
Brief paper

Stochastic stability of Positive Markov Jump Linear Systems✩

Paolo Bolzern a,1, Patrizio Colaneri a, Giuseppe De Nicolao b

a Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
b Università di Pavia, Dipartimento di Ingegneria Industriale e dell’Informazione, Via Ferrata 3, 27100 Pavia, Italy

a r t i c l e i n f o

Article history:
Received 24 April 2013
Received in revised form
5 September 2013
Accepted 10 January 2014
Available online 28 February 2014

Keywords:
Markov Jump Linear Systems
Positive systems
Hybrid systems
Stability

a b s t r a c t

This paper investigates on the stability properties of Positive Markov Jump Linear Systems (PMJLS’s),
i.e. Markov Jump Linear Systems with nonnegative state variables. Specific features of these systems
are highlighted. In particular, a new notion of stability (Exponential Mean stability) is introduced and
is shown to be equivalent to the standard notion of 1-moment stability. Moreover, various sufficient
conditions for Exponential Almost-Sure stability are worked out, with different levels of conservatism.
The implications among the different stability notions are discussed. It is remarkable that, thanks to
the positivity assumption, some conditions can be checked by solving Linear Programming feasibility
problems.
1. Introduction

Markov Jump Linear Systems (MJLS’s) are a popular class of
stochastic systems that are well suited to describe dynamics
characterized by random jumps between subsystems induced by
external causes, such as random faults, unexpected events, and un-
controlled configuration changes (Boukas, 2005; Costa, Fragoso, &
Marquez, 2005; Costa, Fragoso, & Todorov, 2013). Possible appli-
cations of jump systems include fault-tolerant systems (Aberkane,
Ponsart, Rodrigues, & Sauter, 2008), networked control (Xiao, Xie, &
Fu, 2010), communication networks for multi-agent systems (Me-
skin & Khorasani, 2009), macroeconomic models (do Val & Basar,
1999), pulp and paper industry (Khanbaghi, Malhamé, & Perrier,
2002), energy systems (Angeli & Kountouriotis, 2012) and epi-
demiology (Otero, Barmak, Dorso, Solari, & Natiello, 2011). The as-
sumptions that the jumps are governed by an underlying Markov
chain and the subsystems are linear make these systems amenable
to a thorough theoretical analysiswhile preserving great flexibility.

It is remarkable that, even in the case of jumps between lin-
ear time-invariant subsystems, the fundamental property of state
stability is much more involved than in the deterministic case and
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presents several interesting, sometimes intriguing, facets. Indeed,
various notions of stochastic stability can be studied which are
not equivalent. Mean-square stability, implying asymptotic con-
vergence to zero of the expected squared norm of the state is a
classical and widely investigated notion. Necessary and sufficient
conditions for mean-square stability of MJLS’s are available both
in continuous and discrete-time (Boukas, 2005; Costa et al., 2005;
Feng, Loparo, Ji, & Chizeck, 1992). Mean-square stability is a partic-
ular instance of δ-moment stability, where the squared norm is re-
placed by a generic positive power δ of the norm, see Fang, Loparo,
and Feng (1994). However, as pointed out in Kozin (1969), these
stability properties, dealing with the convergence of the moments
of the state norm, would be better replaced by the direct study of
the convergence to zero of almost all the sample paths of the state.
As a matter of fact, this last notion, that goes under the name of
almost-sure stability, is much closer to the practical concerns of the
user. The connections between the different stability notions are
now well understood, see e.g. Fang et al. (1994), Fang and Loparo
(2002). It is known that δ-moment stabilitywith a certain δ implies
δ-moment stability with smaller values of δ. Furthermore, almost-
sure stability is implied by δ-moment stability for any value of δ.
Unfortunately, there do not exist direct and easy-to-check neces-
sary and sufficient conditions for verifying almost-sure stability.
The alternative is between relatively simple sufficient conditions,
that may be however conservative (Fang, 1997; Fang et al., 1994;
Tanelli, Picasso, Bolzern, & Colaneri, 2010), and a randomized crite-
rion related to the average norm contractivity over an interval, that
can be made arbitrarily close to necessity at the cost of increased
computational burden (Bolzern, Colaneri, & De Nicolao, 2006). For
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this reason, mean-square stability, though more restrictive, may
appear more convenient, especially for design purposes, as it can
benefit from the availability of necessary and sufficient conditions
checkable by standard tools.

