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1. Introduction. The present paper is concerned with the following infinite
dimensional backward stochastic Riccati equation (BSRE)
(1.1){

−dPt = (APt + PtA+ C∗
t Qt +QtCt + C∗

t PtCt − PtBtB
∗
t Pt + St) dt−QtdWt,

PT = M,

where A is a self-adjoint operator on the Hilbert space H generating the analytic
semigroup (etA); (Wt)t≥0 is a real valued standard Brownian motion; (Bt), (Ct), (St)
are operator valued adapted processes. The unknown of the equation is the couple
(P,Q) of operator valued adapted processes.

As is well known (see [18]) the above equation represents the value function of
a linear quadratic optimal control problem involving a Hilbert valued state equation
with stochastic coefficients (in particular of a control problem with evolution modeled
by a parabolic SPDE with stochastic coefficients). It is also well known that, as soon
as the solution of the BSRE is obtained, then the synthesis of the optimal control
easily follows with a clear applicative interest.

Moreover the special case in which Bt ≡ 0 (the so-called Lyapunov equation)
turns out to be essential in the formulation of the Pontyagin maximum principle for
controlled systems described by SPDEs (see [10] [12], [5], [6], [7], and section 5 here).
This in particular happens in the so-called general case in which the space of controls
is not convex and the control affects the diffusion term as well (see [16]). Indeed this
is the case in which the second variation process, that satisfies an operator Lyapunov
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equation, has to be introduced. In this context the research on backward evolution
equations in spaces of linear operators has recently gained a relevant interest.

The study of BSREs in finite dimensional spaces had quite a long history between
the pioneering paper by Bismut and then Peng (see [3] and [15]) and the conclusive
paper by Tang (see [17]) where existence and uniqueness is proved in the most general
case.

On the contrary, the study of BSREs in infinite dimensional spaces adds specific
new difficulties and few results are available. As far as the Lyapunov equation is
concerned, in [10] the solution is obtained when the final condition M and the forcing
term S are Hilbert–Schmidt operators (a condition that is rarely satisfied) while in [5],
[7] the process P is characterized by an energy equality involving a suitable forward
stochastic differential equation in H . Finally in [12] the concept of a transposed
solution is given which again consists in a characterization of P and Q by a suitable
duality relation that involves an infinite dimensional forward equation. We notice that
in all the above cases no explicit differential or integral equation directly satisfied by
P and Q is presented.

Regarding the Riccati equation (that, differently from the Lyapunov equation, is
nonlinear), in [8] we proposed to characterize the P -part of the solution using the
concept of strong solution which is of common use in PDE theory (see [2] or [13]).
Roughly speaking we characterize the solution as the limit of a sequence of equations
with regular (in this case Hilbert–Schmidt) data. This result is good enough to be
applied to the corresponding linear quadratic control problem but has the drawback
of not saying anything on the martingale term of the solution (the Q-term) and
consequently not giving the representation through a (differential) equation.

The origin of the difficulties in dealing with stochastic backward Riccati (or even
Lyapunov) equations in the infinite dimensional case is in the fact that the natural
space in which it should be treated is the space L(H) of bounded linear operators in
H which is only a Banach space that does not enjoy any of the regularity properties
(as UMD or M-type condition) allowing us to establish an analogue of the classical
Hilbertian stochastic calculus. Moreover, although, as we have said above, different
characterization of the solution have been recently proposed, it seems to us that the
natural notion of solution is the one of mild solution introduced in the theory of
infinite dimensional BSDEs since the seminal paper by [9]. We finally notice that this
way both the P and the Q part of the unknown are characterized by a differential
equation.

As far as we know this is the first paper in which existence and uniqueness of a
mild solution of (1.1) is obtained. Indeed we show that (P,Q) is the unique couple of
processes (with suitable regularity) verifying

P (t) = e(T−t)AMe(T−t)A +

∫ T

t

e(s−t)AS(s)e(s−t)A ds

+

∫ T

t

e(s−t)A
[
C∗(s)P (s)C(s) + C∗(s)Q(s) +Q(s)C(s)

]
e(s−t)A ds(1.2)

+

∫ T

t

e(s−t)AP (s)B(s)B∗(s)P (se(s−t)A ds

+

∫ T

t

e(s−t)AQ(s)e(s−t)A dW (s) P− a.s.,

where P is a predictable process with values in the space of bounded nonnegative,
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symmetric, linear operators in H which as we said is, in some sense, the natural space
for the equation. On the contrary the identification of the right operators space for
the evolution of Q is the main achievement of this work. We shall prove existence
and uniqueness of Q as a square-integrable, adapted, process in a space K of Hilbert–
Schimidt operators from suitable domains of the fractional powers of A (see (2.4)).
This is a Hilbert space, large enough to contain all bounded operators. This choice
will allow us to recover stochastic calculus tools. The price to pay is that the term
C∗

t Qt +QtC +C∗
t PtCt becomes unbounded on K . This difficulty will be handled by

exploiting in a careful (and noncompletely standard) way the regularizing properties
of the semigroup generated by A. By the way, we have to say that our results rely on
the specific properties of A that we assume to be self-adjoint with rapidly increasing
eigenvalues. Nevertheless our assumptions can cover important classes of strongly
elliptic differential operators.

We think that the introduction of the space K gives a new framework that can
be of general interest in relation to a wider class of operator valued BSDEs with the
leading term A∗P + PA. On the other hand several techniques used here exploit the
special structure of the Riccati equation so we have the impression that any extension
requires new nontrivial work. In particular, the control dependent noise case that
leads to a BSRE quadratic in Q (see [17] for the finite dimensional case) seems to be
a challanging problem. Already in the finite dimensional case it requires ad hoc tech-
niques (see again [17]) that involve properties of the evolution operator corresponding
to the forward equation (namely, (1.3) with u = 0) which can not be easily transposed
in the infinite dimensional case. This transposition and the harmonization with the
function spaces techniques proposed here is the scope of further work.

The structure of the proof will be the following: first we introduce suitable ap-
proximations of the equation (see (3.30)) that can be treated by the standard Hilbert–
Schmidt theory. Then showing the needed convergence estimates we prove existence
and uniqueness of the solution to a simplified Lyapunov equation (see (3.44)). An a
priori estimate (see (3.3)) helps to prove convergence and gives uniqueness. Conse-
quently a fixed point argument yields existence and uniqueness of a solution to the
Lyapunov equation. Moreover, in section 4, we exploit the interplay between the Ric-
cati equation and the corresponding optimal control problem to obtain existence and
uniqueness of the mild solution to the BSRE and the synthesis of optimal control.

We notice that the optimal control problem is given by the following state equa-
tion,

(1.3)

{
dy(t) = (Ay(t) +B(t)u(t)) dt + C(t)y(t) dW (t), t ∈ [0, T ],
y(0) = x,

where y is the state of the system and u is the control, y and u are adapted processes
with values in H , and by the following quadratic cost functional

(1.4) E

∫ T

0

(
|
√
Ssys|2 + |u(s)|2

)
ds+ E〈MyT , yT 〉.

