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Abstract

Among the image forensic issues investigated in the last

few years, great attention has been devoted to blind camera

model attribution. This refers to the problem of detecting

which camera model has been used to acquire an image

by only exploiting pixel information. Solving this problem

has great impact on image integrity assessment as well as

on authenticity verification. Recent advancements that use

convolutional neural networks (CNNs) in the media foren-

sic field have enabled camera model attribution methods to

work well even on small image patches. These improve-

ments are also important for determining forgery localiza-

tion. Some patches of an image may not contain enough

information related to the camera model (e.g., saturated

patches). In this paper, we propose a CNN-based solution to

estimate the camera model attribution reliability of a given

image patch. We show that we can estimate a reliability-

map indicating which portions of the image contain reli-

able camera traces. Testing using a well known dataset

confirms that by using this information, it is possible to in-

crease small patch camera model attribution accuracy by

more than 8% on a single patch.

1. Introduction

Due to the widespread availability of inexpensive image

capturing devices (e.g., cameras and smartphones) and user-

friendly editing software (e.g., GIMP and Adobe Photo-

Shop), image manipulation is very easy. For this reason, the

multimedia forensic community has developed techniques

for image authenticity detection and integrity assessment

[1, 2, 3].

Among the problems considered in the forensic litera-

ture, one important problem is camera model attribution,

which consists in estimating the camera model used to ac-

quire an image [4]. This proves useful when a forensic an-

Figure 1. Reliability map representation for an example image

taken with a given camera. In this case, patches belonging to the

sky (green box) are more likely to provide accurate camera model

attribution than patches containing textures (red box).

alyst needs to link an image under investigation to a user

[5], or to detect possible image manipulations [6, 7] (e.g.,

splicing of pictures from different cameras).

Linking an image to a camera can in principle be triv-

ially done exploiting image header information (e.g., EXIF

data). It is also true that image headers are not reliable (e.g.,

anyone can tamper with them) or not always available (e.g.,

decoded images and screen captures). Therefore, the need

for a series of blind methodologies has led to the develop-

ment of pixel-based only information extraction methods.

These methods leverage the fact that image acquisition

pipeline is slightly different for each camera model and

manufacturer (e.g., different sensors and color equalization

techniques). Therefore, each image contains characteristic

“fingerprints” that enable one to understand which pipeline

has been used and hence the camera model. Among these

techniques, exploiting photo sensor non uniformity (PRNU)

is particularly robust and enables camera instance identifi-

cation [8, 9]. Other methods exploit traces left by color filter

array (CFA) interpolation [10, 11, 12], camera lenses [13],



histogram equalization [14] or noise [15]. Alternatively,

a series of methods extracting statistical features from the

pixel-domain and exploiting supervised machine-learning

classifier have also been proposed [16, 17, 18].

Due to the advancements brought by deep learning tech-

niques in the last few years, the forensic community is also

exploring convolutional neural networks (CNNs) for cam-

era model identification [19]. Interestingly, the approach

in [20] has shown the possibility of accurately estimating

the camera model used to acquire an image by analyzing

a small portion of the image (i.e., a 64 × 64 color image

patch). This has lead to the development of forgery local-

ization techniques [21].

In this paper we propose a CNN-based method for es-

timating patch reliability for camera model attribution. As

explained in [22], not all image patches contain enough dis-

criminative information to estimate the camera model (e.g.,

saturated areas and too dark regions). Leveraging the net-

work proposed in [20], we show how it is possible to de-

termine whether an image patch contains reliable camera

model traces for camera model attribution. Using this tech-

nique, we build a reliability map, which indicates the like-

lihood of each image region to be possibly used for camera

model attribution, as shown in Figure 1. This map can be

used to select only reliable patches for camera model attri-

bution. Additionally, it can also be used to drive tampering

localization methods [21] by providing valuable informa-

tion on which patches should be considered to be unreliable.