In this paper we consider the case in which all the subsystems
belong to the class of linear positive systems (Farina&Rinaldi, 2000),
whose state variables remain nonnegative whenever initialized
in the positive orthant. Positive systems are frequently used
to describe biological systems (e.g. compartmental models) or
population dynamics. Other applications are found in chemical
reactions, queue processes, traffic modeling, to mention but a
few. The stability properties of deterministic positive systems
present peculiar features which simplify the analysis. In particular,
asymptotic stability can be assessed using linear Lyapunov
functions, see e.g. Farina and Rinaldi (2000). It is therefore natural
to investigate whether similar simplifications carry over to the
stochastic case of Positive Markov Jump Linear Systems (PMJLS’s),
a study that, to the authors’ knowledge, is not available in the
literature.

With reference to the notions of mean-square, δ-moment
and almost-sure stability, we provide a comprehensive picture
of sufficient and/or necessary conditions highlighting the role
of positivity both from the theoretical and the computational
viewpoint. The key questions addressed in the paper regard the
possibility of establishing equivalences between stability notions
as well as the possible existence of a stability notion equipped
with easy to handle necessary and sufficient conditions but less
conservative thanmean-square stability. As a further contribution,
we work out a number of sufficient conditions for almost-sure
stability, discussing their degree of conservatism versus usability.

The paper is organized as follows. After introducing in Section 2
the adopted notation and some useful properties, the class of
PMJLS’s is presented in Section 3 and the various stability notions
are reported in Section 4. The main results of the paper are
discussed in Section 5, followed by some numerical examples in
Section 6. The paper ends with some concluding remarks.

2. Notation and basic properties

In this paper we will conform with the standard convention of
denoting scalar and vectors with small letters and matrices with
capital letters. The ith entry of vector x will be indicated as xi and
the (i, j)th entry of matrix A as aij. Moreover, vectors are usually
assumed as column vectors and the suffix ′ corresponds to vector
or matrix transposition. The symbol 1n denotes the n-dimensional
vectorwith all entries equal to 1. The symbol In denotes the identity
matrix of order n. In both cases, the suffix n will be omitted when
the vector (or matrix) size is clear from the context. The symbol
ei stands for the ith column of the identity matrix (again the
dimension will be clear from the context).

A (column or row) vector x = [xi] ∈ ℜ
n is said to be positive

if all its entries are strictly greater than 0. In that case, we will say
that x ≫ 0. A vector x = [xi] ∈ ℜ

n is said to be nonnegative if all
its entries are greater than or equal to 0. In that case, we will say
that x > 0. Similar definitions and notation apply when x is either
negative (x ≪ 0) or nonpositive (x < 0). The expressions x ≫ y,
x > y, x ≪ y, x < y indicate that the difference x − y is positive,
nonnegative, negative, nonpositive, respectively. To indicate that a
square matrix P ∈ ℜ

n×n is positive definite (positive semi-definite),
we will use the symbol P ≻ 0 (P ≽ 0). The notation P ≺ 0 (P ≼ 0)
means that P is negative definite (negative semi-definite).

A square matrix A = [aij] ∈ ℜ
n×n is said to be Metzler if its

off-diagonal entries are nonnegative, namely aij ≥ 0 for i ≠ j. For
a Metzler matrix A, it is known that its eigenvalue λ with maxi-
mum real part is always real and is called the Frobenius eigenvalue.
The corresponding eigenspace is generated by a positive eigenvec-
tor, called the Frobenius eigenvector, see e.g. Berman and Plemmons
(1994), Farina and Rinaldi (2000). A dynamical linear system de-
scribed by the differential equation ẋ(t) = Ax(t), where A is a Met-
zlermatrix, is called a positive system because it enjoys the property
that any trajectory starting in the positive orthant remains indefi-
nitely confined in it.