Finally in section 5 we show how the present results con be applied to the Lya-
punov equation arizing in the maximum principle for parabolic SPDEs.

2. Main notation and assumptions.
Some classes of stochastic processes Let G be any separable Hilbert space.

By P we denote the predictable σ-field on Ω × [0, T ] and by B(G) the Borel σ-field
on G. The following classes of processes will be used in this work:
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• Lp
P(Ω× [0, T ];G), p ∈ [1,+∞] denotes a subset of Lp(Ω× [0, T ];G), given by

all equivalence classes admitting a predictable version. This space is endowed
with the natural norm.

• CP([0, T ];Lp(Ω;G)) denotes the space of G-valued processes Y such that
Y : [0, T ] → Lp(Ω, G) is continuous and Y has a predictable modification,
endowed with the norm

|Y |pCP([0,T ];Lp(Ω;G)) = sup
t∈[0,T ]

E|Yt|pG.

Elements of CP([0, T ];Lp(Ω;G)) are identified up to modification.
• Lp

P(Ω;C([0, T ];G)) denotes the space of predictable processes Y with contin-
uous paths in G, such that the norm

|Y |p
Lp

P(Ω;C([0,T ];G))
= E sup

t∈[0,T ]

|Yt|pG

is finite. Elements of this space are defined up to indistiguishibility.
Now let us consider the space L(G) of linear and bounded operators from G to

G. This space, as long as G is infinite dimensional, is not separable (see [4, p. 23])
and therefore we introduce the following σ-field:

LS = {T ∈ L(G) : Tu ∈ A}, where u ∈ G and A ∈ B(G).

Following again [4], the elements of LS are called strongly measurable.
We notice that the maps P → |P |L(G) and (P, u) → Pu are measurable from

(L(G),LS) to R and from (L(G)×G,LS ⊗ B(G)) to (G,B(G)), respectively.
Moreover LS is equivalent to the weak σ-field

LS = {T ∈ L(G) : (Tu, x) ∈ A}, where u, x ∈ G and A ∈ B(R).
We define the following spaces:
• L∞

P,S((0, T ) × Ω;L(G)) is a space of predictable processes Y from (0, T ) to
L(G), endowed with the σ-field LS . For each element Y there exists a constant
C > 0 such that:

|Y (t, ω)|L(G) ≤ C P− a.s. for a.e. t ∈ (0, T ).

• In the same way we define L∞
S (Ω,FT ;L(G)) as the space of maps Y from

(Ω,FT ) into (L(G),LS) such that there exists a positive constant K such
that

|Y (ω)|L(G) ≤ K P− a.s.

Elements of this space are identified up to modification.
By Σ(G) we denote the subspace of all symmetric operators and by Σ+(G) the

convex subset of all positive semidefinite operators. We define identically the following
spaces: L∞

P,S((0, T )×Ω;Σ+(G)), L1
P,S((0, T );L

∞(Ω,Σ+(G))), and L∞
S (Ω,FT ; Σ

+(G)).
Setting and general assumptions on the coefficients. We fix now a Hilbert

space H , real and separable, and we are going to study the following Lyapunov equa-
tion

(2.1){
−dPt = (APt + PtA+ PtBtB

∗
t Pt + C∗

t Qt +QtCt + C∗
t PtCt) dt+ St dt−QtdWt,

PT = M

in the space L(H), where by L∗ we denote the adjoint of the operator L.
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The following assumptions on A, C, S, and M will be used throughout the paper.
Hypothesis 2.1.

(A1) A is a self-adjoint operator in H and there exists a complete orthonormal
basis {ek : k ≥ 1} in H (that we fix from now on), a sequence of real numbers
{λk : k ≥ 1}, and ω ∈ R, such that

Aek = −λkek with ω ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · .(2.2)

Moreover we assume that for a suitable ρ ∈ (14 ,
1
2 ), it holds

(2.3)
∑
k≥1

|λk|−2ρ < +∞.

Without weakening the generality of the problem we can, and will, assume
that ω > 0 (just multiply P and Q by an exponential weight).
As is well known (see [14]) in this case A generates an analytic semigroup
(etA)t≥0 with |etA|L(H) ≤ 1.

(A2) We assume that C ∈ L∞
P,S(Ω × [0, T ];L(H)). We denote by MC a positive

constant such that:

|C(t, ω)|L(H) < MC P− a.s. and for a.e. t ∈ (0, T ).

(A3) S ∈ L∞
P,S((0, T )× Ω;Σ+(H)) and M ∈ L∞

S (Ω,FT ; Σ
+(H)).

Remark 2.2. We notice that requirement (A1) in Hypothesis 2.1 is easily fulfilled
in the case when A is the realization of the Laplace operator in H = L2([0, π]) with
Dirichlet boundary conditions. One has indeed

D(A) = H2([0, π]) ∩H1
0 ([0, π]),

ek(x) = (2/π)1/2 sinkx, k = 1, 2, . . . ,

|∇ek(x)| ≤ (2/π)1/2k, k = 1, 2, . . . ,

λk = k2, k = 1, 2, . . . .

Requirement (A2) is fulfilled, for instance, as soon asC(t, ω) is defined on L2([0, π])
by (C(t, ω)x)(ξ) := c(t, ω, ξ)x(ξ) with c any bounded and progressive measurable map
[0, T ]× Ω× [0, π] → R. The same holds for (A3); see also section 10 of [8].

Remark 2.3. Assumption (A1) is indeed restrictive but beside the Laplace op-
erator on a bounded interval it holds as well for higher order operators in higher
dimensional domains as well . As a matter of fact it is well known (see [11] and [1])
that if A is the realization of the Laplace operator with Dirichlet boundary conditions
in a bounded domain of Rd then its eigenvalues satisfy λA

k ≥ ck2/d. Consequently the

eigenvalues of the bi-Laplacian A2 satisfy λA2

k = (λA
k )

2 ≥ ck4/d and
∑∞

k=1(λ
A2

k )−2ρ

converges if 8ρ/d > 1. So we can conclude that there exists ρ ∈ (1/4, 1/2) for which
condition (2.3) holds, whenever d ≤ 3.

The Hilbertian triple V ↪→d H ↪→d V ′. In this paragraph we introduce the
Hilbertian triple we will use to build the effective Hilbert space of operators where we
are going to solve the Lyapunov equation. Let

(2.4) V := D((−A)ρ) =

{
x ∈ H :

∞∑
n=1

λ2ρ
n |〈x, en〉|2 := |x|2V < ∞

}
.
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By construction V is a Hilbert space endowed with its natural scalar product, in
particular {λ−ρ

n en}n≥1 is a complete orthormal basis in V .
We can consider also its topological dual V ′ that has the following characteriza-

tion:

(2.5) V ′ := D((−A)−ρ).

