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Abstract Cardiac resynchronization therapy is not effective in a variable proportion
of heart failure patients. An accurate knowledge of each patient’s electroanatomical
features could be helpful to determine the most appropriate treatment. The goal of
this study was to analyze and quantify the sensitivity of left ventricular (LV) activa-
tion and electrocardiogram (ECG) to changes in 39 parameters used to tune realistic
anatomical-electrophysiological models of the heart. Electrical activity in the vent-
ricles was simulated using a reaction-diffusion equation. To simulate cellular elec-
trophysiology, the Ten Tusscher-Panfilov 2006 model was used. Intracardiac electro-
grams and 12-lead ECGs were computed by solving the bidomain equation. Para-
meters showing the highest sensitivity values were similar in the six patients studied.
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QRS complex and LV activation times were modulated by the sodium current, the cell
surface-to-volume ratio in the LV, and tissue conductivities. The T-wave was modu-
lated by the calcium and rectifier-potassium currents, and the cell surface-to-volume
ratio in both ventricles. We conclude that homogeneous changes in ionic currents
entail similar effects in all ECG leads, whereas the effects of changes in tissue prop-
erties show larger inter-lead variability. The effects of parameter variations are highly
consistent between patients and most of the model tuning could be performed with
only ∼10 parameters.

Keywords Computer simulation · ECG morphology · heart failure · left bundle
branch block · patient-specific model · sensitivity analysis
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1 Introduction

Heart failure (HF) is one of the most commonly diagnosed cardiac diseases with an
overall incidence approaching one percent of the population over 65 years of age [38].
A significant percentage of HF patients presents a prolonged QRS duration on the
12-lead electrocardiogram (ECG), and many of them are diagnosed with left bundle
branch block (LBBB), indicating impairment of the cardiac conduction system spe-
cifically in the left ventricle (LV) [14]. Cardiac resynchronization therapy (CRT) has
been shown to reduce mortality in most patients with clear LBBB, but its efficacy
is reduced in patients with other concomitant electrical abnormalities, such as right
bundle branch block, or diffuse ventricular conduction disturbances [56]. Better pre-
diction of CRT efficacy in each particular HF patient through accurate description
of their electrophysiology would help to avoid unnecessary surgical interventions.
Computational models are a powerful tool to achieve this without ethical limitations.

Recent studies have shown the usefulness of patient-specific models to study
complex electrophysiological phenomena in healthy and diseased subjects [28, 34].
However, it is challenging to create multiscale models able to mimic in a realistic
way the entire ventricular electrical behavior from the subcellular level to the whole
heart and body surface levels. Without prior knowledge, the tuning of patient-specific
models is hampered by the high number of parameters involved, which may differ
between patients, creating an ill-posed problem. Therefore, doing a sensitivity ana-
lysis is meant to quantify to what extent each single parameter affects the output and,
finally, to identify those needing accurate tuning. Previous sensitivity analysis studies
in silico have shown that extracellular conduction properties in the different anatom-
ical structures (blood, lungs, fat, skeletal muscle...) of a human torso affect differently
the electrical potentials measured at the body surface [5, 19].

In this study we created realistic models of both the anatomy and the electrical
activation in six HF patients selected for CRT. The main purpose of the analysis per-
formed in this work was to investigate the relative importance of myocardial proper-
ties in determining both the activation sequence on the LV endocardial surface and
the ECG morphology in HF patients. For this analysis, individual variations of 39
parameters, including intracellular and extracellular tissue conductivity, and cellular
membrane ionic properties, were evaluated. This set of 39 parameters is too large to
efficiently tune a patient-specific model. Therefore, a second goal of this study was
to delimit the number of parameters that is required for model tuning.

2 Methods

2.1 Patients

Six patients, with ages ranging from 53 to 79 years, diagnosed with HF and suit-
able for CRT implantation according to the criteria from the 2011/2013 ESC clinical
practice guidelines [6] were included in this study (Table 1). Four of the six patients
showed clear LBBB electrocardiographic features according to three widely used sets
of criteria: the criteria used by the European Society of Cardiology (ESC) [3], the cri-
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Table 1 Selected patient demographics and characteristics

Patient Age Gender Height
(m)

Weight
(kg)

LVEF
(%)

NYHA Etiology QRSd
(ms)

Morph.