A square matrix is Hurwitz if all its eigenvalues lie in the open
left half plane. AMetzler matrix is Hurwitz if and only if there exist
a vector c ≫ 0 such that c ′A ≪ 0, see e.g. (Farina & Rinaldi, 2000).

The symbols ∥x∥ and ∥A∥ will be used to denote a generic norm
of vector x ∈ ℜ

n and the corresponding induced norm ofmatrix A ∈

ℜ
n×n. In particular ∥x∥1 =

n
i=1 |xi| and ∥A∥1 = maxj

n
i=1 |aij|.

The measure of matrix A ∈ ℜ
n×n is defined as µ(A) =

limh→0
∥I+Ah∥−1

h and it depends on the adopted matrix norm. It is
well known that ∥exp(At)∥ ≤ exp(µ(A)t), t ≥ 0. It can be shown
that µ1(A) = maxj


ajj +

n
i=1, i ≠ j|aij|


. These results can be

found in Desoer and Vidyasagar (1975).
Given a set of vectors zi ∈ ℜ

n, i = 1, 2, . . . ,N , the symbol
vz = vec[zi] represents the vector obtained by stacking vectors
z1, z2, . . . , zN , into a single nN-dimensional vector. For two ma-
trices A ∈ ℜ

n×m, B ∈ ℜ
p×q, the expression C = A ⊗ B stands

for the usual Kronecker product, obtained by orderly collecting the
blocks aijB into the matrix C ∈ ℜ

np×mq. For two square matrices
A ∈ ℜ

n×n, B ∈ ℜ
p×p, the Kronecker sum is defined as D = A ⊕ B =

A⊗ Ip + In ⊗ B ∈ ℜ
np×np. Properties of Kronecker operators can be

found in Graham (1981).
The expectation of a stochastic variable v will be denoted as

E[v]. The symbol Pr{·} will be used for the probability of an event.

3. Positive Markov Jump Linear Systems

In this paper the attention will be focused on the class of
continuous-time Markov jump linear system

ẋ(t) = Aσ(t)x(t), t ≥ 0 (1)

where x(t) ∈ ℜ
n, σ(t) ∈ S = {1, 2, . . . ,N}, and the matrices Ai ∈

ℜ
n×n, i ∈ S are Metzler matrices, i.e. real square matrices whose

off-diagonal entries are nonnegative. The process σ(t) is a time-
homogeneous Markov stochastic process with infinitesimal gen-
erator Λ ∈ ℜ

N×N . Precisely, let

Pr{σ(t + h) = j|σ(t) = i} = λijh + o(h), i ≠ j (2)

where h > 0, and λij ≥ 0 is the transition rate frommode i at time
t to mode j at time t + h. The diagonal entries of Λ are defined as

λii = −

N
j=1,j≠i

λij

so that Λ is a Metzler matrix satisfying Λ1 = 0. Let τk, k = 0,
1, . . . , τ0 = 0, be the successive sojourn times between jumps.
Then, assuming that after the kth jump the system stays in mode i,
from (2) it follows that τk is exponentially distributed with param-
eter−λii. Let πi(t) = Pr{σ(t) = i} and π(t) = [π1(t) . . . πN(t)]′.
Given an initial probability distribution π(0) = [π01 . . . π0N ]

′,
where π0i := Pr{σ(0) = i}, the time evolution of the probability
distribution π(t) obeys the differential equation

π̇(t)′ = π(t)′Λ.

Note that 1′π(t) = 1, ∀t ≥ 0, i.e. π(t) is a unit-sum vector. More-
over, if theMarkov process is irreducible (see, e.g. Bremaud, 1998),
then, for any π(0), π(t) converges as t → ∞ to a stationary
probability vector π̄ which is the unique unit-sum Frobenius left
eigenvector of Λ associated with the Frobenius–Perron null eigen-
value, Berman and Plemmons (1994). In the sequel, it is assumed
that the Markov process is irreducible. Moreover, the symbol Eπ̄ [·]



will denote the expectation defined over stationary realizations of
the Markov process σ(t), namely those starting with π(0) = π̄ .