The proposed method leverages CNN feature learning

capabilities and transfer learning training strategies. Specif-

ically, we make use of a CNN composed by the architec-

ture proposed in [20] as feature extractor, followed by a se-

ries of fully connected layers for patch reliability estima-

tion. Transfer learning enables to preserve part of the CNN

weights of [20], and train the whole architecture end-to-end

with a reduced number of image patches. Our strategy is

validated on the Dresden Image Database [23]. We first val-

idate the proposed architecture and training strategy. Then,

we compare the proposed solution against a set of base-

line methodologies based on classic supervised machine-

learning techniques. Finally, we show how it is possible to

increase camera model attribution accuracy by more than

8% with respect to [20] using the proposed method.

2. Problem Statement and Related Work

In this section we introduce the problem formulation

with the notation used throughout the paper. We then pro-

vide the reader a brief overview about CNNs and their use

in multimedia forensics.

2.1. Problem Formulation

Let us consider a color image I acquired with camera

model l belonging to a set of known camera models L. In

this paper, we consider the patch-based closed-set camera

model attribution problem as presented in [20]. Given an

image I, this means

• Select a subset of K color patches Pk, k ∈ [1,K].

• Obtain an estimate l̂k = C(Pk) of the camera model

associated with each patch through a camera attribu-

tion function C.

• Optionally obtain final camera model estimate l̂

through majority voting over l̂k, k ∈ [1,K].

Our goal is to detect whether a patch Pk is a good can-

didate for camera model attribution estimation. To this pur-

pose, we propose a CNN architecture that learns a function

G expressing the likelihood of a patch Pk to provide correct

camera model identification, i.e., gk = G(Pk). High val-

ues of gk indicate high probability of patch Pk to provide

correct camera information. Conversely, low gk values are

attributed to patches Pk that cannot be correctly classified.

Pixel-wise likelihood is then represented by means of a re-

liability map M, showing which portion of an image is a

good candidate to estimate image camera model, as shown

in Figure 1.

2.2. Convolutional Neural Networks in Multimedia
Forensics

In this section, we present a brief overview of the foun-

dations of convolutional neural networks (CNNs) that are

needed to follow the paper. For a thorough review on CNNs,

we refer the readers of this paper to Chapter 9 of [24].

Deep learning and in particular CNNs have shown very

good performance in several computer vision applications

such as visual object recognition, object detection and many

other domains such as drug discovery and genomics [25].

Inspired by how the human vision works, the layers of a

convolutional network have neurons arranged in three di-

mensions, so each layer has a width height, and depth. The

neurons in a convolutional layer are only connected to a

small, local region of the preceding layer, so we avoid wast-

ing resources as it is common in fully-connected neurons.

The nodes of the network are organized in multiple stacked

layers, each performing a simple operation on the input.

The set of operations in a CNN typically comprises con-

volution, intensity normalization, non-linear activation and

thresholding, and local pooling. By minimizing a cost func-

tion at the output of the last layer, the weights of the network

are tuned so that they are able to capture patterns in the input

data and extract distinctive features. CNNs enable learning

data-driven, highly representative, layered hierarchical im-

age features from sufficient training data

To better understand the role of each layer, we describe

the most common building blocks in a CNN:



Figure 2. Block diagram of the proposed approach. Image I is split into patches. Each patch Pk, k ∈ [0,K] is processed by the proposed

CNN (composed by Mcam and Mip) to obtain a reliability score gk and a camera model estimate l̂k. The reliability map is determined

from all gk, k ∈ [0,K] values, and the overall picture camera model estimate l̂ can be computed.

• Convolution: each convolution layer is a filterbank,

whose filters impulse response h are learned through

training. Given an input signal x, the output of each

filter is y = x ∗ h, i.e., the valid part of the linear

convolution. Convolution is typically done on 3D rep-

resentations consisting of the spatial coordinates (x, y)
and the number of feature maps p (e.g., p = 3 for an

RGB input).

• Max pooling: returns the maximum value of the in-

put x evaluated across small windows (typically of 3x3

pixels).

• ReLU: Rectified Linear Units use the rectification

function y = max(0, x) to the input x, thus clipping

negative values to zero.