1 72 Female 1.57 75 39 III-IV CAD 139 LBBB
2 69 Male 1.82 75 35 II-III IDCM 179 LBBB
3 79 Male 1.87 94 28 II-III CAD 138 IVCD
4 57 Male 1.60 67 30 II-III CAD 126 IVCD
5 73 Male 1.70 80 24 III-IV IDCM 154 LBBB
6 53 Male 1.78 110 34 II-III IDCM 145 LBBB

Abbreviations: LVEF=Left Ventricular Ejection Fraction;
NYHA=New York Heart Association Functional Classification;
QRSd=QRS duration;
CAD=Coronary Artery Disease;
IDCM=Idiopathic Dilated Cardiomyopathy;
LBBB=Left-Bundle-Branch Block;
IVCD=Intraventricular Conduction Delay.

teria used by the American Heart Association (AHA) [48], and the criteria proposed
by Strauss et al. [47]. The other two patients had non-specific ventricular conduction
disturbances. These six patients underwent standard 12-lead ECG, cardiac magnetic
resonance (CMR) imaging, electro-mechanical anatomical mapping (NOGA XP, Bi-
osense Webster), and a coronary angiography procedure. In four of the six patients,
the NOGA catheter was introduced in the left-ventricular (LV) cavity and had contact
with the endocardium only, whereas in patients 5 and 6 the electrical activation on
both right ventricular (RV) and LV endocardium as well as the ventricular epicar-
dial layer underneath the coronary sinus was measured. Details of the data collection
procedure were described in a previous study [34]. Data for the six patients were col-
lected between 2012 and 2015 at Cardiocentro Ticino (Lugano, Switzerland). The pa-
tients provided written consent to each procedure, and the institutional review board
approved the use of the data for research purposes.

2.2 Model Construction

Anatomical Segmentation Segmentation of cardiovascular structures, lungs, and torso
of each patient was performed based on CMR data obtained with a 3T Siemens
Magnetom Skyra Scanner equipped with a dedicated cardiac 36-channel coil and
a standard body coil for thorax examinations. CMR images were obtained in axial,
coronal, sagittal, cardiac short axis, and cardiac long axis planes, with a slice thick-
ness between 1 and 8 mm [34]. Late gadolinium-enhancement images for scar detec-
tion were obtained 10 minutes after intravenous infusion of gadolinium (Gadobutrol,
0.2 mmol/kg body weight) using a T-weighted gradient-echo pulse sequence with
a phase-sensitive inversion recovery reconstruction. Semi-automatic segmentation
of ventricular epicardium and endocardium was performed as described in a pre-
vious study [12]. Atrial cavities, aorta, inferior and superior vena cava, and pulmon-
ary trunk were manually segmented using custom-made software for tracing con-
tours. Lungs, torso, and ECG electrode locations were manually traced on ultra-fast
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volume-interpolated breath-hold examination (VIBE) images following the injection
of the contrast agent.

Mesh Construction The segmentation contours were used to generate a three-dimen-
sional (3D) mesh of the tissue boundaries. Mesh construction, i.e. creation of closed
surfaces representing the different structures, was performed using the Blender soft-
ware (The Blender Foundation, Amsterdam, The Netherlands). All cardiovascular
structures were joined to define a 3D model of the heart, which together with the
lungs and torso meshes constituted the complete anatomical model of the patient. In
order to extract the 12-lead ECG from the simulations, nine virtual electrodes were
placed on the torso surface at the same locations as in the real patients: three for the
limb leads, and six for the precordial leads. Both in reality and in the model the arm
electrodes were placed on the shoulders and the left-leg electrode was placed near the
hip.

