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a b s t r a c t

We consider the problem of designing decentralized controllers for large-scale linear constrained
systems composed by a number of interacting subsystems. As in Riverso et al. (2013b), (i) the design
of local controllers requires limited transmission of information from other subsystems and (ii) the
addition/removal of a subsystem triggers the design of local controllers for child subsystems only. These
properties enable Plug-and-Play (PnP) operations, and we show how to perform them while preserving
global stability of the origin and constraint satisfaction. We improve several aspects of the PnP design
procedure proposed in Riverso et al. (2013b) and, using recent results in the computation of Robust
Control Invariant (RCI) sets, we show that all critical steps in the design of a local controller can be solved
through Linear Programming (LP). Finally, an application of the proposed design procedure to a large-scale
mechanical system is presented.
1. Introduction

The ever-increasing complexity and size of process plants,man-
ufacturing systems, transportation systems and power networks
has triggered a renewed interest in decentralized and distributed
control schemes, that have been studied since the 1970s for uncon-
strained models (Lunze, 1992; Šiljak, 1991). In a nutshell, decen-
tralized control assumes the overall plant is represented through
the coupling of several subsystems for which local regulators are
designed. The main advantages of this architecture are that the
computation of control variables for different subsystems is par-
allelized and only communication between a subsystem and its lo-
cal controller is required. Similar remarks also apply to distributed
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controllers where local controllers can also exchange information
through a communication network.

In the last years, many decentralized/distributed MPC (De/
DiMPC) schemes have been proposed (Scattolini, 2009), in view
of the possibility of coping with constraints on system variables
besides guaranteeing stability, robustness, and global optimality
(Rawlings & Mayne, 2009). Available DiMPC methods span from
cooperative (Stewart, Venkat, Rawlings, Wright, & Pannocchia,
2010) to non-cooperative, which require limited computational
load, memory, and transmission of information (Camponogara,
Jia, Krogh, & Talukdar, 2002; Farina & Scattolini, 2012; Riverso
& Ferrari-Trecate, 2012; Trodden & Richards, 2010). One of the
main problems of existing De/DiMPC approaches is the need of
a centralized off-line design phase. In the context of large-scale
systems, this can be a severe limitation because a global model
of the system can be very hard or costly to obtain. Moreover, in
several examples of systems of systems, units frequently enter and
leave a network (Samad & Parisini, 2011) making it impractical to
retune the overall controller in a centralized fashion. In these cases,
a decentralized design based on local computational resources is
the only viable approach.

In Riverso, Farina, and Ferrari-Trecate (2013b) we proposed a
novel controller synthesis procedure based on the PnP paradigm
(Stoustrup, 2009). PnP design, besides synthesis decentralization,
requires limited information transmission for the synthesis of local
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controllers when subsystems are added or removed. Furthermore,
the complexity of controller design and implementation, for a
given subsystem, scales with the number of its parent subsystems
only.

As in Riverso et al. (2013b), we propose a PnP design procedure
hinging on tube MPC (Raković & Mayne, 2005) for handling
coupling among subsystems, and aim at stabilizing the origin of
the whole closed-loop system while guaranteeing satisfaction of
constraints on local inputs and states. However, we advance the
design procedure in Riverso et al. (2013b) in two main directions:
(I) while in Riverso et al. (2013b) the design of local controllers
requires the solution to nonlinear optimization problems, in this
paper, using regulators based on RCI sets (Raković & Baric, 2010;
Raković & Mayne, 2005), only the solution to Linear Programming
(LP) problems is needed; (II) in Riverso et al. (2013b) stability
requirements are fulfilled imposing an aggregate sufficient small-
gain condition for networks, while in this paper we resort to
set-based conditions that are usually less conservative. As for
any decentralized synthesis procedure for general linear systems
without a special structure, our method involves some degree
of conservativity (Bakule & Lunze, 1988). More specifically, it
requires that coupling between subsystems giving rise to loops
is small enough. The potential application of our method to real-
world systems is assessed through examples. In Riverso, Farina,
and Ferrari-Trecate (2012, 2013a) we present an application of
PnP-DeMPC to frequency control in power networks and compare
results with those achievable by centralized MPC and the control
scheme in Riverso et al. (2013b). In particular, our new controller
outperforms the PnP controllers described in Riverso et al. (2013b).
In this paper we highlight computational advantages brought
about by our method by considering the control of a large array
of masses connected by springs and dampers.

