a specific tenant
K Set of users
k Index of a particular user
N Total simulation horizon
n Index of a particular time slot
Sm Guaranteed resource share
�m Maximum average allowed deviation
Wm Time window of tenant m
RI Renegotiation interval
Uth Utility target
Bm Budget of tenant m
Cop Operational expenses
Cca Capital expenses
Cpre Pressure cost
xk[n] Assigned wireless resources to user k at n
rk[n] Achievable rate of user k at n
⇠m[n] Gap between the expected and achieved utility for tenant m
U1 Utility of a not-activated service
R1 The minimum rate for a service to be actived
U2 Utility of a service that receives standard quality
R2 Required achievable rate for standard quality
U3 Maximum achievable utility for a service
R3 Saturation point for a utility function

Wm, tenant m receives (on average) a fraction of resources
between (Sm��m, Sm+�m). Note that, the time constraint
imposed by the time window Wm can also be used to achieve
differentiation among tenants and corresponding services. As
opposed to [27], where sharing parameters were assumed to be
constant, in this work Sm and �m are periodically updated to
fully exploit the advantages of dynamic trading. Namely, the
period of such updates is set by the InP and is referred to as
“renegotiation interval” (RI).

Furthermore, we assume that tenants set their utility targets1,
Uth 2 (0, 1) and their available budgets, Bm. In contrast,
the InP is responsible for setting the respective costs of
the wireless resources (c.f. Fig. 1). The total cost of the
wireless resources consists of three parts, i.e., capital expenses,
Cca, operational expenses, Cop and pressure cost, Cpre. We
assumed that the infrastructure provider does not have profit
constraints and his main objective is to run a sustainable
business model. Therefore, Cca and Cop are scaling the cost
of the conventional infrastructure and the operational cost of
the resources. The pressure cost helps the regularization of
the resource allocation. Similar to any demand based market,
the pressure cost also regulates the resource consumption. For
instance, if the system does not have sufficient resources to
satisfy all the users, i.e. resource scarcity, the pressure cost
is set to be greater than zero, so that tenants will have less
incentive to buy resources (in terms of Sm), but more incentive
to trade resources (via �m). In contrast, in case the system has
more than sufficient resources for all the users, i.e, resource
surplus, the pressure cost is set to zero, reducing the overall
cost and increasing the incentive to buy. Moreover, pressure
cost can be seen as a way for the InP to collect the necessary

1In this work, we assume that all tenants select the same utility target,
however, an analysis of the effects of choosing different utility targets, as
means of differentiation for the tenants, has been proposed in [19].
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revenue in order to upgrade or expand the existing network
capacity (in case of resource scarcity). The pricing mechanism
is further explained in Section III.

Based on all the inputs described above as well as the users’
channel conditions, the proposed negotiation platform opti-
mally allocates the resources to the different slices. Namely,
let xk[n] be the wireless resources allocated to user k at time
slot n, and rk[n] the achievable rate for user k at time slot
n. The actual achieved rate of user k at time slot n is then
given by rk[n]xk[n]. Furthermore, we assume that each user
k produces a utility Uk[n] that depends on the achieved rate
as well as the requested service type. The average achieved
utility of tenant m at n is the average achieved utility over
all its users, i.e.

P
k2Km

Uk[n]
|Km| . The difference between the

utility target Uth and the average achieved utility is defined
as the tenant’s gap and denoted by ⇠m[n]. Such gap is used
to measure the performance of the proposed resource sharing
algorithm, where the best possible operating point is the one
for which the gap is equal to zero.

A. Utility Functions
Even if the quality perceived by the users depends on

several elements, we assume in this paper that it can be
quantified by using the achieved rate. We therefore consider
a generic continuous utility function Uk(Rk[n]), function of
the average achieved rate Rk[n], as shown in Fig. 2(a).
This function is used in our framework to model different
utilities for heterogeneous services. Namely, each specific
service function is determined by varying six parameters, i.e.
U1, U2, U3, R1, R2 and R3. The minimum rate, required to
consider a service as active, is assumed to be R1. When the
average achieved rate is lower than R1, i.e. Rk[n] < R1, the
utility function returns the utility value U1  0. In case the
service achieves the average rate of R1 than the utility returns
zero. R2 represents the standard quality for the services where
the utility function provides a utility value equal to U2. Finally,
R3 indicates the saturation point for the utility function, after
which the function becomes non-increasing. The maximum
utility for the service type, that is achieved at Rk[n] = R3,
is given by U3. Note that the modeling of the function by
using four regions (hence six parameters) reflects the idea
that the service quality can fall in either one of the following
categorizes: no service, low quality, high quality, maximum
quality (above which no further advantage is perceived by the
user). Furthermore, the choice of piecewise linear functions
is mainly due to mathematical tractability, but this does not
limit the validity of the proposed sharing platform, which can
incorporate also more complex functions.