Definition of Tissue Properties From the surface meshes defining the anatomy, volu-
metric meshes for the computations were created. Since the computational code
worked with semi-structured finite-difference meshes, this conversion consisted of
simply overlaying the surfaces on a regular 3D grid and assigning tissue types to the
grid elements according to the surfaces in which they were contained. We used a
mesh with 0.2-mm spacing for the heart and 1-mm spacing for the torso. Passive tis-
sue properties were associated with grid elements, while model variables and active
properties such as densities of ionic currents were associated with the nodes of the
grid [32]. The node types, which determine the parameters of the ionic model, were
determined from the element types using a set of rules that ensure model consistency
[32]. The passive properties were the conductivities (σ ) in longitudinal, transversal
and cross-sheet directions, and cell surface-to-volume ratio (β ), i.e. the amount of
cellular membrane per unit volume. For ventricular myocardium, fiber rotation from
endocardial to epicardial layers was included by using a rule-based method [32].
Four layers were simulated in the myocardium: epicardium (the most external layer),
midmyocardium (middle layer), endocardium (inner layer), and a thin fast endocar-
dial layer (0.6 mm) to mimic the rapid propagation occurring due to the Purkinje
system in the endocardium. The first three layers (epicardium, midmyocardium and
endocardium) were differentiated by their cellular electrophysiology [54]. A full layer
was used to represent the network of Purkinje fibers because the actual topology can-
not be recorded in vivo [27]. This fast endocardial layer was assumed to have the
same properties in both ventricles, although previous studies proposed to differenti-
ate them for the stimulation profile [18, 40].

2.3 Electrophysiological Simulation

Cardiac electrophysiology was simulated with a monodomain reaction-diffusion model
[32]. Electrophysiological activity of ventricular myocytes was simulated using the
Ten Tusscher and Panfilov 2006 membrane model, which includes transmembrane
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ionic currents, regulation of sodium, potassium, and calcium intracellular ion con-
centrations, and intracellular calcium handling in the sarcoplasmic reticulum [54].
The ECG was simulated by solving the extracellular potential φe from the equation

∇ · ([gi +ge]∇φe) =−∇ · (gi∇Vm) (1)

where gi and ge are the intracellular and extracellular conductivity tensor fields, re-
spectively, and Vm is the transmembrane potential field [33]. The reaction-diffusion
simulation was run on a mesh with 0.2 mm resolution. The right-hand side of equa-
tion (1) was evaluated on this fine mesh and then projected on the coarser (1 mm)
torso mesh, which included a downsampled model of the heart. φe was solved on the
coarse mesh. The 12-lead ECG was then computed by extracting the extracellular
potential at the electrode locations.

All simulations were performed using propag-5, software specifically created for
cardiac simulation and parallelizable to utilize supercomputing facilities of the Swiss
National Supercomputing Centre (CSCS) [22, 32]. Most simulations ran on 1536
cores of a Cray XC40 system. Computation times for each single simulation were in
the range of 40 to 60 minutes for 600 ms of simulation.

2.4 Endocardial Activation Map and ECG Matching

Once the model was complete, parameter adjustments were iteratively performed in
order to match as closely as possible the electrical activation pattern measured with
the NOGA catheter on the endocardial surface, as well as the morphological fea-
tures of the clinically obtained ECG. In this study, electrical activity was only gener-
ated in the ventricular myocardium. Therefore the P-wave was not simulated and the
ECG analysis was focused on the QRS complex and the T-wave. Figure 1 shows the
modeled RV and LV endocardial surfaces of patient 5 together with the measured ac-
tivation times (color-coded) at 396 NOGA recording sites for this patient. Activation
time at a recording site was computed as the time interval between the QRS onset
(vertical red line on the right panel of Figure 1) and the steepest negative deflection
of the electrogram (blue dot on the right panel of Figure 1).

The iterative strategy of parameter adjustments differed between patients, but in
general consisted of: 1) finding the appropriate number and locations of early activ-
ation sites to match the initiation of the LV activation; 2) tuning surface-to-volume
ratios, conductivities, and the sodium current conductance to adjust the conduction
velocity in the myocardium until good matching in the LV activation pattern was ob-
tained; 3) refining adjustments performed in step 2 to improve matching of the QRS
complex; 4) adjusting properties of the L-type calcium current and potassium currents
to match the T-wave. Note that changes in surface-to-volume ratios, conductivities,
and the sodium current conductance affect conduction velocity, but the way they do it
may be different, so steps 2) and 3) are tipically performed simultaneously: changes
in surface-to-volume ratios modify propagation features homogeneously in a specific
part of the ventricles (LV, RV, septum...); changes in conductivities allow us modify
propagation features of cardiac tissue anisotropically in specific directions (longit-
udinal, transversal, or cross-sheet); and changes in the sodium current conductance
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Fig. 1 Modeled endocardial surfaces of RV and LV for patient 5 and measured activation times at NOGA
recording sites in a color scale (left panel). Example of an electrogram recorded at the LV endocardium at
the position of the crosshair in the left panel (right panel), together with the time of QRS onset (vertical
red line) and the activation time (blue dot).