The paper is structured as follows. The design of decentralized
controllers is introduced in Section 2. In Section 3 we discuss
how to design local controllers by solving LP problems and in
Section 4we describe PnP operations. Sections 5 and 6 are devoted
to a numerical example and some conclusions, respectively.
Generalizations of PnP-DeMPC to distributed control architectures
are given in Riverso et al. (2012). A preliminary version of thiswork
has been presented at the 52nd IEEE Conference on Decision and
Control (Riverso et al., 2013a).
Notation. We use a : b for the set of integers {a, a + 1, . . . , b}. The
column vector with s components v1, . . . , vs is v = (v1, . . . , vs).
The function diag(G1, . . . ,Gs) denotes the block-diagonal matrix
composed by s block Gi, i ∈ 1 : s. The symbols ⊕ and ⊖ denote
the Minkowski sum and difference, respectively, i.e. A = B ⊕ C if
A = {a : a = b + c, for all b ∈ B and c ∈ C} and A = B ⊖ C if
a⊕C ⊆ B, ∀a ∈ A. Moreover,

s
i=1 Gi = G1 ⊕· · ·⊕Gs. For ρ > 0,

Bρ(z) = {x ∈ Rn
: ∥x − z∥ ≤ ρ} where ∥ · ∥ is the Euclidean norm

in Rn. Given a set X ⊂ Rn, convh(X) denotes its convex hull. The
symbol 1 denotes a column vector of suitable dimension with all
elements equal to 1.

Definition 1 (RCI Set). Consider the discrete-time Linear Time-
Invariant (LTI) system x(t + 1) = Ax(t) + Bu(t) + w(t), with
x(t) ∈ Rn, u(t) ∈ Rm, w(t) ∈ Rn and subject to constraints
u(t) ∈ U ⊆ Rm and w(t) ∈ W ⊂ Rn. The set X ⊆ Rn is an RCI set
with respect to w(t) ∈ W, if ∀x(t) ∈ X there exists u(t) ∈ U such
that x(t + 1) ∈ X, ∀w(t) ∈ W.

2. Decentralized MPC for linear systems

We consider the discrete-time LTI system

x+
= Ax + Bu (1)
where x ∈ Rn and u ∈ Rm are the state and the input, respectively,
at time t and x+ stands for x at time t+1. The notation x(t),u(t) is
used only if necessary. The state x = (x[1], . . . , x[M]) is partitioned
into the M vectors x[i] ∈ Rni , where i ∈ M = 1 : M and
n =


i∈M ni. Similarly, u = (u[1], . . . , u[M]) where u[i] ∈ Rmi ,

i ∈ M andm =


i∈M mi. Let the ith subsystem be given by

Σ[i] : x+
[i] = Aiix[i] + Biu[i] + w[i] (2)

w[i] =


j∈Ni

Aijx[j] (3)

where Aij ∈ Rni×nj , i, j ∈ M, Bi ∈ Rni×mi and Ni = {j ∈ M : Aij ≠

0, i ≠ j} is the set of parents to subsystem i. Subsystems Σi are
state coupled and input decoupled. Moreover, under the following
assumption, they are equivalent to (1).

Assumption 1. Matrix A is composed by blocks Aij, i, j ∈ M and
B = diag(B1, . . . , BM).

We equip subsystemsΣ[i], i ∈ M with the constraints

x[i] ∈ Xi, u[i] ∈ Ui. (4)

Moreover, we define the sets X =


i∈M Xi, U =


i∈M Ui and add
to system (1) the constraints

x ∈ X, u ∈ U. (5)

We consider the following assumptions.

Assumption 2. The matrix pairs (Aii, Bi) ∀i ∈ M are controllable.

Assumption 3. Constraints Xi and Ui, i ∈ M are compact and
convex polytopes containing the origin in their nonempty interior.

For the design of suitable decentralized regulators, local controllers
are designed following the tubeMPC scheme in Raković andMayne
(2005) (see also Rawlings &Mayne, 2009). To this purpose,we treat
w[i] ∈ Wi =


j∈Ni

AijXj as a disturbance and define the nominal
(unperturbed) system Σ̂[i] as

Σ̂[i] : x̂+

[i] = Aiix̂[i] + Biv[i] (6)

where v[i] ∈ Rmi is the input. We want to confine x[i] in a tube of
section Zi centered in x̂[i], i.e. to obtain that

x[i](0) ∈ x̂[i](0)⊕ Zi ⇒ x[i](t) ∈ x̂[i](t)⊕ Zi, ∀t ≥ 0. (7)

This can be achieved (Raković & Mayne, 2005) if (a) Zi is a
nonempty RCI set for the constrained subsystem (2) with respect
to the disturbancewi; (b) for x̄ = x̂ the local controller

C[i] : u[i] = v[i] + κ̄i(x[i] − x̄[i]) (8)

is used, where κ̄i : Zi → Ui is any feedback control law2

guaranteeing x[i] ∈ Zi ⇒ x+
[i] ∈ Zi, ∀w ∈ W.