Using the generic utility function presented above, we
defined the specific utility functions for four service types
envisioned for 5G: elastic services, inelastic services, machine
to machine (M2M) services and background services. In
particular, prioritization (or fairness) among services (and in
particular between critical and non-critical services) can be
set by using different (or equal) slopes of the utility functions
(e.g. between R1 �R2 and R2 �R3). A detailed description
of the specific utility functions chosen for the four different
services is provided here and presented in Fig. 2(b):

Rate (bps/Hz)

U
til

ity
, 
U

k 

R
1

R
2

R
3

U
3

U
2

U
1

(a) Generic utility function

Rate (bps/Hz)

U
til

ity
, 
U

k

Elastic

Inelastic

Background

M2M

(b) Exemplary utility functions

Fig. 2. Generic utility function (left) and exemplary utility functions per
service type (right)

1) Elastic traffic: By definition, elastic services, do not
have strict rate or delay constraints. Thus, we consider them to
be active as soon as the average achieved rate is greater than
zero, Rk[n] > 0, meaning R1 = 0 and U1 = 0. Moreover,
for elastic users we do not set any upper bound on their rate
expectations, meaning R3 ! 1 and U3 ! 1. Since the
service requirements are quite flexible, the utility function has
a smaller slope compared to the ones of the other services in
any of the same regions.

2) Inelastic traffic: Inelastic services, being a demanding
service type, require a minimum rate to provide service
availability, e.g. as in case of video streaming. For this reason,
we set R1 relatively high, e.g. to provide a continuous service
experience for the users. Similar to video streaming, the utility
of inelastic services (i.e. perceived quality) is highly affected
by the fluctuations of the achieved rate (e.g., the variations
in the video quality between 144p and 720p). Therefore, we
impose a steep slope between R1 and R2 to force a quick
increase in the utility as a function of the average achieved
rate. However, after reaching a certain quality, the increase
in the average achieved rate is less noticeable, and therefore,
we choose a lower slope between R2 and R3. As mentioned
above, to enforce fairness, the slope of inelastic services
between R2 and R3 is equal to the one of elastic services
between R1 and R2.

3) Background traffic: These services usually run in the
background and require relatively low rate. As soon as this is
achieved, the utility function reaches its saturation point, i.e.
R2 = R3. Furthermore, since they do not have a strict delay
constraint, the minimum utility is considered to be zero, i.e.
U1 = 0.

4) Machine to machine (M2M) traffic: We group M2M
services envisioned in 5G into three main categories and
model the M2M requests as a mixture of all three service
types. Namely, the M2M utility function represents three types
of services, i.e. emergency, low-rate-delay-sensitive and rate
sensitive. We assume that M2M incorporates all three services
but how the tenant-specific resource distribution is handled
within M2M is not in the scope of this work. However,
we assume that tenants will prioritize their M2M services
and assign resources accordingly. The emergency services,
which require low rate but with high priority, are modeled
with the R1 rate. Since not achieving this rate can have a
dramatic impact on the system, we set U1 to a negative value.
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Consequently, not serving the emergency services results in a
big gap for the tenants. The low rate and delay-sensitive M2M
applications are modeled between R1 and R2. As shown in
Fig. 2(b), since there is a delay constraint, the utility function
characteristic has a relatively large slope for these types of
services. Finally, for the rate constrained services, as the name
suggests, achieving higher rates has higher priority than having
a low delay. Therefore they are modeled between R2 and R3

with a relatively smaller slope.

III. SCHEDULING PROBLEM AND ANALYSIS

A. Mathematical programming formulation
The scheduler of the shared base station allocates resources

by using the optimization model formulated in (1a)�(1h).
The proposed techno-economic model runs in real time and
controls both the resource allocation and the respective price
negotiations in an online manner. Namely, the resource shares
of the tenants are dynamically chosen based on their Quality
of Service (QoS) expectations (i.e. the achieved rate per user
and tenant’s time window, Wm), the channel conditions and
tenant’s market power (i.e. their budget, number of users and
traffic mix). The optimizer dynamically assigns resources to
each slice per service type and per tenant to minimize the
total gap, i.e., as in (1a),

P
m2M ⇠m. By jointly optimizing

the resource allocations for all tenants, the scheduler has the
flexibility to prioritize the users with the best channel condi-
tions and therefore maximize the utilization of the resources
and spectral efficiency.

Constraint (1b) sets the gap of tenant m as the difference
between its target utility (i.e. Uth) and the sum of the achieved
utility over its users (i.e. sum of Uk(Rk[n])). Note that within
each time window, of length Wm, we evaluate the average by
considering the values from the beginning of the time window
to the current time slot n, i.e. over am + 1 time slots, where
am ⌘ n � 1 mod Wm. Therefore, the average achieved rate
for user k at time slot n is

Rk[n] =
1

(1 + am)

✓ nX

i=n�am

xk[i]rk[i]

◆
.

Furthermore, we assume that all the users have the same
importance to the tenants, thus, U3 = Uth/Km 8k 2 Km. By
selecting the same value of maximum utility, U3, for all the
users, the tenants also guarantee neutrality in their provided
services. However, depending on the agreements between the
service providers and the tenants, as well as in accordance
with regulatory constraints, this value can be changed, thus
allowing our model to include also non-neutral services.

The instantaneous average deviation from the guaranteed
resource share, ✏m[n], is given in (1c). Namely, the instan-
taneous deviation at n for tenant m is given by subtracting
the guaranteed resource share Sm from the average assigned
resource to the users of m, where the average, as done for the
average achieved rate, is evaluated from the beginning of the
current time window till time slot n.