modify excitability of cardiac cells based on their type in both the LV and the RV
(endocardial cell, M cell, or epicardial cell). Tuning was stopped when we could not
find a way to improve it further. Parameters were changed in physiologically plaus-
ible ways, e.g. changes in β and σ in some patients corresponded to hypertrophied
hearts. A complete list of tuned parameters and tailored models for the six patients is
shown in Supplemental Material.

Figure 2 shows the anatomical models of the six patients together with leads I,
aVL, V5 and V6 of the measured ECG (red) and simulated ECG (black). These four
leads were chosen due to their importance for LBBB diagnosis. On the right panels
of Figure 2, correlation between simulated and measured activation times is shown,
including the fitted line and the correlation coefficient.

2.5 Univariate Sensitivity Analysis

A quantitative analysis to evaluate the relative importance for the cardiac electrical
activity of individual parameters in the model was performed. Two groups of para-
meters were distinguished: those characterizing cellular ionic properties, and those
characterizing passive electrical properties of the tissue. In the first group, maximum
conductances of all transmembrane ionic currents were included: fast sodium current
(INa), L-type calcium current (ICaL), inward rectifier potassium current (IK1), transi-
ent outward current (Ito), rapid delayed rectifier potassium current (IKr), slow delayed
rectifier potassium current (IKs), sodium/potassium pump current (INaK) and sodium/
calcium exchanger current (INaCa); and also two parameters to modify inactivation
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Fig. 2 Anatomical models of the six patients (left), and corresponding measured (red), and simulated ECG
(black) in leads I, aVL, V5, and V6. Correlation between simulated and measured activation times on the
LV endocardium (right).

kinetics of ICaL (τf) and activation kinetics of IKs (τxs), known to be relevant in the
adaptation of cell repolarization to heart rate [35]. These parameters were chosen in
agreement with their importance in determining ventricular cell properties as shown
in a previous study [39]. The second group of parameters consisted of cell surface-
to-volume ratio (β ), intracellular conductivities (σi), and extracellular conductivities
(σe) in the three directions of propagation: longitudinal (σil and σel), transversal (σit
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Fig. 3 Example of lead V1 of a clinically measured ECG with five of the markers included in the sensitivity
analysis: QRS peak time, QRS amplitude, QRS area, T peak time and T-wave amplitude.

and σet), and cross-sheet (σic and σec). They were analyzed separately for each tissue
type: LV, RV, fast endocardial layer (fendo), blood, skeletal muscle, and lungs. In the
rest of this manuscript the tissue type will be shown as an additional subscript of β

and σ . In total, changes in 39 parameters were studied.
To quantify the effects of each parameter on particular ECG markers and ventricu-

lar activation, ±30% changes with respect to the adjusted values of the model for
each patient were simulated, in agreement with the magnitude of changes (25-30%)
reported in previous studies [11, 19, 39, 41, 42].

Ten ECG markers were computed for each of the 12 ECG leads: QRS peak time,
absolute value of QRS amplitude with respect to the baseline, QRS area, QRS skew-
ness, QRS kurtosis, QRS peak-T peak interval, absolute value of T-wave amplitude
with respect to the base line, T peak time, T-wave skewness, and T-wave kurtosis
(examples of some of these markers are shown in Figure 3). Furthermore, catheter
positions were projected on the simulated endocardial surface so that simulated ac-
tivation times and measured activation times could be compared. Linear regression
between the simulated and measured activation times was performed, and the slope
of the fitted line was also included in the sensitivity analysis.

The sensitivity of a marker, m, to changes in a particular parameter, p, was quan-
tified by computing:

Sm,p(%) =
mp+30% −mp−30%

0.6mp±0%
100 (2)

where mp+30%, mp−30%, and mp±0% are the values of the marker m when the
parameter p is varied by +30%, −30% and ±0% (unvaried), respectively, with respect
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to their default value in the model. A factor of 0.6 is included to account for the 60%
range of variation. The computed value, Sm,p, represents the percentage of variation
of the marker m if the parameter p were varied by 100%, considering the effect of
changes as linear.