Notice that V ′ is the completion of H with the norm | · |2V ′ =
∑∞

n=1 λ
−2ρ
n |〈x, en〉|2 and

{λρ
nen}n≥1 and that is a complete orthormal basis in V ′.
Once we make the usual identification H � H ′, we have the following dense

inclusions:

(2.6) V ↪→d H ↪→d V ′.

We notice that both inclusion operators are Hilbert–Schmidt class
Remark 2.4. Under the previous Hypotheses 2.1 it is well known (see [14] and

[13]) that for all t > 0

tρ|etA|L(H,V ) ≤ 1, tρ|etA|L(V ′,H) ≤ 1,(2.7)

|etA|L(V ) ≤ 1, |etA|L(V ′) ≤ 1.(2.8)

The Hilbert space K. We set

(2.9) K := L2(V ;H) ∩ L2(H ;V ′),

where L2(V ;H) denotes the Hilbert space of Hilbert–Schmidt operators form V to
H , endowed with the Hilbert–Schmidt norm |T |L2(V ;H) = (

∑∞
i=1 |Tfi|2H) ({fi : i ∈ N}

being a complete orthonormal basis (c.o.b.) in V ); see [4]. The obvious similar
definition holds for L2(H ;V ′). Space K will be endowed with the natural norm
|T |2K = |T |2L2(V ;H) + |T |2L2(H;V ′).

Finally, we introduce the following subspace of K:

(2.10)
Ks := {G ∈ L2(V ;H) ∩ L2(H ;V ′) such that 〈Gx, y〉H = 〈x,Gy〉H for all x, y ∈ V }.

We summarize its main properties in the following lemma.
Lemma 2.5. The following hold:
(i) K is a separable Hilbert space.
(ii) L(H) ⊂ K.
(iii) T ∈ K iff T ∈ L(V ;H)∩L(H ;V ′) and |T |2K =

∑∞
k=1 λ

−2ρ
k (|Tek|2H+|T ∗ek|2H) <

∞, where T ∗ ∈ L(V ;H) ∩ L(H ;V ′) is the adjoint of T (in the sense that
〈Tv, w〉 = 〈v, T ′w〉 whenever v ∈ V and w ∈ H or w ∈ V and v ∈ H).

(iv) If T ∈ Ks then |T |2Ks
= 2

∑∞
k=1 λ

−2ρ
k |Tek|2H .

Proof. We omit the proof of (i), it being obvious.
(ii) Let G ∈ L(H); then since {λ−ρ

n en}n≥1 is a basis of V , we have

(2.11) |G|L2(V ;H) =

( ∞∑
n=1

λ−2ρ
n |Gen|2H

)1/2

≤ |G|L(H)

( ∞∑
n=1

λ−2ρ
n

)1/2

.
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Moreover, recalling that {en : n ≥ 1} is a c.o.b. of H , we have

|G|L2(H;V ′) =

( ∞∑
n=1

|Gen|2V ′

)1/2

≤ |G|L(H)

( ∞∑
n=1

∞∑
h=1

λ−2ρ
h |〈en, eh〉|2H

)1/2

= |G|L(H)

( ∞∑
h=1

λ−2ρ
h

∞∑
n=1

|〈en, eh〉|2H
)1/2

= |G|L(H)

( ∞∑
h=1

λ−2ρ
h

)1/2

.(2.12)

Thus G ∈ K.
(iii) Notice that, for any c.o.b. {fk : k ≥ 1} of H , we have

∞∑
k=1

|Tfk|2V ′ =

∞∑
k=1

∞∑
h=1

λ−2ρ
h 〈fk, T ∗eh〉2H(2.13)

=
∞∑
h=1

∞∑
k=1

λ−2ρ
h 〈fk, T ∗eh〉2H =

∞∑
h=1

λ−2ρ
h |T ∗eh|2H .

3. Mild solutions of the Lyapunov equation. The natural space in which the
deterministic Lyapunov equation is studied is the space Σ(H) of bounded self-adjoint
operators in H . Unfortunately this is not a Hilbert space and this fact causes serious
difficulties when considering stochastic backward differential equations (for instance,
the essential tool given by the martingale representation theorem does not hold). To
overcome this difficulty we will work in the bigger space K that is a separable Hilbert
space.

For convenience we rewrite the equation of interest:

(3.1)

{
−dPt = (APt + PtA+ C∗Qt +QtC + C∗PtC) dt+ St dt−QtdWt,

PT = M.

Definition 3.1. A mild solution of problem (3.1) is a couple of processes

(P,Q) ∈ L2
P,S(Ω, C([0, T ]; Σ(H)))× L2

P(Ω× [0, T ];Ks)

that solves the following equation, for all t ∈ [0, T ]:

P (t) = e(T−t)AMe(T−t)A +

∫ T

t

e(s−t)AS(s)e(s−t)A ds

+

∫ T

t

e(s−t)A
[
C∗(s)P (s)C(s) + C∗(s)Q(s) +Q(s)C(s)

]
e(s−t)A ds(3.2)

+

∫ T

t

e(s−t)AQ(s)e(s−t)A dW (s) P− a.s.

We first prove an a priori estimate for mild solutions.
Proposition 3.2. Let (P,Q) be a mild solution to (3.2). Then there exists a

δ0 > 0 just depending on T and the constants MC , ρ introduced in Hypothesis 2.1 such
that for every 0 ≤ δ ≤ δ0 the following holds:

|P |2L2(Ω;C([T−δ,T ];L(H))) + E

∫ T

T−δ

|Q(s)|2K ds ≤ c

(
E|M |2L(H) + δE

∫ T

T−δ

|S(s)|2L(H) ds

)
,

(3.3)

where c is a positive constant depending on δ0,MA,MC , ρ, and T .
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Proof. Let (P,Q) ∈ L2
P,S(Ω, C([0, T ];L(H))) × L2

P(Ω × [0, T ];Ks) be any mild
solution, hence we have that

P (t) = E
Ft

[
e(T−t)AMe(T−t)A +

∫ T

t

e(s−t)AS(s)e(s−t)A ds

]
(3.4)

+ E
Ft

[ ∫ T

t

e(s−t)A
(
C∗(s)P (s)C(s) + C∗(s)Q(s)

+Q(s)C(s)
)
e(s−t)A ds

]
P− a.s.

We notice that if (L(t))T≥0 is a Banach space valued process then by Doob’s L2

inequality

E sup
t∈[r,T ]

|EFtL(t)|2 ≤ E sup
t∈[r,T ]

[
E
Ft

(
sup

s∈[r,T ]

|L(s)|
)]2

≤ 4E sup
t∈[r,T ]

|L(t)|2.