Thanks to theMetzler property of the dynamicmatricesAi, if the
initial state x(0) has nonnegative entries (x(0) > 0) the state x(t)
at any t > 0 has nonnegative entries as well. For this reason, this
class of systems will be denoted as PMJLS’s (Positive Markov Jump
Linear Systems). Remarkably, positive linear systems enjoy the so-
called monotonicity property. Precisely, consider the evolution of
system (1) starting from two different initial states, say x(0) = xa
and x(0) = xb, with xa ≫ xb. Then, for any given realization of
σ(t), it results that xa(t) ≫ xb(t), ∀t > 0.

4. Stability notions

For the PMJLS (1), various notions of stochastic stability can
be introduced. Some of them refer to the convergence of suitable
moments of the state norm (δ-moment stability). Another notion
(almost-sure stability) deals with the convergence to zero of
almost all the sample paths of the state. In addition, we will
consider a stability definition peculiar to positive stochastic
systems, namely the convergence to zero of the expectation of the
state vector (mean stability). In the sequel, it will be assumed that
convergence is always of the exponential type.

Definition 1. For any real scalar δ > 0, the PMJLS (1) is said to be
exponentially δ-moment stable if there exist positive real scalars α
and β such that

E[∥x(t)∥δ
] < αe−βt

∥x(0)∥δ

for any initial condition x(0) > 0 and any initial probability
distribution π(0).

For δ = 2, the above definition coincides with the well-known
notion of Exponential Mean-Square stability (EMS stability).

Definition 2. The PMJLS (1) is said to be exponentially almost-
sure stable (EAS-stable) if there exists a positive real scalar ρ such
that, for any initial condition x(0) > 0 and any initial probability
distribution π(0), it results that

Pr

lim sup
t→∞

1
t
ln ∥x(t)∥ ≤ −ρ


= 1.

Definition 3. The PMJLS (1) is said to be exponentiallymean stable
(EM stable) if there exist positive real scalars α and β such that

E[x(t)] < αe−βt
∥x(0)∥1

for any initial condition x(0) > 0 and any initial probability distri-
bution π(0).

In the three definitions above, convergencemust be ascertained
for all possible initial states x(0). Thanks to the monotonicity
property of PMJLS’s, it is sufficient to check convergence just for a
single strictly positive state x(0) = xa ≫ 0. Indeed, if x(0) = xb ≠

xa, there exists a positive constant ϑ such that ϑxb ≪ xa. Thus,
for any realization of the Markov process σ(t) the corresponding
state trajectories satisfy ϑxb(t) ≪ xa(t), ∀t > 0. By linearity, it
follows that fulfillment of the stability conditions for x(0) = xa
entails their fulfillment also for x(0) = xb. Notice also that, under
the assumption of irreducibility of the Markov chain, the choice of
the initial probability distribution π(0) is immaterial.

It is well known that the above stability notions are not
equivalent to each other. Concerning the relationships, it can be
shown (Fang et al., 1994) that, if δ2 > δ1 > 0, then exponential
δ-moment stability with δ = δ2 implies exponential δ-moment
stability with δ = δ1. Moreover, exponential δ-moment stability
implies EAS stability.
5. Stability analysis

A first result of this paper establishes the equivalence between
exponential 1-moment stability and EM stability.

Theorem 1. System (1) is exponentially 1-moment stable if and only
if it is EM stable.

Proof. Suppose that system (1) is exponentially 1-moment stable
and take α and β according to Definition 1 with δ = 1. Then,
letting xi(t) denote the ith entry of x(t), it results that, for all i =

1, 2, . . . , n,

E[xi(t)] ≤ E[∥x(t)∥] < α∥x(0)∥e−βt

so implying EMstability, as inDefinition 3. Conversely, assume that
the system is EM stable with α and β given by Definition 3. It is
straightforward to see that

E


n

i=1

xi(t)


≤ nα∥x(0)∥e−βt .

Since x(t) is a nonnegative vector, it is immediate to see that
(without any loss of generality, herewe refer to the Euclidean norm
of x(t))

∥x(t)∥ ≤
√
n

n
i=1

xi(t).