Following Raković and Mayne (2005), in (8) we set

v[i](t) = v[i](0|t), x̄[i](t) = x̂[i](0|t) (9)

where v[i](0|t) and x̂[i](0|t) are optimal values of the variables
v[i](0) and x̂[i](0), respectively, appearing in the MPC-i problem
PN
i (x[i](t))

min
v[i](0:Ni−1)

x̂[i](0)

Ni−1
k=0

ℓi(x̂[i](k), v[i](k))+ Vfi(x̂[i](Ni)) (10a)

x[i](t)− x̂[i](0) ∈ Zi (10b)

2 Definition 1 guarantees the existence of a function κ̄i .



x̂[i](k + 1) = Aiix̂[i](k)+ Biv[i](k), k ∈ 0 : Ni − 1 (10c)

x̂[i](k) ∈ X̂i, k ∈ 0 : Ni − 1 (10d)

v[i](k) ∈ Vi, k ∈ 0 : Ni − 1 (10e)

x̂[i](Ni) ∈ X̂fi . (10f)

In (10), Ni ∈ N is the control horizon, ℓi : Rni×mi → R+ is the
stage cost, Vfi : Rni → R+ is the final cost and X̂fi is the terminal
set. Moreover, from (10c), the nominal system Σ̂i, equipped with
suitable constraints x̂[i] ∈ X̂i and v[i] ∈ Vi, is used for obtaining
the state predictions over the control horizon. We highlight that
in (10b) the initial state of the nominal system is an optimization
variable: comments on this feature are provided in Raković and
Mayne (2005).

As shown in Raković and Mayne (2005), constraints (4) can be
fulfilled using (8)–(10) if there exist sets X̂i andVi, i ∈ M verifying

X̂i ⊕ Zi ⊆ Xi, Vi ⊕ Uzi ⊆ Ui (11)

where Uzi = κ̄i(Zi). The existence of such sets is guaranteed by the
following assumption.

Assumption 4. There exist ρi,1 > 0, ρi,2 > 0 such that Zi ⊕

Bρi,1(0) ⊆ Xi and Uzi ⊕ Bρi,2(0) ⊆ Ui, where Bρi,1(0) ⊂ Rni and
Bρi,2(0) ⊂ Rmi .

Assumption 4 implies that the coupling of subsystems connected
in a cyclic fashion must be sufficiently small. As an example, for
two subsystems Σ1 and Σ2 where each one is the parent of the
other one, Assumption 4 implies that Z1 ⊆ X1 and Z2 ⊆ X2. Since,
by construction, Zi ⊇ Wi, one has A21X1 ⊆ X2 and A12X2 ⊆ X1
that implies A12A21X1 ⊆ X1. These conditions are similar to the
ones arising in the small gain theorem for networks (Dashkovskiy,
Rüffer, & Wirth, 2007).

In order to stabilize the origin of the closed-loop system, we
introduce a customary assumption in MPC (Rawlings & Mayne,
2009).

Assumption 5. For all i ∈ M, there exist an auxiliary control law
κaux
i (x̂[i]) and a K∞ function Bi such that:

(i) ℓi(x̂[i], v[i]) ≥ Bi(∥(x̂[i], v[i])∥), for all x̂[i] ∈ Rni , v[i] ∈ Rmi and
ℓi(0, 0) = 0;

(ii) X̂fi ⊆ X̂i is an invariant set for x̂+

[i] = Aiix̂[i] + Biκ
aux
i (x̂[i]);

(iii) ∀x̂[i] ∈ X̂fi , κ
aux
i (x̂[i]) ∈ Vi;

(iv) ∀x̂[i] ∈ X̂fi , Vfi(x̂
+

[i])− Vfi(x̂[i]) ≤ −ℓi(x̂[i], κ
aux
i (x̂[i])).

We highlight that there are several methods, discussed e.g. in
Rawlings and Mayne (2009), for computing ℓi(·), Vfi(·) and Xfi
verifying Assumption 5.

In summary, the controllerC[i] is given by (8)–(10) and depends
upon quantities of system Σ[i] only. Therefore the collective
controller for (1) is decentralized. The main problem that still has
to be solved in the design of local controllers is the following one.