Moreover we have

E sup
t∈[r,T ]

|e(T−t)AMe(T−t)A|2L(H) ≤ |M |2L(H),(3.5)

E sup
t∈[r,T ]

∣∣∣∣∣
∫ T

t

e(s−t)AC∗(s)P (s)C(s)e(s−t)A ds

∣∣∣∣∣
2

L(H)

≤ M4
C(T − r)E

∫ T

r

|P (u)|2L(H) ds,

(3.6)

E sup
t∈[r,T ]

∣∣∣∣∣
∫ T

t

e(s−t)AS(s)e(s−t)A ds

∣∣∣∣∣
2

L(H)

≤ (T − r)E

∫ T

r

|S(s)|2L(H) ds.(3.7)

In estimating the latter terms we notice that, even if G ∈ K, it is not true in general
that GC ∈ K, therefore we have to use the regularity properties of the semigroup
(2.7):

E sup
t∈[r,T ]

∣∣∣∣∣
∫ T

t

e(s−t)A
[
C∗(s)Q(s) +Q(s)C(s)

]
e(s−t)A ds

∣∣∣∣∣
2

L(H)

≤ 2E

⎧⎨⎩ sup
t∈[r,T ]

[∫ T

t

|e(s−t)AC∗(s)Q(s)e(s−t)A|L(H) ds

]2

+ sup
t∈[r,T ]

[∫ T

t

|e(s−t)AQ(s)C(s)e(s−t)A|L(H) ds

]2⎫⎬⎭ .

Let us consider the first term:

E

{
sup

t∈[r,T ]

[∫ T

t

|e(s−t)AC∗(s)Q(s)e(s−t)A|L(H) ds

]2

≤ E sup
t∈[r,T ]

[∫ T

t

|e(s−t)A|L(H)|C∗(s)|L(H)|Q(s)|L(V,H)|e(s−t)A|L(V ) ds

]2

≤ M2
C(T − r)E

∫ T

r

|Q(s)|2K ds.
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Also consider the second one:

E sup
t∈[r,T ]

[∫ T

t

|e(s−t)AQ(s)C(s)e(s−t)A|L(H) ds

]2

≤ E sup
t∈[r,T ]

[∫ T

t

|e(s−t)A|L(V ′;H)|Q(s)|L(H;V ′)|C(s)|L(H)|e(s−t)A|L(H) ds

]2

≤ E sup
t∈[r,T ]

(∫ T

t

MC

(s− t)ρ
|Q(s)|K ds

)2

≤ M2
C(T − r)1−2ρ

∫ T

r

|Q(s)|2K ds.(3.8)

Summing up all these estimates we obtain that, for r = T − δ,

E sup
u∈[T−δ,T ]

|P (u)|2L(H)(3.9)

≤ C

(
|M |2L(H) + δ2E sup

u∈[T−δ,T ]

|P (u)|2L(H)

+ δ1−2ρ
E

∫ T

T−δ

|Q(s)|2K ds+ δE

∫ T

T−δ

|S(s)|2L(H) ds

)
,

where C depends only on MC , ρ, and T and for δ small enough (changing the value
of the constant C)

E sup
u∈[T−δ,T ]

|P (u)|2L(H)(3.10)

≤ C

(
|M |2L(H) + δ1−2ρ

E

∫ T

T−δ

|Q(s)|2K ds+ δE

∫ T

T−δ

|S(s)|2L(H) ds

)
.

Now we have to recover an estimate forQ; this cannot be done in the same way because
the term Q(s)C(s) /∈ K, and we can not follow the technique introduced in [9].

Therefore we exploit some duality relations. First of all we multiply both sides
by the linear operators Jn := n(nI −A)−1.

Such a family of operators has the following properties:
1. Jnek = n

(n+λk)
ek for every k ≥ 1, n ≥ 1,

2. |Jn|L(H) ≤ 1, |Jn|L(V ) ≤ 1, |Jn|L(V ′) ≤ 1 for every n ≥ 1,
3. |Jn|L(H,V ) ≤ nρ, |Jn|L(V ′,H) ≤ nρ,
4. limn→+∞ Jnx = x for every x ∈ H ,
5. Jn ∈ L2(H) for every n ≥ 1, and |Jn|L2(H) ≤ |IV,H |L2(H)|Jn|L(H,V ).

Hence (3.2), setting Pn(s) = JnP (s)Jn and Qn(s) = JnQ(s)Jn, becomes

Pn(t) = e(T−t)AJnMJne
(T−t)A +

∫ T

t

e(s−t)AJnC
∗(s)P (s)C(s)Jne

(s−t)A ds(3.11)

+

∫ T

t

e(s−t)AJnS(s)Jne
(s−t)A ds

+

∫ T

t

e(s−t)A
[
JnC

∗(s)Q(s)Jn + JnQ(s)C(s)Jn

]
e(s−t)A ds

+

∫ T

t

e(s−t)AQn(s)e(s−t)A dW (s) P− a.s.
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Notice that, thanks to the regularization property

Jn, (P
n, Qn) ∈ L2

P(Ω× [0, T ];L2(H))× L2
P(Ω× [0, T ];L2(H)).

In particular,

|Qn(s)|2L2(H) ≤ |Jn|2L(V ′;H)|Q(s)|2K.
Moreover (Pn, Qn) is also the unique mild solution of

(3.12)

{
−dPn

t = (APn
t + Pn

t A) dt+ Ŝn
t dt−Qn

t dWt,

PT = Mn,

where Ŝn
s = JnC

∗
sPsCsJn+JnSsJn+JnC

∗
sQsJn+JnQsCsJn ∈ L2

P(Ω×[0, T ];L2(H)).

We wish to apply Lemma 2.1 of [9]. Let us check that Ŝn has the required L2

regularity:

E

∫ T

0

|JnC∗(s)P (s)C(s)Jn|2L2(H) ds(3.13)

≤ E

∫ T

0

|Jn|2L(H)|C∗(s)|2L(H)|P (s)|2L(H)|C(s)|2L(H)|Jn|2L2(H) ds

≤ M4
C |Jn|2L2(H)|P |L2(Ω;C([T−δ,T ];L(H))),

E

∫ T

0

|JnQ(s)C(s)Jn|2L2(H) ds(3.14)

≤ E

∫ T

0

|Jn|2L(V ′,H)|Q(s)|2L2(H;V ′)|C(s)|2L(H)|Jn|2L2(H) ds

≤ n2ρM2
CE

∫ T

0

|Q(s)|2K ds,

E

∫ T

0

|JnC∗(s)Q(s)Jn|2L2(H) ds(3.15)

≤ E

∫ T

0

|Jn|2L(H)|C∗(s)|2L(H)|Q(s)|2L2(V ;H)|Jn|2L(H;V ) ds

≤ n2ρM2
CE

∫ T

0

|Q(s)|2K ds.