• Inner Product: indicates that the input of each neuron

of the next layer is a linear combination of all the out-

puts of the previous layer. Combination weights are

estimated during training.

• SoftMax: maps the input into compositional data (i.e.,

each value is in the range [0, 1], and they all sum up

to one). This is particularly useful at the end of the

network in order to interpret its outputs as probability

values.

There has been a growing interest in using convolutional

neural networks in the fields of image forensics and ste-

ganalysis [26, 27]. These papers mainly focus on architec-

tural design of CNNs where a single CNN model is trained

and then tested in experiments. Data-driven models have

recently proved valuable for other multimedia forensic ap-

plications as well [28, 29]. Moreover, initial exploratory

solutions targeting camera model identification [30, 20, 21]

show that it is possible to use CNNs to learn discriminant

features directly from the observed known images, rather

than having to use hand-crafted features. As a matter of

fact, the use of CNNs also makes it possible to capture char-

acteristic traces left by non-linear and hard to model opera-

tions present in the image acquisition pipeline of capturing

devices.

In this paper, we employ CNNs as base learners and test

several different training strategies and network topologies.

In our study, at first, a recently proposed CNN architec-

ture is adopted as a feature extractor, trained on a random

subsample of the training dataset. An intermediate feature

representation is then extracted from the original data and

pooled together to form new features ready for the second

level of classification. Results have indicated that learning

from intermediate representation in CNNs instead of output

probabilities, and then jointly retraining the final architec-

ture, leads to performance improvement.

3. Patch Reliability Estimation Method

In this section we provide details of our method for patch

reliability estimation and camera attribution. The proposed

pipeline is composed by the following steps (see Figure 2):

1. The image under analysis is split into patches

2. A CNN is used to estimate patch reliability likelihood

3. From the same CNN we estimate a camera model for

each patch

4. A reliability mask is constructed and camera attribu-

tion of the whole image is performed

Below is a detailed explanation of each step.

3.1. Patch Extraction

The proposed method works by analyzing image

patches. The first step is to split the color image I into a set

of K patches Pk, k ∈ [0,K]. Each patch has 64× 64 pixel

resolution. The patch extraction stride can range from 1 to

64 per dimension, depending on the amount of desired over-

lap. This can be chosen to balance the trade-off between

mask resolution reliability and computational burden.

3.2. Patch Camera Reliability

Each patch Pk is input into the CNN M shown in Fig-

ure 3, which can be logically split into two parts (Mcam and



Figure 3. Representation of the proposed CNN architecture M working on image patches. The first part (Mcam) computes a |L|-element

feature vector used for camera attribution. The second part (Mip) is used to derive the camera model attribution reliability.

Mip) connected through a ReLU activation layer. Our pro-

posed CNN learns a patch reliability function G and returns

the patch reliability gk = G(Pk).
The first part (i.e., Mcam) is the CNN presented in [20]

without last layer’s activation. The rationale behind this

choice is that this network is already known to be able to

extract characteristic camera information. Therefore, we

can mainly think of this portion of the proposed CNN as

the feature extractor, turning a patch Pk into a feature vec-

tor in R
|L|, where |L| is the number of considered camera

models. Formally, Mcam is composed by:

• conv1: convolutional layer with 32 filters of size 4 ×
4× 3 and stride 1.

• conv2: convolutional layer with 48 filters of size 5 ×
5× 32 and stride 1.

• conv3: convolutional layer with 64 filters of size 5 ×
5× 48 and stride 1.

• conv4: convolutional layer with 128 filters of size 5 ×
5 × 64 and stride 1, which outputs a vector with 128

elements.

• ip1: inner product layer with 128 output neurons fol-

lowed by a ReLU layer to produce a 128 dimensional

feature vector.

• ip2: final 128× |L| inner product layer.

The first three convolutional layers are followed by max-

pooling layers with 2 × 2 kernels and 2 × 2 stride. This

network contains 360 462 trainable parameters.