Constraint (1d) ensures that ✏m[n] is not larger than �m,
which by definition is the tenant-specific maximum allowed
deviation. Note that ✏m can either be positive or negative,

min
xk[n]

X

m2M

⇠m[n] (1a)

s.t. Uth �
X

k2Km

Uk(Rk[n])  ⇠m, 8m 2M, (1b)

✏m[n] =

 
1

(am + 1)

nX

i=n�am

X

k2Km

xk[i]

!
� Sm, 8m 2M,

(1c)
|✏m[n]|  �m, 8m 2M, 8n 2 N, (1d)

nX

i=n�am

(Sm(Cca + Cop) + ✏m[i]Cop + fpre(Cpre, ⇠m))

 Bm(am + 1), 8m 2M,

(1e)

0  �m 
1

am + 1

nX

i=n�am

X

k2Km,elastic

xk[i], 8m 2M,

(1f)X

k2K

xk[n]  1, xk[n] � 0, 8k 2 K, (1g)

X

m2M

Sm  1 , Sm � 0, 8m 2M, (1h)

i.e. ✏m 2 [��m,�m]. The former case indicates that the
tenant has received – on average and within the current time
window – more resources than Sm, while the latter case
corresponds to the opposite.

Furthermore, constraint (1e) sets the budget constraint per
tenant. The first term of the left-hand side scales both CAPEX
and OPEX according to Sm, which means that in case of no
sharing (when �m = 0), the tenant will have to pay for the
requested resources. The second term, i.e. ✏m[n]Cop, allows
tenants to dynamically adjust their total costs according to
their resource usage and budget. Namely, if a tenants’ actual
resource usage is less than the guaranteed resource share (i.e.
✏m[n] < 0), then the tenant will not pay for the OPEX
cost of the unused resources. The third term of the budget
constraint is a function, fpre(Cpre, ⇠m), of the pressure cost
unit Cpre, defined by the InP, and of the tenant’s gap ⇠m.
Namely, the gap considered for the evaluation of the pressure
cost is the one obtained at the end of the previous time
window (i.e. it varies at every time window, but kept constant
within the same time window). The effects of the pressure
cost term are evident when, e.g., there is a resource demand
that exceeds the available resources. In this case, since the
resources are limited, the tenants face non-zero gaps, ⇠m > 0,
which corresponds to an increase of the pressure cost as well
as of the total cost of resources. This increase in the cost
pushes tenants to increase their �m and decrease Sm. In the
extreme case, tenants opt for full sharing, i.e. �m = 1, which
allows the scheduler to provide the most spectrum efficient and
cost efficient allocation. Moreover, the pressure cost allows
the infrastructure provider to accumulate additional revenues
not directly used for the current infrastructure, but envisioned
to support capacity expansion to meet the tenants’ quality
requirements. In this respect, scaling the pressure cost by the
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gap provides an accurate estimation of the capacity needed to
satisfy all the tenants.

Constraint (1f) forces the maximum deviation �m to be at
maximum, equal to the resources assigned to the elastic users
of tenant m, which implies that tenants are not willing to trade
resources used for critical, i.e. non-elastic, services. By setting
�m = 0, tenants indicate that their services are non-elastic and
they require the resources they stated by Sm. However, in this
case, they also lose the flexibility to adapt to traffic dynamics.
Finally, (1g) ensures that the assigned resources do not exceed
the total available resources in the system and, similarly, (1h)
limits the sum of all Sm to the total amount of resources.

B. Two-step approach
The formulation presented in the previous section is able to

capture the dynamics of the resource negotiation, considering
both the scheduling aspects and the economical constraints
(prices and budgets). However, due to its computational com-
plexity, it is not suitable to be used in real-time. Therefore,
we decided to split the problem into two, namely the decision
on the real time resource allocation and the decision on the
negotiations of the sharing parameters (Sm,�m).

In particular, we separate our model into two sub-problems,
P1 and P2. The first problem, P1, focuses on the real time
resource allocation with the objective of minimizing the total
gap and it is solved at every time slot n. During P1, the
sharing parameters (Sm,�m) are assumed to be constant and,
therefore, the constraints that regulates the sharing (i.e. (1f)
and (1h)) are inactive. The outcome of P1 is then given by
the allocated resources and corresponding tenants’ gaps. The
second problem, P2, is solved at the end of each time window,
by the update of the sharing parameters according to the
channel conditions of the users at that time and the tenants’
targets (i.e. in terms of Uth). In this case, the objective is
to find the best sharing parameters so that the total gap of
the previous time window is minimized. Namely, P2 receives
the achievable rates from the previous time window as input
and derives the optimum sharing parameters Sopt

m and �opt
m by

solving (1a)�(1h).
Note that even if both problems, P1 and P2 are derived from

the same formulation (1a)�(1h), they are actually separate and
different problems since the active variables (and constraints)
are different. Formally, P1 and P2 are defined as follows:

P1 := min
xk[n]

⇠m[n]

s.t. (1b), (1c), (1d), (1e), (1g)
P2 := min

xk[n],Sm,�m

⇠m[n]

s.t. (1b), (1c), (1d), (1e), (1f), (1g), (1h)

C. Update mechanism
As described above, P2 derives the optimum sharing pa-

rameters, i.e. Sopt
m and �opt

m , for all the tenants, in order
to achieve the minimum total gap

P
m2M

⇠opt
m . However, it is

important to remember that the optimization problem is solved
by using the achievable rates of the previous time window

only, meaning that Sopt
m and �opt

m are optimal only with respect
to the previous window. Therefore, to capture the statistic
nature of the channel over a longer time span, the sharing
parameters are updated with a weighted approach. Namely,
the new values for the sharing parameters, Snew

m and �new
m to

be used in the upcoming time window, are derived as:

Snew
m = ↵mSopt

m + (1� ↵m)Sold
m , (2)

�new
m = ↵m�opt

m + (1� ↵m)�old
m . (3)

where the feature scaling coefficient, ↵m, is calculated as:

↵m =
⇠m � ⇠opt

m

⇠m + ⇠opt
m

. (4)

By definition ↵m measures the difference between the
achievable optimum gap and the actual gap observed by the
tenant. For instance, when ⇠m = ⇠opt

m = 0, the feature scaling
coefficient is also 0, which means that the most recently
calculated sharing parameters are the optimum values and are
therefore also used for the upcoming time window without
scaling. In general, with the proposed update mechanism, our
framework is able to adapt to the varying channel conditions
in a reactive manner. The sharing parameters are automatically
updated to provide service quality which is satisfying the
tenants’ requirements while maintaining proportional fairness
among them. A thorough study of the ↵m selection and its
effects on the model’s adaptability has been proposed in [9].

In summary, the following Algorithm 1 is used to solve
the dynamic network slicing and resource trading problem
introduced in (1a)�(1h).

Algorithm 1 Two-step algorithm with update mechanism
Input: Cca, Cop, Cpre, Uth, Uk(Rk), Bm, rk, N,Wm, RI

1: for Every Renegotiation Interval RI do

2: for Every time slot in RI , n 2 RI do

3: xk[n], ⇠m[n] P1(rk[n], Sm,�m)

4: Sopt
m ,�opt

m , xopt
k , ⇠opt

m  P2(rk[n�RI : n� 1])

5: ↵m  ⇠m�⇠opt
m

⇠m+⇠opt
m

6: Snew
m  ↵mSopt

m + (1� ↵m)Sold
m

7: �new
m  ↵m�opt + (1� ↵m)�old

D. Exploiting the channel information
The real-time scheduling problem, P1, exclusively focuses

on the optimization of the current time slot n without taking
into account the upcoming slots. Thus, it is incapable of
fully exploiting the transmission opportunities. As a result,
P1 requires a larger amount of resources compared to the one
estimated by P2 in order to provide comparable performance.
As a matter of fact, P2 derives the minimum values of Sm

and �m, in order to minimize the gap, which are however too
restricting for P1. Therefore, to improve the performance of
P1, a channel-aware filter is designed to exploit the statistical
information of the channel.

Specifically, we design a channel-aware filter to evaluate
the rate expectations for the upcoming time slots of each user,
while scheduling the resources for the given time slot n. Even
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Fig. 3. Variation of the sigmoid function for different a1 (left) and a2 (right)
values

though prediction techniques of the channel characteristics are
out of scope of this paper, we assume that the infrastructure
provider can learn a statistical profile of the channel behaviors.
Therefore, we assume that there is available data on the
probable density rate on each available user, k 2 K, for
the infrastructure providers. Based on this data the probability
can be evaluated for each specific user within the given time
window, whether the user is in the “best” time slot to assign
resources, Prk[n] = P (rk[n] � rk[i] 8i 2 W ) 2 [0, 1], i.e.
the slot with best channel conditions compared to the other
time slots. In particular, a probability value of 0 indicates that
the channel condition at slot n is the worst that can ever be
observed, thus, the scheduler should avoid assigning resources,
while a value of 1 means that the current channel condition is
the best possible and therefore as many resources as possible
should be assigned. However, we do not use this probability
directly, but we filter it as described below before passing it
as input to P1.

We design a two-step filtering function to map the statistical
information onto the assignment decisions. As a first step,
the statistical information is scaled using a sigmoid function,
i.e. f(Prk[n], a1, a2) = 1/(1+e�a1(Prk[n]�a2)), as presented
in Fig. 3. The characteristic of the sigmoid function can be
controlled by using two parameters, i.e. [a1, a2] (cf. Fig. 3(a)
and Fig. 3(b)). The former parameter, a1, controls the slope
of the linear region of the sigmoid and indirectly controls the
resource efficiency. Namely, assuming that the number of users
is low, decreasing the slope of the linear region leads to a
situation where unassigned resources exist while the tenants
cannot achieve their goals. In contrast, increasing a1 results
in assigning resources also with bad channel conditions, thus
decreasing the efficiency of the channel utilization. The latter
parameter, a2, allows the shift of the sigmoid function (c.f.
Fig 3(b)). In this case, choosing large values of a2 gives
advantages only to the users with high probabilities. However,
when tenants select small time windows, it leads to unassigned
resources even in the presence of gaps. In contrast, small
values of a2 equalizes all users making the filter ineffective.

The output of the sigmoid function, f(Prk[n], a1, a2), pro-
vides an understanding on how good the channel conditions
for a specific user are with respect to what the certain user can
achieve in the given time window. However, f(Prk[n], a1, a2)
does not give information on how good the channel is with
respect to the other users in that time slot. Therefore, this first

step of the filtering process might not be sufficient to guide
the scheduler when there is a significant difference among the
distributions of the users’ channel.

Consequently, an additional filtering step is introduced to
capture these variations among the users’ channel conditions.
More specifically, taken the output of the sigmoid function,
f(Prk[n], a1, a2), the second step outputs f(Prk[n], a1, a2)p,
where p is scalar. If the variations in the achievable rates
among users are negligible, e.g. the users have similar
pathlosses, the p value can be set to 1. In contrast, if the
difference is not negligible, a larger value of p should be
chosen.