We seek for an estimate independent of n for the martingale term. We are going
to use a duality argument; for this purpose we introduce an operator valued process
defined as follows:

(3.16) Ln(s)ek := 2λ−2ρ
k Qn(s)ek for k ≥ 1.

Let us fix δ > 0 then consider the following process

(3.17) Xn
t =

∫ t

T−δ

e(t−s)ALn(s)e(t−s)A dW (s), t ∈ [T − δ, T ].

It can be easily verified that Xn ∈ CP([T − δ, T ];L2(Ω;L2(H))). Therefore, by
standard regularization arguments (see, for instance, [4] for the forward equation and
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[8] for the backward equation) we can prove that

E〈Xn(T ), Pn(T )〉L2(H) = E

∫ T

T−δ

〈Ln(s), Qn(s)〉L2(H) ds

(3.18)

− E

∫ T

T−δ

〈Xn(s), JnS(s)Jn〉L2(H) ds

− E

∫ T

T−δ

〈Xn(s), JnC
∗(s)P (s)C(s)Jn + JnC

∗(s)Q(s)Jn

+ JnQ(s)C(s)Jn〉L2(H) ds.

First of all notice that 〈Ln(s), Qn(s)〉L2(H) = 2
∑∞

k=1 λ
−2ρ
k |Qn(s)ek|2H ; such a quantity

corresponds to |Qn|2K being Qn, a symmetric operator. Thus

(3.19)

∣∣∣∣∣E
∫ T

T−δ

〈Ln(s), Qn(s)〉L2(H) ds

∣∣∣∣∣ = E

∫ T

T−δ

|Qn(s)|2K ds.

Let us estimate the process Xn
T ; we have, for every t ∈ [T − δ, T ],

E

∑
k≥1

|Xn(t)ek|2Hλ2ρ
k =

∑
k≥1

E

∣∣∣∣∫ t

T−δ

e(t−s)ALn(s)e(t−s)Aek dWs

∣∣∣∣2
H

λ2ρ
k(3.20)

=
∑
k≥1

E

∫ t

T−δ

λ2ρ
k |e(t−s)ALn(s)e(t−s)Aek|2H ds

≤ E

∫ T

T−δ

∑
k≥1

λ−2ρ
k 2|Qn(s)ek|2H ds = E

∫ T

T−δ

|Qn(s)|2K ds.

Therefore, using (3.20) with r = T − δ we have

|E〈Xn(T ), Pn(T )〉L2(H)|

(3.21)

=

∣∣∣∣∣E
∞∑
k=1

〈Xn(T )ek, P
n(T )ek〉

∣∣∣∣∣ ≤
(
E

∞∑
k=1

|Xn(T )ek|2λ2ρ
k

)1
2
(
E

∞∑
k=1

|Pn(T )ek|2λ−2ρ
k

)1
2

≤ C

(
E

∫ T

T−δ

|Qn
s |2K ds

) 1
2 (

E|Pn(T )|2L(H)

) 1
2

.

Moreover, thanks to (3.10) and |Pn(T )|L(H) ≤ |P (T )|L(H), we end up with

|E〈Xn(T ), Pn(T )〉L2(H)|

(3.22)

≤C

(
E

∫ T

T−δ

|Qn
s |2K ds

)1
2
(
|M |2L(H) + δE

∫ T

T−δ

|S(s)|2ds+ δ1−2ρ
E

∫ T

T−δ

|Q(s)|2K ds

)1
2

.
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Regarding E
∫ T

T−δ
〈Xn(s), JnC

∗(s)Q(s)Jn + JnQ(s)C(s)Jn〉L2(H) ds, we have∣∣∣∣∣E
∫ T

T−δ

〈Xn(s), JnC
∗(s)Q(s)Jn〉L2(H) ds

∣∣∣∣∣
≤ M2

CE

∫ T

T−δ

⎛⎝∑
k≥1

|Xn(s)ek|2Hλ2ρ
k

⎞⎠
1
2

|Q(s)|K ds

≤ CE

∫ T

T−δ

(∫ T

T−δ

|Qn(s)|2K ds

) 1
2

|Q(s)|K ds

≤ 1

4
E

∫ T

T−δ

|Qn(s)|2K ds+ CδE

∫ T

T−δ

|Q(s)|2K ds

with C > 0 a constant that may change from line to line but always depends only on
the ones introduced in Hypothesis 2.1. Notice that

E

∫ T

T−δ

〈Xn(s), JnQ(s)C(s)Jn〉L2(H) ds(3.23)

= E

∫ T

T−δ

∞∑
k=1

〈Xn(s)ek, JnQ(s)C(s)Jnek〉H ds

= E

∫ T

T−δ

∞∑
k=1

∞∑
h=1

〈ek, Xn(s)eh〉〈ek, JnC∗(s)Q(s)Jneh〉H ds

≤ E

∫ T

T−δ

∞∑
h=1

|Xn(s)eh||JnC∗(s)Q(s)Jneh| ds

≤ E

∫ T

T−δ

(

∞∑
h=1

λ2ρ
h |Xn(s)eh|2)1/2

( ∞∑
h=1

λ−2ρ
h |Q(s)eh|2

)1/2

ds.

Thus the same conclusion holds, so we have that, by (3.20),∣∣∣∣∣E
∫ T

T−δ

〈Xn(s), JnC
∗(s)Q(s)Jn + JnQ(s)C(s)Jn〉L2(H) ds

∣∣∣∣∣(3.24)

≤ 1

2
E

∫ T

T−δ

|Qn(s)|2K ds+ CδE

∫ T

T−δ

|Q(s)|2K ds.

Moreover we have that∣∣∣∣∣E
∫ T

T−δ

〈Xn(s), JnC
∗(s)P (s)C(s)Jn〉L2(H) ds

∣∣∣∣∣(3.25)

≤ Cδ|P |2L2
P(Ω;C([T−δ,T ];L(H))) +

1

8
E

∫ T

T−δ

|Qn(s)|2K ds,

and that, similarly,

∣∣∣∣∣E
∫ T

T−δ

〈Xn(s), JnS(s)Jn〉L2(H) ds

∣∣∣∣∣ ≤ CE

∫ T

T−δ

|S(s)|2L(H)ds+
1

8
E

∫ T

T−δ

|Qn(s)|2K ds.

(3.26)
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Taking into account (3.22), (3.24), (3.25), and (3.26) we have that there exists a
positive constant C independent of n and δ such that

(3.27)

E

∫ T

T−δ

|Qn(s)|2K ds ≤ C

(
|M |2L(H) + δE

∫ T

T−δ

|S(s)|2L(H)ds+ δ1−2ρ
E

∫ T

T−δ

|Q(s)|2K ds

)
.