Therefore

E[∥x(t)∥] ≤
√
nE


n

i=1

xi(t)


≤ n

√
nα∥x(0)∥e−βt

so that the system is exponentially 1-moment stable. �

The next theorem provides necessary and sufficient conditions
for EM stability.

Theorem 2. The following three statements are equivalent:

(i) System (1) is EM stable.
(ii) There exist strictly positive vectors ci ∈ ℜ

n, i = 1, 2, . . . ,N such
that the following inequalities are satisfied

c ′

iAi +

N
j=1

λijc ′

j ≪ 0. (3)

(iii) The nN × nN matrix

Ã =


A1 + λ11In λ21In · · · λN1In

λ12In A2 + λ22In · · · λN2In
...

...
. . .

...
λ1N In λ2N In · · · AN + λNN In

 (4)

is Hurwitz.

Proof. (i) ⇔ (iii)
Let E[x(t)] = q(t). It can be shown (see e.g. Bolzern, Colaneri,

and De Nicolao (2010)) that q(t) =
N

i=1 qi(t), where

q̇i(t) = Aiqi(t) +

N
j=1

λjiqj(t).

Letting vq(t) = vec[qi(t)], it is immediate to verify that the previ-
ous equation can be rewritten as v̇q(t) = Ãvq(t), with Ã defined in
(4). Now notice that, thanks to positivity, q(t) tends exponentially
to zero if and only if qi(t), i = 1, 2, . . . ,N tend exponentially to
zero. Then the conclusion follows.



(ii) ⇔ (iii)
Since Ã is a Metzler matrix, it is Hurwitz stable if and only if

there exists a strictly positive vector vc such that v′
c Ã ≪ 0. Letting

vc = vec[ci], the equivalence between (ii) and (iii) follows. �

While the positivity of the system allows the derivation of
specific necessary and sufficient conditions for 1-moment stability,
as shown in Theorems 1 and 2 above, apparently this does not
happen for 2-moment (mean-square, or EMS) stability. Therefore,
we just recall the well-known result below, see e.g. Fang and
Loparo (2002).

Theorem 3. The following three statements are equivalent:

(i) System (1) is EMS stable.
(ii) There exist positive definite matrices Pi ∈ ℜ

n×n, i = 1, 2, . . . ,N,
such that the following inequalities are satisfied

PiAi + A′

iPi +
N
j=1

λijPj ≺ 0. (5)

(iii) The n2N × n2N matrix

Â =


A1 ⊕ A1 + λ11In2 λ21In2 · · · λN1In2

λ12In2 A2 ⊕ A2 + λ22In2 · · · λN2In2
.
.
.

.

.

.
. . .

.

.

.
λ1N In2 λ2N In2 · · · AN ⊕ AN + λNN In2


(6)

is Hurwitz.

Let us turn now to EAS stability. It is known that such a notion
of stability is related to the negativity of the expectation of the so-
called top Lyapunov exponent, defined as

λ = lim sup
t→∞

1
t
ln ∥Φ(t, 0)∥

where Φ(t, 0) is the transition matrix associated with system (1).
A necessary and sufficient condition having general validity for
all MJLS’s has been derived in Bolzern et al. (2006). It relates EAS
stability with the average contractivity of the state norm over a
sufficiently long time interval.

Theorem 4. System (1) is EAS stable if and only if there exists a real
scalar T > 0 such that

Eπ̄ [log ∥Φ(T , 0)∥] < 0

where Φ(t, 0) is the transition matrix of the system over the interval
[0, t].

In general, checking the condition of Theorem4 in closed form is
not possible, so that randomized procedures are usually employed
to assess stability with a prescribed confidence level, see Bolzern
et al. (2006). Thismotivates the search of easier-to-check sufficient
conditions.

Theorem 5. Any of the following conditions is sufficient for EAS
stability of system (1):

(i) Eπ̄ [µ(Aσ )] =

N
i=1

π̄iµ(Ai) < 0.

(ii)
N

i=1 π̄i(−λii logαi − βi) < 0, where αi and βi are real positive
scalars such that ∥exp(Ait)∥ ≤ αi exp(−βit), ∀t ≥ 0.