The second part of our architecture (i.e., Mip) is com-

posed by a series of inner product layers followed by ReLU

activations. This part of the proposed CNN can be consid-

ered as a two-class classifier trying to distinguish between

patches that can be correctly classified, and patches that

cannot correctly be attributed to their camera model. As

shall be clear in Section 4, we tested different possible Mip

architecture candidates, to decide upon the following struc-

ture (denoted later on as M4

ip due to the 4 layers that char-

acterize it):

• ip3: inner product layer with 64 output neurons fol-

lowed by ReLU

• ip4: inner product layer with 32 output neurons fol-

lowed by ReLU

• ip5: inner product layer with 128 output neurons fol-

lowed by ReLU

• ip6 inner product layer with 2 output neurons followed

by softmax normalization

The first element of the softmax output vector can be con-

sidered the likelihood of a patch to be correctly classified.

Therefore, we consider this value as gk, and the transfer

function learned by the whole M network as G.

3.3. Patch Camera Attribution

In order to detect the camera model from each patch Pk,

we exploit the architecture Mcam. As explained in [20], this

CNN output is a |L|-element vector, whose argmax indi-

cates the used camera model l̂k ∈ L. Note that the softmax

normalization at the end of Mcam (as proposed in [20]) is

not needed in this situation, as it only impacts the training

strategy and not the argmax we are interested in.

3.4. Reliability­Map and Camera Attribution

In order to compute the reliability map M, we aggre-

gate all gk values estimated from patches Pk, k ∈ [1,K].
This is done by generating a bidimensional matrix M with

the same size of image I, and fill in the positions covered

by the patch Pk with the corresponding gk values. In case

of overlapping patches, gk values are averaged. This map

provides pixel-wise information about image regions from

which reliable patches can be extracted. A few examples of

estimated maps M are reported in Figure 4.
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Figure 4. Examples of images I (left) and the estimated reliability

maps M (right). Patch reliability is not always strictly linked to

the image semantic content. Green areas represent high gk values,

thus reliable regions.

Finally, to attribute image I to a camera model, it is pos-

sible to select lk only for the most reliable patch (i.e., high-

est gk), or perform majority voting on estimated lk values

belonging only to reliable regions, i.e., {lk|gk > γ}, where

γ ∈ [0, 1] is the reliability threshold (set to 0.5 in this pa-

per).

4. Experimental Results

In this section we report the details about our experi-

ments. First, we describe the dataset. Then, we provide

an insight on the used training strategies.

4.1. Dataset

In this paper we evaluate our solution adapting the

dataset splitting strategy proposed in [4, 20, 22] to our prob-

lem. This strategy is tailored to the Dresden Image Dataset

[23], which consists of 73 devices belonging to 25 different

camera models. A variable number of shots are taken with

each device. Different motives are shot from each position.

We refer to a scene as combination of geographical posi-

tion with a specific motive. With this definition in mind, the

dataset consists of a total of 83 scenes. Since we are trying

to classify image patches at the level of camera model rather

than instance level, we only consider camera models with

more than one instance available. This leads us to a total of

18 camera models (as Nikon D70 and D70s basically differ

only in their on-device screen) and nearly 15 000 shots.

In order to evaluate our method we divide the dataset

consisting of 18 camera models into 3 sets, namely training

DT, validation DV and evaluation DE. DT is again split into

two equal sets Dcam
T and Dip

T . Dcam
T is used for training the

parameters of Mcam, whereas Dip
T is used for training Mip.

DV is used to decide how many epochs to use during train-

ing to avoid overfitting. Finally, DE is used for evaluating

the trained network on a disjoint set of images in a fair way.

While training a CNN, it is very important to avoid over-

fitting the data. In our dataset we have images of different

scenes taken by different cameras, and our goal is to learn

information about camera model from an image. As DV

is used to avoid overfitting, it is important that DT and DV

are sufficiently different from each other. It is also impor-

tant that we test on data that has variation with respect to

the training data. In order to achieve these goals, we do the

following:

• Images for DE are selected from a single instance per

camera and a set of 11 scenes.