A model parameter was considered to be relevant in the modulation of a marker
if the sensitivity value was higher than 50% of the maximum sensitivity among all
parameters for that particular marker. In the ECG markers, this consideration was
taken in each of the 12 leads separately.

3 Results

Figure 4 shows examples of simulations conducted for the parameter sensitivity ana-
lysis. In particular, effects of changes in INa on the I, aVR, V5 and V6 ECG leads
(a), LV endocardial activation map (b), displayed as a 2D polar diagram showing
measured and simulated activation times in a color scale, and linear fit between sim-
ulated and measured activation times (c) are displayed. In this example, average
computed values for sensitivity to INa changes were highly relevant for QRS peak
time (SQRSpeak,INa=–30.1%), QRS area (SQRSarea,INa=–35.8%), and QRS morphology
(SQRSskew,INa=–193.6%, SQRSkurt,INa=11.1%). Regarding the T-wave, the sensitivities
of the T-wave amplitude (STamp,INa=–34%) and the T-wave morphology were also rel-
evant (STskew,INa=52.1%, (STkurt,INa=30.5%)). INa changes entailed minimal effects on
QRS amplitude (SQRSamp,INa=3%), T-wave peak time (STpeak,INa=–7,8%), and QRS-T
interval (SQRS−T,INa=–1.1%) in this patient. Furthermore, effects of INa changes on
the linear fitted slope were also notable (SLVslope,INa=–37%). Negative sensitivity val-
ues reflected that an increase in INa led to a decrease in the analyzed marker, and vice
versa.

In general, the parameters showing the highest sensitivity values were similar in
the six patients. Figures 5, 6 and 7 show the parameters whose variations exerted
the strongest alterations on LV activation and ECG markers, respectively, in the six
patients. Figure 5 shows the sensitivity values (horizontal axis) for each relevant para-
meter (vertical axis) and patient (color coded). In figures 6 and 7 each horizontal line
represents the average sensitivity value ± standard deviation for the 12 ECG leads
for a particular parameter (vertical axis) and patient (color coded).

LV Activation The slope of the fitted line between simulated and measured activation
times was sensitive to several parameters, all related to conduction velocity in the
myocardium in both ventricles, as shown in Figure 5. Effects were consistent between
the six patients, but it was observed that changes in the tissue properties of the RV
only entailed significant variations in the slope in patient 5 and, to a lesser extent,
patient 1. This was probably due to anatomical particularities in the septum properties
and the early activation sites of these patients (see Supplemental Material).

QRS-complex Morphology As shown in Figure 6, QRS peak time was mainly de-
termined by those parameters affecting conduction velocity in the myocardium such
as INa, βLV, and βRV. Parameters affecting conductivity in the fast endocardial layer,
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Fig. 4 Simulation results. (a) ECG for patient 2. Leads I, aVR, V5, and V6 with INa reduction by 30%
(blue), no changes (black), and INa increase by 30% (red). (b) Polar diagram of the LV endocardium show-
ing measured activation times (circles with time in milliseconds) and simulated activation times (colored
dots). Apex is marked with a cross, ’+’, at the center of the diagram. (c) Simulated versus measured activ-
ation times on the LV endocardium. Correlation coefficients are shown.
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Fig. 5 Significant parameters following sensitivity analysis results for the slope of the fitted line between
simulated and measured activation times for the six patients (different colors for each patient).

like βfendo, σil,fendo, or σel,fendo, also affect QRS peak time, but they are not rep-
resented in Figure 5 because they are not so notable. Variations in QRS amplitude
were observed when applying changes in conduction properties in both ventricles,
but also changes in some conductivities of the torso: σe,musc (simultaneous changes
in the three directions), and σet,musc (changes only in the transversal direction). Sim-
ilarly, QRS area was mainly modulated by changes in conduction in the LV: βLV
(with a large variability between leads), σil,LV and βfendo; but also by INa and σe,blood.
Morphology-related parameters like skewness and kurtosis were also modulated by
the surface-to-volume ratios in the LV, the RV and the fast endocardial layer, and by
INa and σil,LV. Changes in σe,lung have some effects on QRS kurtosis in some of the
patients, but their effects are not as notable as those provoked by the parameters pre-
viously mentioned. Regarding the time interval between the QRS peak and the peak
of the T-wave, the parameters exerting the strongest influence were those affecting
cell repolarization in the six patients: ICaL, τf, IKs and τxs.