The output of the filter function, referred to as “priority
coefficient” and indicated by �k[n], is then used by the
scheduler to give priority to the users with the best channel
condition (i.e. �k[n] = 1) and to discard the users with
the worst channel conditions (i.e. �k[n] = 0). In order to
incorporate this information into P1, the constraint (1b) is
updated as

Uth �
X

k2Km

�k[n]Uk(Rk[n])  ⇠m, 8m 2M. (5)

Since the channel information is used to guide the real-time
scheduling algorithm, the gap values calculated by P2 are then
derived without priority coefficients, as given in (1b).

Note that the specific values chosen for [a1, a2] as well as
p, combined with the channel conditions, affect the resource
allocation. Hereafter, we do not discuss the policies used
by the tenants to select those values, but assumed they are
given (i.e. we empirically derived those used for the numerical
evaluation).

IV. SIMULATION RESULTS

In this section, we first present the parameters and the
simulation setup used for the evaluation and then show the
effectiveness of the proposed algorithms with some numerical
results.

A. Parameters and simulation setup
We consider the downlink of a single base station, shared

among |M | tenants. Unless specified otherwise, each tenant
serves |Km| = 4 users and each user is associated with a
specific traffic type, i.e. elastic, inelastic, M2M or background.
The total set of users, K = [mKm, is distributed homoge-
neously in the coverage area of the base station and considered
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Fig. 4. Changes in the characteristic of the filter function according to the
variations of p
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TABLE II
SERVICE SPECIFIC PARAMETERS AND THEIR VALUES

Parameter Elastic Inelastic M2M Background
R1 (bps/Hz) 0 0.1 0.01 0.05
R2 (bps/Hz) 1.083 0.225 0.075 0.07
R3 (bps/Hz) 1 0.55 0.4 0.07

U1 0 -0.5 -1 0
U2 1 0.7 0.7 1
U3 1 1 1 1

to be active during the whole simulation, which is set to
N = 5000 transmission time intervals (TTIs). Depending
on the considered technology, capability of the base station
and physical constraints, the TTI can be translated into a
specific time duration such that enough time is given to the
proposed mechanism to converge to the optimum solution.
The presented results are averaged over 100 independently
generated instances.

The parameters that are used for the utility functions, pre-
sented in Fig. 2, are given in Table II. The utility target is Uth =
|Km|, 8m 2M . Unless specified otherwise, the length of the
time window, Wm, is considered to be equal for all tenants.
The time window for the renegotiation interval is assumed to
be 80 TTI long. The values used for the costs and budgets
are Cca = 20, Cop = 20, Bm = 100, 8m 2 M . As proposed
in [9], when tenants have the same budget, the pressure cost
is evaluated as Cca scaled by the number of tenants, i.e.
Cpre =

Cca
|M | and f(Cpre, ⇠m[|Wm|]) = ⇠m[|Wm|]⇥Cpre/|Wm|.

A frequency flat fading channel is assumed between the base
station and the users. This is model by using i.i.d. Rayleigh
coefficients, which lead to exponential channel gains, |hk[n]|2.
Based on that, the Signal to Interference-plus-Noise Ratio
(SINR) is calculated for each user k at each time slot n as:

�k[n] = |hk[n]|2
Pd�↵

k

�2 + I0
, (6)

where P is the transmit power (in Watts), dk is the distance
between the user k and the base station (in meters) and ↵ is the
path-loss exponent. In this work, the interference is modeled as
the sum of the thermal noise, �2 and the average interference,
I0. Therefore, by using (6), the achievable rate of user k at
time slot n is expressed by

rk[n] = log2(1 + �k[n]). (7)

Finally, the considered filter values (introduced in Sec-
tion III-D) are set to a1 = 10, a2 = 0.5, p = 3.

B. Time complexity analysis

As briefly analyzed in [9], the renegotiation interval, which
is set by the InP, affects the time complexity of the algorithm.
Table III depicts the variation of average computation time of
P1 and P2 depending on the renegotiation interval in a scenario
with |M | = 3, |K| = 12. The simulations are run in Matlab,
whereas the optimization problems P1 and P2 are solved by
the Gurobi commercial solver [28]. The simulations are run
on a Intel 2.4 GHz PC with 6 GB of RAM.

The results show that the longer the renegotiation interval is,
the longer it takes to solve P2. This is reasonable though since
the algorithm has to find the optimal sharing parameters over
a longer time interval. In contrast, the duration of solving the
real time scheduler, P1, is not heavily affected by the length
of the renegotiation interval.

TABLE III
EFFECTS OF RENEGOTIATION INTERVAL ON COMPUTATION TIME

Renegotiation Interval P1 duration (sec) P2 duration (sec)
5 TTIs 0.0015 0.0431
25 TTIs 0.0012 0.1923
50 TTIs 0.0016 0.5069
80 TTIs 0.0011 1.4832

100 TTIs 0.0015 2.4412

Note that both P1 and P2 have time constraints dictated by
the system model we proposed. Namely, we need to run P1

every time slot and P2 every time window. In order to obtain
acceptable computation time for real time implementation, two
different approaches could be used. On one hand, P1 could be
run using more powerful machine to reduce the computation
time. On the other hand, for cases where the computational
time of P2 becomes too large, an alternative heuristic approach
could be proposed, which is, however, out of the scope of this
paper.