(iii) There exists a strictly positive vector c ∈ ℜ
n such that

Eπ̄


sup
d≫0

c ′Aσd
c ′d


=

N
i=1

π̄i sup
d≫0

c ′Aid
c ′d

< 0.
(iv) There exist real strictly positive vectors ci ∈ ℜ
n and real scalars

ηi, i = 1, 2, . . . ,N, such that the following inequalities are
satisfied:

c ′

iAi +

N
j=1

λijc ′

j − ηic ′

i ≪ 0, ∀i (7)

with
N

i=1 π̄iηi ≤ 0.

Proof. Conditions (i) and (ii) are not specific to PMJLS’s and their
proofs can be found in Fang and Loparo (2002), and Tanelli et al.
(2010), respectively.

Condition (iii) can be seen as a particularization to positive
systems of Infante’s condition (Kozin, 1969). Precisely, define
V (x) = c ′x. Then, along the trajectories of system (1), it results that

V̇ (x(t)) =


c ′Aσ(t)x(t)

c ′x(t)


V (x(t)) ≤ q(t)V (x(t))

with

q(t) = sup
d≫0

c ′Aσ(t)d
c ′d

.

Hence V (x(t)) ≤ V (x(0))etr(t), where

r(t) =
1
t

 t

0
q(τ )dτ .

Thanks to ergodicity, r(t) converges almost surely to r̄ = Eπ̄

[r(t)] < 0. In conclusion, V (x(t)) (and hence x(t)) converges ex-
ponentially to zero almost surely, for any initial state.

As for condition (iv), notice that inequalities (7) coincide with
inequalities (3) when Ai is replaced by Āi = Ai −ηiIn. Then, in view
of Theorem 2, the PMJLS

˙̄x(t) = Āσ(t)x̄(t) (8)

endowed with the same infinitesimal generator Λ is 1-moment
stable, and therefore EAS stable as well. This means that the ex-
pected value of the top Lyapunov exponent λ̄ associated with
system (8) is negative. The transition matrix of this system,
namely Φ̄(t, 0), is related to Φ(t, 0) by the expression Φ̄(t, 0) =

Φ(t, 0) exp(−
 t
0 ησ(τ)dτ). Hence

log ∥Φ(t, 0)∥ = log ∥Φ̄(t, 0)∥ + ts(t)

where s(t) =
1
t

 t
0 ησ(τ)dτ . Thanks to ergodicity, limt→∞ s(t) = s̄,

with

Eπ̄ [s̄] =

N
i=1

π̄iηi ≤ 0.

As a consequence, the expected value of the top Lyapunov expo-
nent λ of system (1) satisfies Eπ̄ [λ] = Eπ̄ [λ̄] + Eπ̄ [s̄] < 0, so con-
cluding the proof. �

The next theorem shows some interesting implications among
the sufficient conditions of Theorem 5.

Theorem 6. With reference to the statement of Theorem 5, condi-
tion (i) implies (ii). Moreover, (i) implies both (iii) and (iv) provided
that µ(·) denotes the matrix measure µ1(·) induced by the 1-norm.
Finally, condition (iii) implies (iv).

Proof. The fact that (i) implies (ii) easily follows by letting αi =

1, ∀i and βi = −µ(Ai), ∀i. Now, suppose that (i) holds with µ(·)



replaced with µ1(·). Notice that, for a Metzler matrix A, it holds
that µ1(A) = maxk 1′Aek. Therefore, letting c = 1 it turns out that

Eπ̄


sup
d≫0

1′Aσd


= Eπ̄


sup
d≫0

1′Aσ

n
k=1

ekdk



= Eπ̄


n

k=1

sup
d≫0

1′Aσ ekdk



≤ Eπ̄


n

k=1

sup
d≫0

max
k

1′Aσ ekdk



= Eπ̄


n

k=1

sup
d≫0

µ1(Aσ )dk


= nEπ̄ [µ1(Aσ )] < 0.

Hence, condition (iii) is satisfied. Now, address the implication (i)
⇒ (iv). If condition (i) is satisfied, then

N
i=1

π̄iµ1(Ai) < 0.