Problem P . Compute nonempty RCIs Zi, i ∈ Mi for (2), if they
exist, verifying Assumption 4. �

In the next section we show how to solve Problem P , under
Assumptions 2 and 3 through a distributed and computationally
efficient algorithm based on LP. We also show how sets X̂i and Vi
verifying (11) and functions κ̄i in (8) can be readily computed.
3. Decentralized synthesis of DeMPC

From Assumption 3 we define the sets Xi and Ui as

Xi = {x[i] ∈ Rni : cTxi,r x[i] ≤ 1, ∀r ∈ 1 : gi} (12)

Ui = {u[i] ∈ Rmi : cTui,r u[i] ≤ 1, ∀r ∈ 1 : li} (13)

where cxi,r ∈ Rni and cui,r ∈ Rmi . Using the procedure proposed
in Section VI of Raković and Baric (2010), we compute an RCI set
Zi ⊂ Xi using an appropriate parametrization, i.e., we define the
set of variables θi as

θi = {z̄(s,f )
[i] ∈ Rni ∀s ∈ A5

i , ∀f ∈ A1
i ; (14a)

ū(s,f )
[i] ∈ Rmi ∀s ∈ A3

i , ∀f ∈ A1
i ; (14b)

ρ
(f1,f2)
i ∈ R ∀f1 ∈ A1

i , ∀f2 ∈ A1
i ; (14c)

ψ
(τ ,s)
i ∈ R ∀r ∈ A2

i , ∀s ∈ A3
i ; (14d)

γ
(τ ,s)
i ∈ R ∀r ∈ A4

i , ∀s ∈ A3
i ; (14e)

αi ∈ R} (14f)

with A1
i = 1 : qi,A2

i = 1 : τ ui ,A
3
i = 0 : ki − 1,A4

i = 1 : τ xi and
A5

i = 0 : ki, where ki, qi ∈ N are parameters of the procedure that
can be chosen by the user as well as the set

Z̄0
i = convh({z̄(0,f )

[i] ∈ Rni , ∀f ∈ A1
i }) (15)

where z̄(0,1)
[i] = 0. Let us define the sets

Z̄s
i = convh({z̄(s,f )

[i] ∈ Rni , ∀f ∈ A1
i }), ∀s ∈ A5

i , (16)

Ūs
zi = convh({ū(s,f )

[i] ∈ Rmi , ∀f ∈ A1
i }), ∀s ∈ A3

i , (17)

where z̄(s,1)
[i] = 0, ū(p,1)

[i] = 0, and consider the following set of
affine constraints on the decision variable θi

Θi = {θi :

αi < 1, −αi ≤ 0 (18a)

z[i](ki,f1) =

qi
f2=1

ρ
(f1,f2)
i z[i](0,f2), ∀f1 ∈ A1

i ; (18b)

−αi +

qi
f2=1

ρ
(f1,f2)
i ≤ 0, ∀f1 ∈ A1

i ; (18c)

−ρ
(f1,f2)
i ≤ 0, ∀f1 ∈ A1

i , ∀f2 ∈ A1
i ; (18d)

ki−1
s=0

ψ
(τ ,s)
i + αi < 1, ∀τ ∈ A2

i ; (18e)

cTui,τ ū
(s,f )
[i] ≤ ψ

(τ ,s)
i , ∀τ ∈ A2

i , ∀s ∈ A3
i , ∀f ∈ A1

i ; (18f)

ki−1
s=0

γ
(τ ,s)
i + αi < 1, ∀τ ∈ A4

i ; (18g)

cTxi,τ z̄
(s,f )
[i] ≤ γ

(τ ,s)
i , ∀τ ∈ A4

i , ∀s ∈ A3
i , ∀f ∈ A1

i ; (18h)

z̄(s+1,f )
[i] = Aiiz̄

(s,f )
[i] + Biū

(s,f )
[i] , ∀s ∈ A3

i , ∀f ∈ A1
i }. (18i)

We introduce the following assumption on the choice of sets Z̄0
i .

Assumption 6. The set Z̄0
i is such that there is ωi > 0 verifying

Wi ⊕ Bωi(0) ⊆ Z̄0
i .



Note that, since 0 ∈ Wi, Assumption 6 can be fulfilled only if
0 ∈ Z̄0

i , that is guaranteed by the use of z̄(0,1)
[i] = 0 in (15). The

relation between elements of Θi and the RCI sets Zi is established
in the next proposition.

Proposition 7. Let Assumptions 2 and 6 hold and sets Xi and Ui be
defined as in (12) and (13) respectively. Let ki > 0. If there exists
θi ∈ Θi, then

Zi = (1 − αi)
−1

ki−1
s=0

Z̄s
i (19)

is an RCI set and the corresponding set Uzi is given by

Uzi = (1 − αi)
−1

ki−1
p=0

Ūp
zi . (20)

Proof. The proof directly follows from Section 6-a and Theorem
4.3 of Raković and Baric (2010). �

Remark 1. The feasibility problem (18) is an LP problem, since
the constraints in Θi are affine.3 In Raković and Baric (2010) the
authors propose to compute θ ∈ Θi while minimizing different
cost functions. In our context we minimize αi that, in view of (19),
corresponds to the minimization of the size of Zi. This leads to
‘‘bigger’’ constraint sets X̂i and Vi in (10) (see (21) below). Also
note that the inclusion of z̄(s,1)

[i] = 0 in the definition of Z̄s
i , s ∈

0 : ki, ensures that all sets Z̄s
i contain the origin and hence, under

Assumption 6, Zi contains the origin in its nonempty interior. If
Wi is full dimensional, we can set Z̄0

i = (1 + ϵ)Wi, with ϵ > 0
sufficiently small.