C. Value of channel information
In Sec. III-D, we introduce a channel-aware filter to in-

tegrate the statistical channel information into the real time
scheduler. Basically, we propose to replace constraint (1b)
with constraint (5). The proposed channel-aware approach is
a simple prediction algorithm, that evaluates current channel
conditions taking into account past observations and future
expectations.
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Fig. 5. Effects of integrating channel information on the total gap, for |M | =
2, |K| = 8

Hereafter, we want to show the effects of exploiting such
channel information on the total achieved gap with respect
to: (1) the case without channel information (P1 solved using
constraint (1b)) and (2) the case with perfect knowledge of
the future channel conditions (Oracle scenario). Fig. 5 shows
the results for |M | = 2 tenants and |K| = 8 users. Our
observation is that feeding the model with an estimation of the
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channel allows the scheduler to better detect the instantaneous
opportunities and to increase resource and cost efficiency, by
decreasing the total gap.

TABLE IV
CHANNEL INFORMATION’S IMPROVEMENT ON THE TOTAL GAP WITH

RESPECT TO NO-CHANNEL INFORMATION CASE

|K| Improvement of total ⇠m
8 33.2%

16 38.5%
24 38.6%

Table IV shows the effect of increasing the number of
users |K| on the total gap, as percentage improvement with
respect to no-channel information case. Increasing |K| gives
the scheduler a higher flexibility in exploiting the transmission
opportunities and also higher probability to detect good time
slots. In contrast, when |K| is small, the scheduler needs
higher accuracy to detect transmission opportunities. How-
ever, we can also observe that the performance improvement
saturates when further increasing the number of users. This
indicates a limit in the improvement that can be achieved by
using this approach.

D. Symmetric traffic scenarios
In this section, we report results for a case in which |M | = 3

tenants have symmetric traffic (the same amount of users per
service type).
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Fig. 6. Average resource distribution and average total cost per tenant for
|K = 12|

Due to the symmetry among tenants, we can observe an
equivalent resource and cost distribution, as shown in Fig. 6.
This proves that, as desired, in symmetric cases our model
behaves perfectly fair among tenants. Furthermore, Fig. 7
reports the average utility per tenant per service and, as
above, we can observe that there is a symmetric behavior
among tenants, but different prioritization among slices, i.e.,
services. Namely, due to the utility based prioritization, when
the system does not have sufficient resources to fully satisfy all
of them, the elastic users are penalized and reach lower utility
compared to the other services. Moreover, both inelastic and
M2M services are achieving an average utility less than 1 due
to the utility function used (c.f. Fig. 2(b)). To be more precise,
after reaching the utility value of U2, all the services have the
same slope, that provides fairness between elastic service and
the rest of the services.
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Fig. 7. Average utility per service per tenant

Now, we show how the proposed framework reacts to load
changes. In particular, we increase the number of users of
each tenant to |Km| = 16 users (i.e. total number of users
|K| = 48), while keeping fixed the system capacity and
utility function parameters. As shown in Fig. 8, despite the
strong competition for resources, fairness among tenants is
still achieved. Moreover, in Fig. 8(b) even more emphasis
is shown on the prioritization given to different services. As
expected, the elastic traffic, which has the lowest priority, is
being affected mostly from the resource scarcity. In contrast,
such prioritization guarantees that the emergency and low-
rate-delay-sensitive M2M traffic (i.e. defined in Section II-A4)
can achieve the service expectations even in such an extreme
scenario (which is proved by the fact that for this service type
at least utility equal to U2 is achieved).

34%

33%

33%

Tenant 1

Tenant 2

Tenant 3

(a) Average resource distribution

Tenant 1 Tenant 2 Tenant 3
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
d

 S
u

m
 o

f 
U

til
ity

Elastic

Inelastic

M2M

Background

(b) Average utility per service

Fig. 8. Average resource distribution and average utility per service per tenant
for |K| = 48
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Fig. 9. Adaptation of �m to the increasing traffic

Another interesting effect of the increasing load is shown
in Fig. 9. We can observe that resource scarcity affects the
tenant’s willingness of trading resources. As a matter of fact,
when |K| = 12, �m converges to a non-zero value, which
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guarantees a certain level of flexibility in resource allocations
(c.f. Fig. 9(a)). This flexibility allows the scheduler, and
tenants, to adopt an opportunistic behavior thus enhancing cost
and resource efficiency. On the other hand, when the load
drastically increases (c.f. Fig. 9(b)), the inability of serving
elastic users forces �m = 0, 8m 2 M , thus reducing the
flexibility of sharing.

E. Impact of time window

In this section, we analyze the impact of time window
differentiation among tenants. Fig. 10 and Fig. 11 show the
effects of varying the time window length on the resource
distribution between |M | = 2 tenants in case of resource
scarcity and resource surplus, respectively.
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Fig. 10. Effects of window differentiation on average resource distribution
per tenant in resource scarcity scenario
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Fig. 11. Effects of window differentiation on average resource distribution
per tenant in resource surplus scenario

Generally speaking, smaller time windows indicate that
the tenant’s requirements need to be satisfied with higher
frequency (i.e. within a shorter time frame). Therefore, due to
the more stringent delay constraints, the InP has to prioritize
the tenant with smaller Wm in order to be able to satisfy its
utility target. On one hand, this prioritization does not affect
the resource distribution between the two tenants, whenever
there are sufficient resources to satisfy all the tenants, i.e.
resource surplus (cf. Fig. 11). On the other hand, however,
in case of resource scarcity (cf. Fig. 10), the priority given
to the tenant with smaller time window (Tenant 2 in this ex-
ample) causes an imbalance in the resource allocation, which
increases proportionally the difference between the window
lengths. Since choosing a smaller time window corresponds
to potentially getting more resources, the selection of this
parameter has to be monitored by the InP or a regulatory body.