From (3.10) and (3.27) the claim follows since |Qn(s)|2K ↗ |Q(s)|2K choosing a δ small
enough such that Cδ1−2ρ < 1

2 .
With an identical argument we get the estimate in the easier case in which the

term C∗PC is not present.
Remark 3.3. Assume that Q ∈ L2

P(Ω× [0, T ];Ks) and that P , given by

P (t) = e(T−t)AMe(T−t)A +

∫ T

t

e(s−t)AS(s)e(s−t)A ds(3.28)

+

∫ T

t

e(s−t)A∗[
C∗(s)Q(s) +Q(s)C(s)

]
e(s−t)A ds

+

∫ T

t

e(s−t)AQ(s)e(s−t)A dW (s) P− a.s.,

is an adapted K-valued process.
Then there exists a δ0 > 0 just depending on T and the constants MC and ρ

introduced in Hypothesis 2.1 such that for every 0 ≤ δ ≤ δ0 the following holds:

|P |2L2(Ω;C([T−δ,T ];L(H))) + E

∫ T

T−δ

|Q(s)|2K ds ≤ c

(
E|M |2L(H) + δE

∫ T

T−δ

|S(s)|2L(H) ds

)(3.29)

with c a positive constant depending on δ0,MC , ρ, and T .
We are now in a position to prove existence and uniqueness of the solution to the

mild Lyapunov equation
Theorem 3.4. Under the assumptions of Hypothesis 2.1, (3.1) has a unique mild

solution (P,Q).
Proof. The idea is classical: we will buid a map Γ from the space L2

P(Ω, C([0, T ];H))
into itself and prove that is a contraction for small time.

In completing this program we follow three steps.
Step 1: Regularization. We introduce some regularizing processes in order to

define P̂ = Γ(P ) for an arbitrary P ∈ L2
P(Ω, C([0, T ]; Σ(H))). So we fix P and for

every n ≥ 1 we consider the following problem: find P̂n, Q̂n such that

P̂n(t) = e(T−t)AJnMJne
(T−t)A +

∫ T

t

e(s−t)AC∗(s)JnP (s)JnC(s)e(s−t)A ds(3.30)

+

∫ T

t

e(s−t)AJnS(s)Jne
(s−t)A ds

+

∫ T

t

e(s−t)A(C∗(s)Q̂n(s) + Q̂n(s)C(s))e(s−t)A ds

+

∫ T

t

e(s−t)AQ̂n(s)e(s−t)A dW (s) P− a.s.
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Notice that for every n ∈ N, we have that C∗JnPJnC, JnSJn ∈ L2
P(Ω×[0, T ];L2(H)),

JnMJn ∈ L2(H). Moreover for every C ∈ L(H), the map G ∈ L2(H) → C∗G+GC ∈
L2(H) is Lipschitz continuous.

Thus Lemma 2.1 of [9] applies and we can deduce that there exists a unique
solution (P̂n, Q̂n) ∈ L2

P(Ω× [0, T ];L2(H))×L2
P(Ω× [0, T ];L2(H)) to (3.30). Moreover

by Remark 3.3 there exists δ0 < 1 small enough and independent of n such that, for
all δ ≤ δ0,

E sup
u∈[T−δ,T ]

|P̂n(u)|2L(H) + E

∫ T

T−δ

|Q̂n(s)|2K ds(3.31)

≤ C

(
|M |2L(H) + δ2E sup

u∈[r,T ]

|P (u)|2L(H) + δ

∫ T

r

|S(s)|2L(H) ds

)

with C a constant depending only on MC , T , and ρ but not on n.
We notice here that the operator P → C∗PC is Lipschitz from L2(H) to itself as

well. We cannot treat it as the term G → C∗G+GC since we will then need to lower
the regularity of P to the space K and, if P only belongs to K, then the operator
esAC∗PCesA is not well defined while G → esA[C∗G +GC]esA is well defined from
K to itself.

Step 2: Limiting procedure. Let us evaluate the difference P̂n − P̂m for two
integers m,n:

P̂n(t)− P̂m(t)

(3.32)

= e(T−t)AJnMJne
(T−t)A − e(T−t)AJmMJme(T−t)A

+

∫ T

t

e(s−t)A(JnS(s)Jn − JmS(s)Jm)e(s−t)A ds

+

∫ T

t

e(s−t)AC∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)e(s−t)A ds

+

∫ T

t

e(s−t)A
[
C∗(s)(Q̂n(s)− Q̂m(s)) + (Q̂n(s)− Q̂m(s))C(s)

]
e(s−t)A ds

+

∫ T

t

e(s−t)A[Q̂n(s)− Q̂m(s)]e(s−t)A dW (s) P− a.s.

We are going to show that

lim
m,n→∞E sup

t∈[T−δ,T ]

|P̂n(t)− P̂m(t)|2K = 0,(3.33)

lim
m,n→∞E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds = 0.(3.34)
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Let’s begin to prove (3.33) by noticing that

P̂n(t)− P̂m(t)

= E
Ft(e(T−t)AJnMJne

(T−t)A − e(T−t)AJmMJme(T−t)A)

+ E
Ft

(∫ T

t

e(s−t)A(JnS(s)Jn − JmS(s)Jm)e(s−t)A ds

)

+ E
Ft

(∫ T

t

e(s−t)AC∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)e(s−t)A ds

)

+ E
Ft

(∫ T

t

e(s−t)A
[
C∗(s)(Q̂n(s)− Q̂m(s))

+ (Q̂n(s)− Q̂m(s))C(s)
]
e(s−t)A ds

)
P− a.s.

M being a symmetric operator, we have that

∣∣∣e(T−t)A(JnMJn − JmMJm)e(T−t)A
∣∣∣2
K

=

∞∑
k=1

λ−2ρ
k

∣∣∣e(T−t)A(JnMJn − JmMJm)e(T−t)Aek

∣∣∣2
H
.

For every fixed k ≥ 1,

lim
n,m→∞ |(JnM(Jn − Jm)ek|2H = 0 ∀t ∈ [0, T ] P− a.s.

and

lim
n,m→∞ |(Jn − Jm)MJmek|2H = 0 ∀t ∈ [0, T ] P− a.s.

Moreover

∞∑
k=1

λ−2ρ
k |(JnMJn − JmMJm)ek|2H ≤ M2

M

∞∑
k=1

λ−2ρ
k < ∞ P− a.s.

Hence by the dominated convergence theorem and the Doob inequality for martin-
gales,

lim
n,m→∞E

[
sup

t∈[T−δ,T ]

|EFt(e(T−t)A(JnMJn − JmMJm)e(T−t)A)|2K
]

(3.35)

≤ lim
n,m→∞ 4E|(JnMJn − JmMJm)|2K = 0.

The second and the third terms are similar so we’ll give the details only of the third.



16 GIUSEPPINA GUATTERI AND GIANMARIO TESSITORE

As before we have that for every k ≥ 1,

lim
n,m→∞ |(C∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)ek|2H = 0

P− a.s. and for a.e. s ∈ [T − δ, T ];

and P-a.s. and for a.e. s ∈ [T − δ, T ],∑
k≥1

λ−2ρ
k |(C∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)ek|2H ds ≤ M4

C

∑
k≥1

λ−2ρ
k < ∞.