We highlight that the set of constraintsΘi depends only upon local
fixed parameters {Aii, Bi,Xi,Ui}, fixed parameters {Aij,Xj}j∈Ni of
parents of Σ̂[i] (because from Assumption 6 the set Z̄0

i must be
chosen in a way such that Z̄0

i ⊇ Wi =


j∈Ni
AijXj) and local

tunable parameters θi (the decision variables (14)). Moreover, Θi
does not depend on tunable parameters of parents. This implies
that the computation of sets Zi and Uzi in (19) and (20) does not
influence the choice of Zj and Uzj , j ≠ i. Therefore Problem P is
decomposed in the following independent LP problems for i ∈ M.

Problem Pi. Solve the feasibility LP problem θi ∈ Θi.

If Problem Pi is solved, then we can compute sets X̂i and Vi in
(10d) and (10e) as

X̂i = Xi ⊖ Zi, Vi = Ui ⊖ Uzi . (21)
The overall procedure for the decentralized synthesis of local
controllers C[i], i ∈ M is given in Algorithm 1, the properties of
which are summarized in the next proposition.

Proposition 8. Under Assumptions 2 and 3 if, for all i ∈ M, con-
trollers C[i] are designed according to Algorithm 1, then also Assump-
tions 4–6 are verified.
Proof. Assumptions 5 and 6 are enforced in Steps (iii-iii) and (i)
of Algorithm 1, respectively. As for Assumption 4, because of the
inequality in (18e), constraints (18e)–(18f) guarantee the existence
of ρi,2 > 0 such that Uzi ⊕ Bρi,2(0) ⊆ Ui. Similarly, because of
the inequality in (18g), one has that (18g) and (18h) imply the
existence of ρi,1 > 0 such that Zi ⊕ Bρi,1(0) ⊆ Xi. �

If in Step (ii) of Algorithm 1 the LP problem is infeasible, we can
restart it with a different ki, although there is no guarantee that the

3 As customary in optimization, strict inequalities (18e) and (18g) can be replaced
by nonstrict ones using small positive tolerances.
Algorithm 1 Design of controller C[i] for systemΣ[i]

Input: Aii, Bi, Xi, Ui, Ni, {Aij}j∈Ni , {Xj}j∈Ni , ki > 0
Output: controller C[i] given by (8), (9) and (10)

(i) Compute the set Wi =


j∈Ni
AijXj and choose Z̄0

i such that
Xi ⊇ Z̄0

i ⊇ Wi ⊕ Bωi(0) for a sufficiently small ωi > 0. If Z̄0
i

does not exist stop (the controller C[i] cannot be designed)
(ii) Solve the feasibility LP problem θi ∈ Θi. If it is infeasible stop

(the controller C[i] cannot be designed).
(iii) Design controller MPC-i by

(iii-i) Computing Zi as in (19) and Uzi as in (20).
(iii-ii) Computing X̂i and Vi as in (21).
(iii-iii) Choosing ℓi(·), Vfi(·) and Xfi verifying Assumption 5.
(iv) Choose the function κ̄i in (8).

LP problem is feasible for some values of ki (Raković & Baric, 2010).
Steps (iii)-(i) and (iii)-(ii) of Algorithm1,which provide constraints
in (10), are the most computationally expensive because they
involve Minkowski sums and differences of polytopic sets. In the
next sections we show how to avoid burdensome computations
exploiting results from Raković and Baric (2010) and how to
compute a suitable function κ̄i through LP.

3.1. Implicit representation of sets Zi and Uzi

In this section we show how to rewrite the constraints (10b) by
exploiting the implicit representation of set Zi proposed in Section
VI.B of Raković and Baric (2010). Recalling (19), we have that z̃s

[i] ∈

Z̄s
i if, for all f ∈ 1 : qi, ∃β

(s,f )
i ≥ 0 such that

qi
f=1

β
(s,f )
i = 1, z̃s

[i] =

qi
f=1

β
(s,f )
i z̄(s,f )

[i] .