Fig. 12 shows the effects of time window differentiation on
the average utility per tenant per service in case of resource
scarcity. As expected, the tenant with smaller time window
receives a higher priority in the scheduler, which corresponds
to a higher average utility with respect to the one achieved
by the other tenant. Furthermore, results show that the service
which is most penalized by the prioritization is the elastic one.
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Fig. 12. Effects of window differentiation on average utility per service in
resource scarcity scenario
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Fig. 13. Effects of window differentiation on average total cost per tenant in
resource scarcity scenario

In contrast, non-elastic services are preserved by the utility
based prioritization (i.e. the slopes of the utility functions
shown in Fig. 2(b)) and experience only marginal decrease
in the achieved utility. On the other hand, the tenant with
smaller time window perceives an increase in utility for all
the services, for critical as well as for elastic services. Note
that this implies the negative effect of reducing the efficiency
in resource usage, since more resources are assigned to either
of the two tenants, independent of the channel conditions of
its users.

Finally, Fig. 13 and Fig. 14 report the economic effects
of window differentiation. Fig. 13 shows that, according to
the resource distribution, the tenant with smaller Wm pays
a higher cost, on average, while the tenant with larger time
window length decreases the total costs. On the other hand,
Fig. 14 reveals that the tenants’ actual average cost per bps/Hz
is similar for all cases. This confirms that the costs paid by
the tenants is actually proportional to the resources they get.
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Fig. 14. Effects of window differentiation on average total cost per bps/Hz
in resource scarcity scenario

F. Adaptation to changes in traffic mix
In [19], we analyze the ability of the proposed model

to adapt to the changes of the wireless environment. Also
we conclude that, in case of resource scarcity, such changes
mainly affect the elastic services and our model is able to
converge to a new optimal state adapting to the new conditions.
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In other words, we investigate a resource surplus scenario, and
analyze the reaction time and the effects of varying the traffic
mix of the tenants.
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Fig. 15. Adaptation to the variations in the traffic mixture

Fig. 15 shows the adaptation to the changes in the traffic
mix. In particular, we assume that till n = 1920, the two
tenants have symmetric traffic, i.e. 1 user per service type and
a total of |K| = 8 users. At n = 1920, the traffic mix of the
tenants changes as follows: the first tenant retains only non-
critical services (i.e. it has 2 users with elastic services and
2 users with background services) while the second tenant
specializes on critical services (i.e. 3 users with inelastic
services and 1 user with elastic service). In Fig. 15(a), we
can observe, between n = 1920 and n = 2000, a gradual
change in the instantaneous assigned resources. After at least
one renegotiation interval, the tenant’s sharing parameters
are updated, and this leads to a converge of the resource
assignment. In Fig. 15(b) and Fig. 15(c), the average utility
per service per tenant is shown before and after the traffic
mix change, respectively. Note that, after the change, the
elastic services achieve smaller utility on average. This is due
to the fact that the number of users per service increases,
which means that the resources requested by the non-elastic
service (background for tenant 1 and inelastic for tenant 2)
also increase.

G. Service specialized tenants
This section investigates the effects of service specialization

on the proposed model. More specifically, we analyze the
coexistence of four tenants with only one service type and
one tenant with multiple service types. This also helps us
addressing the question on whether our framework motivates
tenants to enter the sharing market as specialized tenants or, in
contrast, it is neutral to this choice. Therefore, we consider the
scenario with |M | = 2 tenants, where the first tenant enters

the market as virtually 4 different tenants (one per type). Also,
we assume |K| = 16 users in total (2 users per service per
tenant).
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Fig. 16. The average utility per services per tenant

Fig. 16 clearly shows that entering the market as specialized
tenant does not provide any advantages in terms of average
achieved utility. Furthermore, Fig. 17 shows that a symmetry
between the specialized tenants and the tenant with multiple
services also exists in terms of the total average costs. Finally,
Fig. 18 reports the resource distribution among tenants, which
clearly indicates that also resources are split equally (i.e. each
tenant gets approximately half of the available resources).

We can conclude that the proposed framework and the cor-
responding pricing mechanism are neutral to service special-
ization. Also, service prioritization (defined in Section II-A)
is preserved and fairness is achieved in terms of both resource
allocation and costs.
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Fig. 17. The average total cost per service per tenant
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Fig. 18. Effects of service specialization on resource distribution

H. Costs and utility in different sharing scenarios
In this subsection, the effects of the number of tenants |M |

on the average cost per tenant and the average utility per tenant
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(b) Long term

Fig. 19. Effects of increasing number of tenants on the average utility and
average costs per tenant

per service are investigated. The analysis is conducted consid-
ering two different time scales, i.e. short term and long term.
In the short term, we assume that the infrastructure provider
cannot react to the increase of the number of tenants |M |
(and thus users |K|), e.g., expanding the available capacity. In
contrast, in the long term capacity can be scaled according to
the demand.