• Images for DT are selected from the additional camera

instances and 63 different scenes.

• Images in DV are selected from the same camera in-

stances used for DT, but from the remaining 10 scenes.

This makes sets DV and DT disjoint with respect to

scenes, leading to robust training.

For training, validation and testing K = 300 non over-

lapping color patches of size 64 × 64 are extracted from

each image. the resulting dataset Dcam
T contains more than

500 000 patches split into 18 classes. Dip
T is reduced to

90 000 patches to balance reliable and non-reliable im-

age patches according to Mcam classification results. Fi-

nally, DV and DE are composed by more than 700 000 and

800 000 patches, respectively.

4.2. Training Strategies

Given that the proposed approach builds upon a pre-

trained network (i.e., Mcam), we propose a two-tiered trans-

fer learning-based approach denoted as Transfer. For the

sake of comparison, we also test two additional strategies,

namely Scratch and Pre-Trained. In the following we report

details about each strategy.

Scratch. This training strategy is the most simple one.

It consists in training the whole two-class architecture M
using only Dip

T for training and DV for validation. This can

be considered as a baseline training strategy. We use Adam

optimizer with default parameters as suggested in [31] and

batch size 128. Loss is set to binary-crossentropy.

Pre-Trained. This strategy takes advantage of the pos-

sibility of using a pre-trained Mcam. In this case, we train



Mcam for camera model attribution using softmax normal-

ization on its output. Training is carried out on Dcam
T and

validation on DV. Once Mcam has been trained, we freeze

its weights, and train the rest of the architecture Mip as a

two-class classifier (i.e., reliable vs. non-reliable patches)

using Dip
T and DV. Optimization during both training steps

is carried out using Adam optimizer with default values and

batches of 128 patches. We select categorical-crossentropy

as our loss function.

Transfer. This two-tiered training strategy is meant to

fully exploit the transfer learning capability of the proposed

architecture. The first step consists in training Mcam for

camera model attribution using softmax normalization on

its output and Dcam
T and DV as datasets. This training step is

optimized using Adam with default parameters, 128 patches

per batch, and categorical-crossentropy as loss function.

The second step of M training consists in freezing all

the convolutional layers of Mcam, and continue training

all the inner product layers of both Mcam and Mip using

the datasets Dip
T and DV. This enables to jointly learn the

weights of the classifier Mip, and tailor feature extraction

procedure in the last layers of Mcam (i.e., ip1 and ip2) to the

classification task. For this step we use binary-crossentropy

as loss, and stochastic gradient descent (SGD) with oscillat-

ing learning rate between 5·10−5 and 15·10−5 as optimizer.

This choice is motivated by preliminary studies carried out

in [32], and experimentally confirmed in our analysis.

5. Discussion

In this section we discuss the experimental results. First

we show the capability of the proposed approach to distin-

guish between patches that contain camera model informa-

tion and patches that are not suitable for this task. Then, we

show how it is possible to improve camera model identifi-

cation using the proposed approach.

5.1. Patch Reliability

In order to validate the patch reliability estimation we

perform a set of tests.

CNN Architecture. The first set of experiments has

been devoted to the choice of a network architecture for

Mip. To this purpose, we trained a set of different archi-

tectures for 15 epochs using the Pre-Trained strategy. As

architectures we selected all possible combinations of up to

six inner product layers (with ReLU activation) composed

by 32, 64 or 128 neurons each. The last layer is always set

to two neurons followed by softmax. From this experiment,

we selected the model Mip with the highest validation ac-

curacy for each tested amount of layers, which are:

• M2

ip composed by two inner product layers with 128

and 2 neurons, respectively.
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Figure 5. Loss and accuracy curves on training (Dip

T ) and validation

(DV) datasets using Pre-Trained and Transfer strategies on M4

ip.

• M3

ip composed by three inner product layers with 64,

128 and 2 neurons, respectively.

• M4

ip composed by four inner product layers with 64,

32, 128 and 2 neurons, respectively.