Then there exists a sufficiently small constant ϵ such that

N
i=1

π̄iµ1(Ai) + ϵ < 0.

Now let ηi = µ1(Ai)+ ϵ and ci = 1, ∀i. Recalling that
N

j=1 λij = 0
and µ1(A) = maxk 1′Aek, it is straightforward to verify that all
inequalities of condition (iv) are satisfied.

Finally, we show that (iii) ⇒ (iv). Assume that there exists
c ≫ 0 satisfying condition (iii) and define

ηi = sup
d≫0

c ′Aid
c ′d

+ ϵ >
c ′Aiv

c ′v
, ∀v ≫ 0. (9)

By choosing ϵ small enough, it is possible to guarantee that
Eπ̄ [ησ ] =

N
j=1 π̄iηi < 0. What is left to show is that there ex-

ist vectors ci ≫ 0 satisfying the inequalities (7). To this purpose
take ci = c, ∀i. Since the summation appearing in (7) vanishes, it
suffices to show that c ′Ai−ηic ′

≪ 0. In viewof (9), for any arbitrary
vector v ≫ 0 it results that,
c ′Ai − ηic ′


v <


c ′Ai −

c ′Aiv

c ′v
c ′


v = 0.

Hence c ′Ai − ηic ′
≪ 0 and the proof is completed. �

Remark 7. It is interesting to remark that, when none of the
matrices Ai is Hurwitz, conditions (i)–(iii) of Theorem 5 can never
be met with. As a matter of fact, for a non-Hurwitz (unstable)
matrix the measure µ(Ai) and the parameter βi appearing in the
bound on the norm of its transitionmatrix are always nonnegative.
If all matrices Ai are unstable, then conditions (i) and (ii) can never
be satisfied. As for condition (iii), when Ai is Metzler and non-
Hurwitz, for any vector c ≫ 0, the maximum element of the row
vector c ′Ai is greater than or equal to 0. In turn, this implies that
there exists d ≫ 0 such that c ′Aid ≥ 0. Then, supd≫0

c′Aid
c′d ≥ 0 and

the expectation of condition (iii) can never be negative.

Remark 8. Note that, for a scalar system (n = 1), conditions
(i)–(iv) provided in Theorem 5 are also necessary for EAS stabil-
ity. Indeed, if the PMJLS (1) is scalar, necessity of condition (i) was
proven in Fang et al. (1994). In view of Theorem 6, necessity of
(ii)–(iv) directly follows.

In summary, the relationships among the different stability
notions for PMJLS’s can be depicted as in Fig. 1. While the chain
Fig. 1. Picture of true and conjectured implications between the different stability
notions.

of implications going from EMS stability to EAS stability is valid
for any generic MJLS, the equivalence between EM stability and
exponential 1-moment stability is specific to PMJLS’s. One may
wonder whether positivity may imply that these stability notions
are all equivalent. As a matter of fact, the conjectured implications
associated with the question marks in the figure, are falsified
through the counterexample provided in Example 1 of the next
section.

Remark 9. From a computational viewpoint, testing the EM
stability condition (ii) of Theorem 2 reduces to a feasibility
problem for the Linear Programming (LP) inequalities (3). This is
a problem that standard LP-solvers can efficiently deal with, see
e.g. Luenberger and Ye (2008). As for condition (iii) of Theorem 2,
note that thematrix Ã is Metzler, so that the check on its stability is
again a linear feasibility problem, of greater dimension, consisting
in finding a vector c̃ ≫ 0 such that c̃ ′Ã ≪ 0.

Turning now to the criteria of EMS stability of Theorem 3,
checking condition (ii) requires the solution of a feasibility problem
for the Linear Matrix Inequalities (5), for which efficient tools of
Convex Programming are available, see e.g. Boyd, El Ghaoui, Feron,
and Balakrishnan (1994). Alternatively, observing that Â isMetzler,
EMS stability can be tested through condition (iii) looking for a
vector ĉ ≫ 0 such that ĉ ′Â ≪ 0.