Hence, x[i](t) − x̂[i](0|t) ∈ Zi if and only if, for all f ∈ 1 : qi and
s ∈ 0 : ki − 1, there exist β(s,f )i ∈ R such that

β
(s,f )
i ≥ 0,

qi
f=1

β
(s,f )
i = 1

x[i](t)− x̂[i](0|t) = (1 − αi)
−1

ki−1
s=0

qi
f=1

β
(s,f )
i z̄(s,f )

[i] .

(22)

In other words we add to the optimization problem (10) the
variables β(s,f )i and replace (10b) with constraints (22).

With similar arguments, we can also provide an implicit
representation of sets Uzi . In particular, we have that uz [i] ∈ Uzi

if and only if ∀f ∈ 1 : qi,∀s ∈ 0 : ki − 1 there exist φ(s,f )i ∈ R such
that

φ
(s,f )
i ≥ 0 (23a)
qi

f=1

φ
(s,f )
i = 1 (23b)

uz [i] = (1 − αi)
−1

ki−1
s=0

qi
f=1

φ
(s,f )
i ū(s,f )

[i] . (23c)

3.2. Computation of sets X̂i and Vi

In this section we show how to compute sets X̂i and Vi in (21)
using the implicit representation of Zi and Uzi .



Using (19) we can rewrite X̂i = Xi ⊖ (1 − αi)
−1 ki−1

s=0 Z̄s
i .

Recalling that sets Z̄s
i , s ∈ 0 : ki−1 are defined as the convex hull of

points z̄(s,f )
[i] , f ∈ 1 : qi, we can compute the set X̂i using Algorithm

2. In particular, the operation in Step (ii)-(ii) of Algorithm 2

Algorithm 2

Input: set Xi defined as in (12), points z̄(s,f )
[i] ,∀s ∈ 0 : ki − 1,∀f ∈

1 : qi and scalar αi.
Output: set X̂i.

(i) C̄i = (cTxi,1 , . . . , c
T
xi,gi
) ∈ Rgi×ni and D̄i = 1

(ii) For each s ∈ 0 : ki − 1
(ii-i) For each f ∈ 1 : qi

C̃i = (C̄i, C̄i) and D̃i = (D̄i, D̄i − (1 − αi)
−1C̄iz̄

(s,f )
[i] )

(ii-ii) Remove redundant constraints from C̃ix̂[i] ≤ D̃i so
obtaining the inequalities C̄ix̂[i] ≤ D̄i

(iii) Set X̂i = {x̂[i] : C̄ix̂[i] ≤ D̄i} where C̄i ∈ Rĝi×ni and D̄i ∈ Rĝi

amounts to LP problems. In a similar way we can compute the set
Vi using the implicit representation of Uzi given in (23). Indeed, it
suffices to use Algorithm 2 replacing Xi with Ui, defined in (13),
and points z̄(s,f )

[i] with points ū(s,f )
[i] ,∀s ∈ 0 : ki − 1,∀f ∈ 1 : qi.

3.3. Evaluation of the control law κ̄i(·)

Recalling (8), since κ̄i(·) depends on x̂[i], one has to solve the
MPC-i problem (10) first and then evaluate κ̄i(z[i]). The control law
κ̄(z[i]) ∈ Uzi guarantees that if x[i](t) − x̂[i](0|t) ∈ Zi (i.e. MPC-
i problem (10) is feasible), then there is λi ∈ [0, 1] such that
x[i](t + 1)− x̂[i](1|t) ∈ λiZi. In order to minimize the contractivity
parameter λi and take advantage of the representation (22) of the
set Zi, we exploit the results of Blanchini (1991) and Raković and
Baric (2010) and propose to compute κ̄i(z[i]) solving the following
LP problem:

P̄i(z[i]) : min
µ,β

(s,f )
i

µ (24a)

β
(s,f )
i ≥ 0, ∀f ∈ 1 : qi, ∀s ∈ 0 : ki − 1 (24b)
qi

f=1

β
(s,f )
i = µ, ∀s ∈ 0 : ki − 1 (24c)

µ ≥ 0 (24d)

z[i] = (1 − αi)
−1

ki−1
s=0

qi
f=1

β
(s,f )
i z̄(s,f )

[i] (24e)

and setting

κ̄i(z[i]) = (1 − αi)
−1

ki−1
s=0

κ̄ s
i (z[i])

κ̄ s
i (z[i]) =

qi
f=1

β̄
(s,f )
i ū(s,f )

[i]

(25)

where β̄(s,f )i are the optimizers to (24) and ū(s,f )
[i] are defined in (14b)

(see also (17)).