Therefore again by the dominated convergence theorem and the Doob inequality for
martingales,

lim
n,m→∞E sup

t∈[T−δ,T ]

∣∣∣∣∣EFt

(∫ T

t

e(s−t)A[(C∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)]e(s−t)A ds

)∣∣∣∣∣
2

K

(3.36)

≤ δ lim
n,m→∞ 4E

∫ T

T−δ

∑
k≥1

λ−2ρ
k |(C∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)ek|2H ds = 0.

At last let us consider the term

E sup
t∈[T−δ,T ]

∣∣∣∣∣EFt

(∫ T

t

e(s−t)A[C∗(s)(Q̂n(s)− Q̂m(s))

+ (Q̂n(s)− Q̂m(s))C(s)]e(s−t)A ds

)∣∣∣∣∣
2

K
.

First of all,(∫ T

t

|e(s−t)A(Q̂n(s)− Q̂m(s))C(s)e(s−t)A|K ds

)2

=

⎡⎢⎣∫ T

t

⎛⎝∑
k≥1

λ−2ρ
k |e(s−t)A(Q̂n(s)− Q̂m(s))C(s)e(s−t)Aek|2H

⎞⎠1/2

ds

⎤⎥⎦
2

≤

⎛⎜⎝∫ T

t

|e(s−t)A|L(V ′;H)|(Q̂n(s)− Q̂m(s))|L2(H;V ′)

⎛⎝∑
k≥1

λ−2ρ
k |C(s)e(s−t)Aek|2H

⎞⎠1/2

ds

⎞⎟⎠
2

≤ M2
C

⎛⎝∑
k≥1

λ−2ρ
k

⎞⎠∫ T

t

(s− t)−2ρ ds

∫ T

t

|Q̂n(s)− Q̂m(s)|2K ds

≤ Cδ1−2ρ

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds.
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Similarily,⎡⎢⎣∫ T

t

⎛⎝∑
k≥1

λ−2ρ
k |e(s−t)AC∗(s)(Q̂n(s)− Q̂m(s))e(s−t)Aek|2H

⎞⎠1/2

ds

⎤⎥⎦
2

≤

⎛⎜⎝∫ T

t

|e(s−t)A|L(H)|C∗(s)|2L(H)

×
⎛⎝∑

k≥1

λ−2ρ
k e−2(s−t)λk |(Q̂n(s)− Q̂m(s))ek|2H

⎞⎠1/2

ds

⎞⎟⎠
2

≤ M2
Cδ

∫ T

t

|Q̂n(s)− Q̂m(s)|2K ds

≤ Cδ1−2ρ

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds.

Hence,

E sup
t∈[T−δ,T ]

|P̂n(t)− P̂m(t)|2K(3.37)

≤ C

[
δ1−2ρ

∫ T

T−δ

E|Q̂n(s)− Q̂m(s)|2K ds+ E|(JnMJn − JmMJm)|2K

+ δ E

∫ T

T−δ

|C∗(s)(JnP (s)Jn − JmP (s)Jm)C(s)|2K ds

+ E

∫ T

T−δ

|JnS(s)Jn − JmS(s)Jm)|2K ds

]

≤ Cδ1−2ρ
E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds+R(m,n)

with R(m,n) → 0 as m,n → +∞.
The duality relation between P̂n − P̂m and X̂n − X̂m yields to

E〈X̂n(T )− X̂m(T ), P̂n(T )− P̂m(T )〉L2(H)

(3.38)

= E

∫ T

T−δ

〈L̂n(s)− L̂m(s), Q̂n(s)− Q̂m(s)〉L2(H) ds

− E

∫ T

T−δ

〈X̂n(s)− X̂m(s), JnS(s)Jn − JmS(s)Jm〉L2(H) ds

− E

∫ T

T−δ

〈X̂n(s)− X̂m(s), C∗(s)JnP (s)JnC(s) − C∗(s)JmP (s)JmC(s)〉L2(H) ds

− E

∫ T

T−δ

〈Xn(s)−Xm(s), C∗(s)(Q̂n(s)− Q̂m(s))

+ (Q̂n(s)− Q̂m(s))C(s)〉L2(H) ds,
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where

E

∫ T

T−δ

〈L̂n(s)− L̂m(s), Q̂n(s)− Q̂m(s)〉L2(H) ds = E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds.

As in (3.20) we have

E

∑
k≥1

|(X̂n(t)− X̂m(t))ek|2Hλ2ρ
k ≤ E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds,(3.39)

where X̂n and X̂m are defined as in (3.17) with Qn replaced by Q̂n and we get,
noticing that |〈X,Z〉L2(H)| ≤ (

∑∞
k=1 |Xek|2λ2ρ

k )1/2|Z|K,

E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds

(3.40)

≤ E sup
t∈[T−δ,T ]

|〈X̂n(T )− X̂m(T ), P̂n(T )− P̂m(T )〉L2(H)|

+ E

∫ T

T−δ

|〈JnS(s)Jn − JmS(s)Jm, X̂n(s)− X̂m(s)〉L2(H)| ds

+ E

∫ T

T−δ

|〈C∗(s)[JnP (s)Jn − JmP (s)Jm]C(s), X̂n(s)− X̂m(s)〉L2(H)| ds

+ E

∫ T

T−δ

|〈Xn(s)−Xm(s), C∗(s)(Q̂n(s)− Q̂m(s))〉L2(H)| ds

+ E

∫ T

T−δ

|〈Xn(s)−Xm(s), (Q̂n(s)− Q̂m(s))C(s)〉L2(H)| ds
)

= I1 + I2 + I3 + I4 + I5.

We have

I1 ≤ E

( ∞∑
k=1

λ2ρ
k |(X̂n(T )− X̂m(T ))ek|2

)1/2

|P̂n(T )− P̂m(T )|K

≤ l

2
E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds+
1

2l
|P̂n(T )− P̂m(T )|2K,

I2 + I3 ≤ l

2
E

∫ T

T−δ

∞∑
k=1

λ2ρ
k |(X̂n(s)− X̂m(s))ek|2 ds

+
1

2l
E

∫ T

T−δ

|〈JnS(s)Jn − JmS(s)Jm|2K ds

+
1

2l
E

∫ T

T−δ

|C∗(s)[JnP (s)Jn − JmP (s)Jm]C(s)|2K ds,

I4 ≤ 1

2l
E

∫ T

T−δ

∞∑
k=1

λ2ρ
k |(X̂n(s)− X̂m(s))ek|2 ds+ l

2
E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds

≤ δ

2l
E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds+
l

2
E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds.
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I5 can be treated as I4, following (3.23). Summarizing and choosing l small enough
(depending only on the constants introduced in Hypothesis 2.1), we finally get

E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds(3.41)

≤ C

(
E|P̂n(T )− P̂m(T )|2K + E

∫ T

T−δ

|JnS(s)Jn − JmS(s)Jm|2K ds

+ E

∫ T

T−δ

|C∗(s)JnP (s)JnC(s)− C∗(s)JmP (s)JmC(s)|2K ds

+ δE

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds

)
.