EAS stability can be assessed by means of the sufficient cond-
itions of Theorem 3. Note that condition (iv) involves the study of
feasibility of a Bilinear Programming problem, as it requires the de-
termination of both vectors ci and scalars ηi, that appear combined
in a product in the inequalities (7). General Nonlinear Program-
ming methods or specific Bilinear Programming methods can be
used to solve this problem, see e.g. Luenberger and Ye (2008).

6. Numerical examples

In this Section two simple examples of PMJLS’s are presented.
The first one demonstrates that the two implications conjectured
in Fig. 1 do not hold true in general.

Example 1. Let n = 1, N = 2, A1 = α, A2 = −4 and

Λ =


−1.5 1.5
1.5 −1.5


.

The associated stationary probability distribution is given by π̄ =

[0.50.5]′. Since the system is scalar, condition (i) of Theorem 5
is necessary for EAS stability. Then, observing that Eπ̄ [µ(Aσ )] =

π̄1A1 + π̄2A2 = 0.5(α − 4), one can conclude that the system
is EAS stable if and only if α < 4. To assess EM stability, use
condition (iii) of Theorem 2. Since

Ã =


α − 1.5 1.5

1.5 −5.5


it turns out that the system is EM stable if and only if both eigenval-
ues of Ã are negative, namely for α < 12/11. Repeating the same



(a) EMS stable. (b) EM stable.

(c) EAS stable. (d) Unstable.

Fig. 2. One hundred realizations of ln(x(t)) in Example 1 for different values of the parameter α.
analysis with

Â =


2α − 1.5 1.5

1.5 −9.5


and checking condition (iii) of Theorem3, it results that the system
is EMS stable if and only if α < 12/19. Evidently, the implications
conjectured in Fig. 1 do not hold.

In order to appreciate the different behavior of the system for
different values of the parameterα, 100 realizations of the stochas-
tic process x(t), starting from x(0) = 1, were simulated on a finite
time-interval with α = 0.2 (the PMJLS is EMS stable), α = 0.7 (the
PMJLS is EM stable),α = 3 (the PMJLS is EAS stable) andα = 5 (the
PMJLS is unstable), respectively. The results are plotted in Fig. 2 in
the four cases. The logarithmic scale on the vertical axis has been
chosen for better readability. Note that EAS stability implies that
almost all the realizations converge to −∞. It is apparent that EM
stability and EMS stability are more stringent. The straight line in
each subplot represents the line λ̄t where λ̄ is the expected value
of the top Lyapunov exponent, which, in this scalar example, can
be easily computed as λ̄ = π̄1A1 + π̄2A2 = 0.5(α − 4). The PMJLS
is EAS stable if and only if the slope of this line is negative.

In the second Example, it is shown that a PMJLS composed of
two unstable subsystems may still be stable.

Example 2. Let n = 2, N = 2 and

A1 =


−1 0
1 0.1


, A2 =


0.1 1
0 −2


, Λ =


−2 2
2 −2


.

Note that both subsystems are unstable. However, by letting η1 =

0.1, η2 = −0.2, c1 = [0.54530.3759]′, c2 = [0.65070.3714]′,
it turns out that all conditions (iv) of Theorem 5 are satisfied, so
that one can conclude that the PMJLS is EAS stable. By checking
that both matrices Ã of (4) and Â of (6) are Hurwitz, it can be easily
shown that the system is EM stable and EMS stable as well.

7. Concluding remarks

In this paper we have provided a thorough picture of stochastic
stability of Positive Markov Jump Linear Systems. We have shown
that these systems enjoy a number of specific properties induced
by positivity of the state. In particular, it holds that 1-moment sta-
bility is equivalent to the asymptotic convergence of the expec-
tation of the state (mean stability) and can be assessed through a
necessary and sufficient condition corresponding to a Linear Pro-
gramming feasibility problem. Since mean stability is less de-
manding than mean-square stability, such a result offers a viable
alternative to ascertain almost-sure stability, which is recognized
as being closer to the practical concerns of the user. Exploiting pos-
itivity, new sufficient conditions of almost-sure stability have also
been derived, with different levels of conservatism and usability.
In perspective, the results discussed in the paper will prove useful
in tackling control and filtering problems of PMJLS’s.
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