Fig. 19(a) shows the result for the short term analysis,
where the capacity is kept fixed while increasing |M |. On the
other hand, Fig. 19(b) presents the result for the long term
assumption, where the capacity is proportionally increased
with |M |. Namely, we assume that the increase in capacity
is achieved by the infrastructure provider increasing the total
bandwidth. Results show that in the short term, see Fig. 19(a),
increasing the number of tenants causes a resource scarcity and
leads to a decrease of the average utility per tenant as expected.
On the other hand, as shown in Fig. 19(a), the increase in |M |
also causes a decrease of the individual costs of tenants. In
contrast, when considering a longer time scale (in the order of
months), the infrastructure provider can react to the changes in
|M | and adjust the available capacity according to the needs.
In this case, as depicted in Fig. 19(b), the average achieved
utility and the average cost are not a function of |M | (i.e. are
almost constant when varying |M |).

Therefore, on one hand we can conclude that, in the long
term, if the InP is able to expand the network capacity ac-
cording to the tenants’ needs, the proposed platform provides
a sustainable resource sharing even when increasing |M |.
On the other hand, in the short term, we cannot draw any
conclusion only based on Fig. 19(a), since a decrease of
the average utility could be compensated by a decrease in
terms of cost (and hence price for the users). To evaluate the
tradeoff between utility and cost (price), we use the concept
of acceptance probability presented in [29]. In particular, the
authors propose to model the acceptance probability as:

Ak(p, Uk) = 1� exp(�Cp�✏Uµ
k ), (8)

which basically corresponds to the likelihood of user k to
accept a service with price p and a corresponding utility Uk,
where µ and ✏ are microeconomic parameters and C is a
constant (that we set to the same values suggested in [29]).

To assess the sustainability of the sharing platform, we
assume that each tenant aims to keep its profit constant,
regardless of the number of tenants. This means that a variation

of the costs directly affects the prices (that are computed as
the sum of the costs and the profit). Therefore, increasing |M |
is accepted by the tenants, if the market share (i.e. the number
of users) of each tenant is not decreasing, meaning that the
acceptance probability (Ak(p, Uk)) should be a non-decreasing
function of |M |.

By using (8), the condition above can be used, for two
generic values |M1|  |M2|, as:

Ak,M1(pM1 , Uk,M1)  Ak,M2(pM2 , Uk,M2), (9)

where

Ak,M1(pM1 , Uk,M1) = 1� exp(�Cp�✏
M1

Uµ
k,M1

),

Ak,M2(pM2 , Uk,M2) = 1� exp(�Cp�✏
M2

Uµ
k,M2

).

Assuming that the parameters µ, ✏, and C are the same for
both M1 and M2, (9) can be formulated as

✓
Uk,M1

Uk,M2

◆µ


✓
pM1

pM2

◆✏

. (10)

Satisfying (10) means that the variation in the average utility
is accepted by the users since it is compensated by the decrease
of the service price. In this case, the acceptance probability of
k 2 K is a non-decreasing function of |M |.

Considering the same scenario of Fig. 19, Table V reports
the numerical values for (10). As one can observe, inequality
is always satisfied, which means that the users are paying less
for their utility, and they are still willing to accept the service.
Therefore, we can conclude that our proposed model provides
a cost efficient and sustainable model even in short term.

TABLE V
VARIATION OF AVERAGE UTILITY AND TOTAL COSTS PER TENANT WITH

THE NUMBER OF TENANTS IN SHORT TERM

|M1| ! |M2|
✓

Uk,M1
Uk,M2

◆µ ⇣
pM1
pM2

⌘✏

2 ! 3 1,2834 3,7822
3 ! 4 1,1744 2,6893
4 ! 5 1,1372 2,2142

A further insight is given in Table VI, where Eq. (10) is
evaluated for all the slice types (where ‘yes’ means that the
Eq. (10) holds). In this case, we can see that, by increasing
the number of tenants from |M | = 4 to |M | = 5, the
acceptance probability of the elastic users decreases, whereas
always increases for non-elastic services. This means that the
tenants have a risk of losing some of the elastic traffic.

TABLE VI
EVALUATION OF THE USERS’ ACCEPTANCE PROBABILITY FOR ALL SLICE

TYPES (WE USE ‘YES’ TO INDICATE THAT EQ. (10) HOLDS, ‘NO’
OTHERWISE)

|M1| ! |M2| Elastic Inelastic M2M Background
2 ! 3 Yes Yes Yes Yes
3 ! 4 Yes Yes Yes Yes
4 ! 5 No Yes Yes Yes
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The decrease in the acceptance probability of elastic ser-
vices can be handled by an accurate and timely capacity
expansion. The proposed pressure cost allows the infrastruc-
ture provider to accurately estimate the capacity needs and
the expansion time. Even though increasing |M | leads to
lower utilities, since the collected pressure cost proportionally
increases with the utility decrease, higher |M | also implies
faster capacity expansions.

V. CONCLUSION

We have shown that dynamic network slicing offers an effi-
cient way of exploiting variable traffic and channel conditions
to share resources among tenants, following different strate-
gies, bearing different characteristics. Our proposed scheme
defines a new platform where tenants can acquire resources
within a short time frame, negotiating through a set of network
and economic parameters. Our numerical results demonstrate
that the proposed approach provides fairness among both
tenants and services and can improve the efficiency of resource
allocation up to 40% by exploiting simple prediction mech-
anisms. Despite the tenants share a common infrastructure,
results have also demonstrated that it is possible for them to
differentiate their services by tuning model parameters. We
have also shown that the pricing model can allocate economic
resources for capacity expansion and that this is crucial to keep
infrastructure sharing convenient for the tenants.
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