T-wave Morphology As shown in Figure 7, the temporal delay of the maximum peak
of the T-wave, in absolute value, was mainly determined by ionic changes affecting
cell repolarization, as occurred with the QRS-T interval: ICaL, τf, IKs and τxs. The
main modulators of the amplitude of the T-wave peak were the delayed rectifier po-
tassium currents (IKr and IKs), as well as the sodium current (INa) and conduction
properties in both LV (βLV, σil,LV, σel,LV and βfendo) and muscle in the torso (σe,musc).
T-wave skewness was mainly determined by the values of βLV, βRV, INa, IKr, and
τf. Similarly, T-wave kurtosis was modulated by βLV, IKr, and τf. Interestingly, the
biphasic behavior of the T-wave in some ECG leads in patient 6 led to large vari-
ations in both skewness and kurtosis in the sensitivity analysis (see Figure 7). Only
in this patient, another parameter played a role in the T-wave morphology (σec,LV).
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Fig. 6 Significant parameters following sensitivity analysis results for six ECG markers related with the
QRS complex for the six patients (different colors for each patient): QRS peak time, QRS amplitude, QRS
area, QRS-T interval, QRS skewness, and QRS kurtosis. Average values of the 12 ECG lead sensitivities
represented by ’x’. Limits of horizontal lines given by the average values ± the standard deviation in the
12 leads.

4 Discussion

The sensitivity analysis performed in this study has shown that the tuning of very
complex patient-specific models with a very high number of variables can be achieved
by changing only a few parameters. Furthermore, the role of these key parameters
was highly consistent between different patients. The goal of the analysis was to
estimate the relative importance of parameters that cannot be observed clinically and,
thus, the lack of counterintuitive results gives scientific evidence of what scientists
would infer by intuition. As stated throughout the paper, about ten parameters were
enough to tune both ECG morphology and LV activation maps. The low impact of the
rest of the parameters was directly related to their smaller influence on myocardial
electrical conduction or cellular action potential, as shown in previous studies [39].
The tuning procedure is performed manually, but the results presented in this study
are an important step forward to create realistic human models in a more automated
way in the future.

Sensitivity analyses for the study of human cardiac properties have been previ-
ously performed in silico in single cells or small tissues [7, 11, 20, 39, 41, 42, 43,
44, 45]. The influence of tissue extracellular conductivities on the ECG has been ana-
lyzed in a previous study using a human torso model fitted to a normal volunteer
[19]. In this paper we have gone a step further and performed a sensitivity analysis
in models specifically tailored to six HF patients undergoing CRT implantation. We
have reproduced the ECG measured at the body surface and the intracardiac electrical
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Fig. 7 Significant parameters following sensitivity analysis results for four ECG markers related with the
T-wave for the six patients (different colors for each patient): T-wave peak time, T-wave amplitude, T-wave
skewness, and T-wave kurtosis. Average values of the 12 ECG lead sensitivities represented by ’x’. Limits
of horizontal lines given by the average values ± the standard deviation in the 12 leads.

activation map with high accuracy, although some features like the morphology of the
T wave in leads V5 and V6 for patients 1, 3 and 6 presented some differences with
the measured ECG.

Previous studies have used patient-specific models for the study of cardiac prop-
erties in order to both provide better predictions adapted to each patient and study
underlying differences between them [1, 15, 23, 25, 29, 34]. The importance of con-
ductivity parameters in the torso has also been a matter of study in recent works
in both forward and inverse problems, focusing on different aspects like uncertainty
in 3D visualization [8], anatomical segmentation [55], and realistic ECG simulation
[4, 33, 50]. To the best of our knowledge, the work presented in this study is the
first to be developed with complete models of the human torso, cardiovascular struc-
tures, and cellular electrophysiology adapted to specific patients. Taking the reduced
number of parameters elucidated in this study as a starting point, feasibility of mak-
ing patient-specific models could be increased by additionally using other common
techniques such as echocardiography or ECG-imaging.