• M5

ip composed by five inner product layers with 64,

32, 64, 128 and 2 neurons, respectively.

• M6

ip composed by six inner product layers with 64, 32,

32, 64, 64 and 2 neurons, respectively.

Training Strategy. In order to validate the proposed

two-tiered Transfer training strategy, we trained the five se-

lected models with the Scratch, Pre-Trained and Transfer

strategies. Examples of training (on Dip
T ) and validation (on

DV) loss curves for the Pre-Trained and Transfer strategies

on M4

ip are shown in Figure 5(a). It is possible to notice that

the chosen optimizers enable a smooth loss decrease over

several epochs. Moreover, the Transfer strategy provides a

lower loss on both training and validation data, thus yield-

ing better results compared to Pre-Trained. Similar conclu-

sions can be drawn from the accuracy curves presented in

Figure 5(b). We do not display curves for the Scratch strat-

egy, as it is always worse than both the Pre-Trained and

Transfer strategies. This was expected, as the amount of

used training data in Dip
T is probably not enough to learn

all parameters of M. Therefore, starting from a pre-trained

Mcam becomes necessary.
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Figure 6 shows the reliability patch estimation accuracy

for all models from M2

ip to M6

ip, trained with all three train-

ing strategies and tested on the evaluation dataset DE. For

each architecture, we selected the model with highest val-

idation accuracy achieved over 100 epochs. These results

further confirm that the Scratch strategy is not a viable so-

lution for this problem. The Transfer strategy is the best

choice for each network, achieving around 86% accuracy

in detecting reliable patches. In other words, 86% of the

selected patches will be correctly attributed to their camera,

whereas only 14% of them will be wrongly classified. In the

ideal scenario of errors uniformly spread across all models

and images, this means we could use a majority voting strat-

egy to further increase accuracy at the image level.

From Figure 6, it is also possible to notice that increasing

Mip depth does not increase accuracy. Therefore, from this

point on, we only consider architecture M4

ip as a good trade-

off.

Baselines Comparison. In order to further validate the

proposed approach, we also considered two possible base-

line solutions.

The first one consists in using other kinds of super-

vised classifiers exploiting the 18-element vector returned

by Mcam as feature. To this purpose, we trained a logistic

Table 1. Camera model attribution accuracy using selected reli-

able patches from test dataset only. Using Transfer strategy (bold),

the amount of selected patches in DE is always greater than 77%
of |DE|. Accuracy improvement over random patch selection is

greater than 8%.

Mip Strategy Patches Accuracy Acc. Delta

Scratch 553 475 0.9009 0.0342

M2

ip Pre-Trained 618 958 0.9478 0.0811

Transfer 637 135 0.9513 0.0845

Scratch 518 228 0.9041 0.0374

M3

ip Pre-Trained 626 767 0.9520 0.0853

Transfer 641 808 0.9556 0.0888

Scratch 562 897 0.8963 0.0296

M4

ip Pre-Trained 649 515 0.9499 0.0832

Transfer 647 998 0.9532 0.0865

Scratch 511 425 0.9045 0.0378

M5

ip Pre-Trained 648 665 0.9529 0.0862

Transfer 651 508 0.9530 0.0863

Scratch 517 386 0.9035 0.0367

M6

ip Pre-Trained 651 405 0.9501 0.0834

Transfer 652 308 0.9531 0.0864

regressor (Logistic), a decision tree (Tree), a random forest

(Forest) and a gradient boosting classifier (Boosting). For

each method, we applied z-score feature normalization and

we selected the model achieving highest validation accu-

racy on DV after a parameter grid-search training on Dip
T .

Accuracy results on patch reliability on evaluation set DE

were 70.7%, 73.9%, 78.6% and 81.8%, respectively. None

of them approaches the 86% of the proposed solution.