Remark 2. In Riverso et al. (2013b) we used the control law (8)
with the linear function κ̄i(x[i] − x̂[i]) = Ki(x[i] − x̂[i]), Ki ∈ Rmi×ni .
This choice has the disadvantage of requiring the computation of
matrices Ki, i ∈ M through the solution to nonlinear optimization
problems, fulfilling a global stability assumption. Differently, as
shown in Section 3.4, we guarantee stability for the closed-loop
collective system through the computation of suitable RCI sets Zi
and functions κ̄i solving LP problems only.

3.4. Analysis of the closed-loop system

Defining the collective variables x̂ = (x̂[1], . . . , x̂[M]) ∈ Rn, v
= (v[1], . . . , v[M]) ∈ Rm and the function κ̄(x) = (κ̄1(x[1]), . . . ,
κ̄M(x[M])) : Rn

→ Rm, from (2) and (8) one obtains the collective
model

x+
= Ax + Bv + Bκ̄(x − x̂). (26)

The next theorem, proved in Appendix A in Riverso et al. (2012),
summarizes the key properties of the closed-loop system (26).

Theorem 9. Let Assumptions 2 and 3 hold. Assume controllers C[i]
in (8) are computed using Algorithm 1 and let the function κ̄i be
given by (25). Then, the origin of (26) is asymptotically stable, XN

=
i∈M XN

i , with

XN
i = {s[i] ∈ Xi : (10) is feasible for x[i](t) = s[i]},

is a region of attraction and x(0) ∈ XN guarantees constraints (5) are
fulfilled at all time instants.

The complete proof of Theorem 9 has been omitted for strict space
constraints and it can be found in Riverso et al. (2012). Next,we just
provide a sketch of it. By using standard arguments in MPC theory,
from Assumption 5 and constraints (10b)–(10f) one can show re-
cursive feasibility (i.e. that x[i](t) ∈ XN

i ,∀i ∈ M implies x[i](t+1) ∈

XN
i ) and that x̂[i](0|t) → 0 and v[i](0|t) → 0 as t → ∞. Proving

the state converges to the origin is much more challenging and re-
quires two separate steps relying on set-theoretical and geometric
arguments. In the first step we prove that, if x(0) ∈ XN , there is
T̃ > 0 such that x(T̃ ) ∈ Z =


i∈M Zi. In the second step we

show that, if x(T̃ ) ∈ Z, then x(t) → 0 as t → +∞. The main
difference from standard tube MPC, that assumes persistent dis-
turbances, is that the ‘‘disturbance’’ (i.e. coupling terms) affecting
each subsystem is influenced by the controllers of parent subsys-
tems. Accounting for these interactions is fundamental for proving
closed-loop stability of the origin, which does not hold when dis-
turbances are persistent.

4. PnP operations

In this section we discuss the synthesis of new controllers and
the redesign of existing ones when subsystems are added to or
removed from system (2). The goal is to preserve stability of the
origin and constraint satisfaction for the new closed-loop system.
Note that plugging in and unplugging of subsystems are here con-
sidered as off-line operations, i.e. they do not induce switching dy-
namics. As a starting point, we consider a plant composed by sub-
systems Σ[i], i ∈ M equipped with local controllers C[i], i ∈ M
produced by Algorithm 1. We also define Sk = {i ∈ M : k ∈ Ni} as
the set of children toΣ[k].

4.1. Plugging in operation

Assume subsystem Σ[M+1], characterized by parameters
AM+1M+1, BM+1,XM+1,UM+1,NM+1 and {Aij}j∈NM+1 , is plugged in.
For building the controller C[M+1] we execute Algorithm 1 that
needs information only from subsystems Σ[j], j ∈ NM+1. If there
is no solution to the feasibility LP problem in Step (ii) of Algorithm
1, we declare that Σ[M+1] cannot be plugged in. Since each sub-
system Σ[j], j ∈ SM+1 has the new parent Σ[M+1], the set Wj gets



Fig. 1. Array of masses: details of interconnections.

bigger. Therefore the set Z̄0
j must be recomputed and the controller

C[j] must be redesigned. Again, if Algorithm 1 stops in Step (ii), we
declare thatΣ[M+1] cannot be plugged in.

Note that redesign of controllers C[i], i ∉ {M +1}


SM+1 is not
required in order to guarantee convergence to zero of the origin
and constraint satisfaction for the new closed-loop system.

4.2. Unplugging operation

Assume that subsystem Σ[k], k ∈ M gets unplugged. Since
for each i ∈ Sk the set Ni gets smaller, also Wi gets smaller and
the set Z̄0

i already computed still verifies the inclusions in Step (i)
of Algorithm 1. This means that, for each i ∈ Sk, the previously
computed θi in Step (ii) of Algorithm 1 still verifies θi ∈ Θi and
hence the controller C[i] does not have to be redesigned. Also
controllers C[j], j ∉ {k}


Sk do not have to be redesigned because

sets Nj do not change. However, we highlight that since systems
Σ[i], i ∈ Sk have one parent less, the redesign of controllers C[i]
through Algorithm 1 could improve the performance.