Creation of complete human torso models and parameter sensitivity studies could
be performed for either diseased or healthy subjects without significant alterations to
the methods previously described in this study. The performance of a sensitivity ana-
lysis in healthy persons or in other groups than HF patients would imply to acquire
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data in patients with a normal heart function undergoing a clinically indicated map-
ping of the left ventricle. There are very few pathologies (fascicular tachycardia or
frequent, symptomatic ventricular extrasystoles in a normal heart) that may allow the
acquisition of cardiac imaging data, a mapping procedure and data acquisition. These
pathologies are extremely rare diseases. If one may want to consider other patient
groups with less severely depressed left ventricular ejection fraction, these patients
are currently classified as heart failure patients with preserved ejection fraction.

A percentage of HF patients are diagnosed with LBBB. These patients present
abnormally long QRS complexes with notching in some ECG leads [48]. These fea-
tures required particular adjustments in the models, such as making the septum less
conductive in our simulations. This finding is in agreement with clinical studies re-
porting an augmented transseptal time in these patients which does not necessarily
involve slower propagation on the LV endocardium [2, 37, 49]. Notching was also
favored by making LV cells more hypertrophic than those of the RV by decreasing
βLV as occurs in HF patients [16, 24, 31, 34, 56].

Two of the six patients included in this study presented scar in LV myocardium.
These scarred areas were precisely located with CMR images and simulated in the
models as non-excitable tissue, but the severity of tissue damage could not be as-
sessed during the procedure in vivo. There could still be some conduction pathways
that allow some electrical propagation, as observed in clinical data [21, 46]. Neverthe-
less, the models of the two patients matched with notable accuracy both the ECG and
the LV activation pattern, and the parameters modulating them were very consistent
with those obtained in the other four patients.

4.1 Limitations

The model developed by Ten Tusscher and Panfilov in 2006 used for simulating
ventricular cell electrophysiology has been used in numerous studies because it is
one of the most complete human ventricular action potential models up to date [26,
32, 35, 36, 54]. Newer electrophysiological models of ventricular myocytes have been
recently developed based on particular experimental datasets, but their robustness in
reproducing tissue, cellular, and sub-cellular behavior has been shown to be similar
[10, 17, 30]. Furthermore, previous studies have shown HF entails remodeling of cel-
lular electrophysiology in the myocardium [51] and included it in cellular models
[13, 53]. In this study we used an undiseased human ventricular cell model as a ref-
erence, since we could not be sure about either to what extent ventricular cells had
modified their electrophysiology for each patient or, considering they had modified
it, whether their remodeling was homogeneous in both ventricles. Therefore, proper
model tuning for each patient is an essential part of the model creation procedure. As
a result of the choice of a different cell model, quantification of sensitivities could
vary, but qualitative effects of particular parameter changes would probably remain
similar.

Changes applied to the models in the sensitivity analysis were applied individu-
ally and in most cases homogeneously. Global sensitivity analysis with simultaneous
changes in model parameters could provide more detailed information about pos-
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sible synergistic effects, but the associated computational cost with such a large set
of parameters would be extremely large [9, 52]. Furthermore, changes in parameters
applied locally and/or heterogeneously could help in understanding properties of loc-
alized portions of tissue within the heart (low perfusion areas, scarred myocardium,
intrinsic heterogeneity...).

The electroanatomical models specifically adapted to each patient were not guar-
anteed to be unique since other combinations of tuned parameters could possibly lead
to matching of similar quality. However, in this study we focused on quantifying the
variations with respect to the default model, therefore the mechanisms involved in
the modulation of the ECG and LV activation would not change. The number of pa-
tients used in the analysis was relatively small, but the high inter-patient consistency
of the results suggests similar results would be obtained with an increased number of
patients.

5 Conclusion

The sensitivity analysis shows that the effects of parameter variations on both ECG
and LV activation are highly consistent between patients with specific anatomies
and prognoses. Changes in ionic properties entail similar effects in all ECG leads,
whereas the effects of changes in tissue conduction properties may vary between
leads. Results of the analysis suggest that, in addition to the location of early activ-
ation sites, about 10 parameters suffice to create an accurate patient-specific model.
Alterations in the remaining parameters are not significantly reflected in the ECG or
in the ventricular electrical activation.
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