The second baseline solution we tested is the quality-

function presented in [22] (Quality-Function). This func-

tion is computed for each patch and returns a value be-

tween zero and one indicating whether the patch is suit-

able for training Mcam. Although Quality-Function was

not intended to work as test reliability indicator, we decided

that a comparison was necessary for completeness. To this

purpose, Figure 7 shows receiver operating characteristic

(ROC) curves obtained thresholding our reliability likeli-

hood estimation gk, the soft output of the other classifiers

(i.e., logistic regressor, decision tree, etc.), and the quality-

function returned value [22]. As expected, the use of the

quality-function presented in [22] provides less accurate re-

sults. Conversely, the proposed method achieves better per-

formance than all other classifiers when trained according

to Transfer strategy.

5.2. Camera Model Attribution

After validating the possibility of selecting reliable

patches with the proposed method, we tested the effect of

this solution on camera model attribution. To this purpose,

we report in Table 1 the evaluation set results for the five

investigated Mip models and the three training strategies
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Figure 8. Camera model attribution confusion matrix obtained

with Mcam on DE without patch selection.

when a single patch is used for camera model attribution.

We do so in terms of:

1. Patches, i.e., the number of estimated reliable patches.

2. Accuracy, i.e., the average achieved camera model at-

tribution result.

3. Accuracy Delta, i.e., the accuracy increment with re-

spect to not using patch selection but randomly picking

them (i.e., [20]).

These results highlight that it is possible to improve camera

model attribution by more than 8%.

Figure 8 shows confusion matrix results using Mcam

(i.e., the output of the network proposed in [20]) on eval-

uation data DE randomly selecting patches. The average

accuracy per patch is 87%. Figure 9 shows the same results,

evaluating only patches considered reliable using M4

ip. In

this scenario, accuracy increases to more than 95%. By

comparing the two figures, it is possible to notice that many

spurious classifications outside of the confusion matrix di-

agonal are corrected by the use of reliable patches only.

6. Conclusions

In this paper we presented a method for reliability patch

estimation for camera model attribution. This means being

able to estimate the likelihood that an image patch will be

correctly attributed to the camera model used to acquire the

image from which the patch comes from.

The proposed solution is based on concatenating a pre-

trained CNN for patch-wise camera model attribution with

Ix
us

70

EX
-Z

15
0

Fin
eP

ix
J5

0

M
10

63

C
oo

lP
ix

S71
0

D
20

0
D

70

m
ju

-1
05

0S
W

D
M

C
-F

Z50

O
pt

io
A

40

D
C
Z5.

9

G
X

10
0

R
C
P-7

32
5X

S

L74
w

id
e

N
V

15

D
SC

-H
50

D
SC

-T
77

D
SC

-W
17

0

Predicted label

Ixus70

EX-Z150

FinePixJ50

M1063

CoolPixS710

D200

D70

mju-1050SW

DMC-FZ50

OptioA40

DCZ5.9

GX100

RCP-7325XS

L74wide

NV15

DSC-H50

DSC-T77

DSC-W170

T
ru

e
la

b
el

0.99

0.96 0.01 0.01 0.01 0.01

0.98

0.95 0.02 0.01 0.01

0.01 0.86 0.08 0.02 0.01 0.01 0.01

0.03 0.95

1.00

1.00

0.99

0.99

0.99

0.99

0.02 0.97

0.99

0.01 0.98

0.01 0.83 0.02 0.12

1.00

0.01 0.01 0.01 0.05 0.19 0.02 0.71

Figure 9. Camera model attribution confusion matrix obtained

with Mcam on DE using patches selected with M4

ip.

a dense network that acts as a binary classifier. Exploit-

ing transfer learning techniques and a two-tiered training

strategy, it is possible to achieve 86% of accuracy in patch

reliability estimation. Moreover, by running camera model

attribution on single selected patches, camera attribution ac-

curacy increases by more than 8%.

In addition to the impact on camera model attribution,

the proposed method returns a reliability mask that high-

lights which image regions are considered reliable in terms

of camera attribution. This could be useful in the future to

better understand which image details are more important

to camera model attribution CNNs. Moreover, it could be

paired with splicing localization algorithms based on cam-

era model traces to possibly opt-out unreliable regions from

the analysis.
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