5. Simulation example

We consider a large-scale system composed by 1024 masses
coupled as in Fig. 2(b) through springs and dampers arranged as
in Fig. 1. Each mass i ∈ M = 1 : 1024, is a continuous-
time subsystem with state x[i] = (x[i,1], x[i,2], x[i,3], x[i,4]) and input
u[i] = (u[i,1], u[i,2]), where x[i,1] and x[i,3] are the displacements
with respect to a given equilibrium position (equilibria lie on
a regular grid as in Fig. 2(b)), x[i,2] and x[i,4] are the horizontal
and vertical velocities and 100u[i,1] (respectively 100u[i,2]) is the
force applied to mass i in the horizontal (respectively, vertical)
direction. The values of mi have been extracted randomly in the
interval [5, 10] while spring constants and damping coefficients
are identical and equal to 0.5. Subsystems are equipped with
the state constraints ∥x[i,j]∥∞ ≤ 1.5, j = 1, 3, ∥x[i,l]∥∞ ≤

0.8, i ∈ M, l = 2, 4 and the input constraints ∥u[i]∥∞ ≤ Γi,
where Γi have been generated randomly in the interval [1, 1.5].
We obtain subsystemΣ[i] by discretizing continuous-time models
with 0.2 s sampling time, using zero-order hold discretization for
the local dynamics and treating x[j], j ∈ Ni as exogenous signals.
We synthesized controllers C[i], i ∈ M using Algorithm 1 and
plugging-in a new mass at each iteration. In the worst case the
time required to solve Step (ii) of Algorithm 1 is 0.2598 s (best
case 0.0140 s). Note also that the use of a centralized MPC is
prohibitive since the overall system has x ∈ R4096,u ∈ R2048

and therefore 8192 + 4096 scalar affine constraints. Modeling,
discretization and design of controllers have been performed
in MatLab using the PnPMPC-toolbox that offers facilities for
handling the interconnections of constrained subsystems (Riverso,
Battocchio, & Ferrari-Trecate, 2012). In Figs. 2 and 3 we show
a simulation where, at time t = 0, the masses are still and
placed as in Fig. 2(a). At all time steps t , the control action u[i](t)
computed by the controller C[i], for all i ∈ M, is kept constant
during the sampling interval and applied to the continuous-time
system. In the worst case, the computation of the control law (8)
requires 0.1047 s on a processor Intel Core i7-2600 3.4 GHz, Ram
8 GB 1.33 GHz running MatLab r2011b. Convergence is obtained
for all masses to their equilibrium position while fulfilling input
and state constraints. In Riverso et al. (2012) we show that the
coupling is relevant since, by neglecting it in the design of local
MPC controllers, recursive feasibility can be compromised. For this
large-scale system, we also have considered the use of PnP-DeMPC
controllers proposed in Riverso et al. (2013b), but since the design
of local controllers requires the solution to nonlinear optimization
problems we did not obtain conclusive results after several hours
of computation.

6. Conclusions

In this paper we proposed a De/DiMPC architecture using
the notion of tube MPC based on RCI sets. Our control scheme
guarantees closed-loop asymptotic stability and constraints sat-
isfaction at each time instant. The design procedure enables
(a) Position of the masses at initial time. (b) Position of the masses at time 6 s.

Fig. 2. Position of the 1024 masses on the plane.



(a) Displacements of the masses from their equilibrium
positions.

(b) Velocities, i.e. states x[i,2] and x[i,4], i ∈ M.

(c) Inputs u[i,1], i ∈ M. (d) Inputs u[i,2], i ∈ M.

Fig. 3. State and input trajectories of the 1024 masses with initial position as in Fig. 2(a).
PnP operations, and differently from Riverso et al. (2013b) local
controllers are computed solving LP problems only. In order to
achieve decentralization of controller design and online opera-
tions, two sources of conservativity are introduced: coupling terms
are treated as disturbances and there must be an RCI set that is the
Cartesian product of local RCI sets. This implies that PnPMPC can
be applied only if coupling between subsystems is small enough.
To overcome these limitations, in the future we will investigate
the use of alternative robust control approaches (see e.g. Blan-
chini, 1990) as well as the introduction of a coupling attenua-
tion layer based on distributed control architectures. Future works
also include the design of output-feedback PnP schemes combining
the state-feedback PnP controller proposed in this paper and the
state estimator presented in Riverso, Farina, Scattolini, and Ferrari-
Trecate (2013).
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