Putting together (3.37) and (3.41) we then prove that, for a small enough δ,

lim
m,n→∞E sup

t∈[T−δ,T ]

|P̂n(t)− P̂m(t)|2K = 0,

lim
m,n→∞E

∫ T

T−δ

|Q̂n(s)− Q̂m(s)|2K ds = 0.

Therefore there exist the limit P̂ ∈ L2
P(Ω;C([T − δ, T ];K)) and Q̂ ∈ L2

P(Ω ×
[T − δ, T ];K)) such that

lim
n→∞E sup

t∈[T−δ,T ]

|P̂n(t)− P̂ (t)|2K = 0,(3.42)

lim
m,→∞E

∫ T

T−δ

|Q̂n(s)− Q̂(s)|2K ds = 0.(3.43)

Step 3: Construction of Γ. The equation being linear, thanks to (3.42) and (3.43),
we obtain the following relation:

P̂ (t) = e(T−t)AMe(T−t)A +

∫ T

t

e(s−t)AC∗(s)P (s)C(s)e(s−t)A ds

(3.44)

+

∫ T

t

e(s−t)AS(s)e(s−t)A ds+

∫ T

t

e(s−t)A(C∗(s)Q̂(s) + Q̂(s)C(s))e(s−t)A ds

+

∫ T

t

e(s−t)AQ̂(s)e(s−t)A dW (s) P− a.s.

The fact that P̂ ∈ L2
P,S(Ω;C([T − δ, T ];L(H))) follows from Remark 3.3. So far

we have that the map Γ such that Γ(P ) = P̂ is actually defined from the space
L2
P,S(Ω;C([T − δ, T ];L(H)) into itself.

Step 4: Γ is a contraction for a suitable δ. Let P 1 and P 2 be two elements of
L2
P,S(Ω;C([T − δ, T ];L(H)), then we can evaluate the difference between Γ(P 1) and
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Γ(P 2). Indeed we have

(P̂ 1 − P̂ 2)(t) =

∫ T

t

e(s−t)AC∗(s)(P 1 − P 2)(s)C(s)e(s−t)A ds

(3.45)

+

∫ T

t

e(s−t)A[C∗(s)(Q̂1 − Q̂2)(s) + (Q̂1 − Q̂2)(s)C(s)]e(s−t)A ds

+

∫ T

t

e(s−t)A(Q̂1 − Q̂2)(s)e(s−t)A dW (s) P− a.s.

Clearly (3.10) and (3.27) hold also in this case:

E sup
u∈[T−δ,T ]

|(P̄ 1 − P̄ 2)(u)|2L(H)

(3.46)

≤ C

(
δ E sup

u∈[T−δ,T ]

|(P 1 − P 2)(u)|2L(H) + δ1−2ρ(E

∫ T

T−δ

|(Q̂1 − Q̂2)(u)|2K du

)

with the constant C depending on the constants MC and T but not on δ. And the
same holds for Q̂1 − Q̂2:

E

∫ T

T−δ

|(Q̂1 − Q̂2)(s)|2K ds

(3.47)

≤ C

(
δ|P 1 − P 2|2L2

P(Ω;C([T−δ,T ];L(H))) + δ1−2ρ
E

∫ T

T−δ

|(Q̂1 − Q̂2)(s)|2K ds

)
.

So we can find a δ small enough such that Γ is a contraction and there’s a fixed point
P . The couple (P, Q̂), where Q̂ is defined in (3.44), is the mild solution in [T − δ, T ].

Step 5: Construction of the mild solution. Since the problem is linear and the
value of δ depends only on the constants introduced in Hypothesis 2.1, can restart on
[T − 2δ, T − δ] with final datum P (T − δ). Proceeding backwards we are able to cover
the whole interval [0, T ].

Step 6: Uniqueness. From Proposition 3.2 we have that there is local unique-
ness for the mild solution. δ0 being independent of the data, we can deduce global
uniqueness.

We end the section by proving the following stability results for the approximants
processes P̂n.

Proposition 3.5. Under the hypotheses of the previous theorem, let P̂n be de-
fined by (3.2) and P the mild solution just obtained, then the following holds: there
exists a δ > 0 such that, for every ε < δ,

lim
n→∞E sup

t∈[T−δ,T−ε]

|P (t)− P̂n(t)|2L(H) = 0.(3.48)
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Proof. For every t ∈ [0, T ] we have

P (t)− P̂n(t)

(3.49)

= E
Ft

{
e(T−t)A(M − JnMJn)e

(T−t)A

+

∫ T

t

e(s−t)A(S(s)− JnS(s)Jn)e
(s−t)A ds

+

∫ T

t

e(s−t)A[C∗(s)(P (s)− JnP (s)Jn)C(s)

+ C∗(s)(Q(s)− Q̂n(s)) + (Q(s)− Q̂n(s))C(s)]e(s−t)A ds

}
;

thus, assume that δ < 1,

E sup
t∈[T−δ,T−ε]

∣∣∣EFte(T−t)A(M − JnMJn)e
(T−t)A

∣∣∣2
L(H)

= E sup
t∈[T−δ,T−ε]

∣∣∣EFte(T−ε−t)AeεA(M − JnMJn)e
εAe(T−ε−t)A

∣∣∣2
L(H)

≤ 4ε−2ρ
E|M − JnMJn|2K,

E sup
t∈[T−δ,T−ε]

∣∣∣∣∣EFt

∫ T

t

e(s−t)AC∗(s)(P (s) − JnP (s)Jn)C(s)e(s−t)A ds

∣∣∣∣∣
2

L(H)

≤ 4δ1−2ρ
E

∫ T

T−δ

|C∗(s)(P (s) − JnP (s)Jn)C(s)|2K ds,

E sup
t∈[T−δ,T−ε]

∣∣∣∣∣EFt

∫ T

t

e(s−t)A[C∗(s)(Q(s) − Q̂n(s))

+ (Q(s)− Q̂n(s))C(s)]e(s−t)A ds

∣∣∣∣∣
2

L(H)

≤ 2 E sup
t∈[T−δ,T ]

(
E
Ft

∫ T

t

MC

(s− t)ρ
|(Q(s)− Q̄n(s)|K ds

)2

≤ 8M2
C δ1−2ρ

E

∫ T

T−δ

|(Q(s)− Q̄n(s)|2K ds,

E sup
t∈[T−δ,T ]

∣∣∣∣∣
∫ T

t

e(s−t)A(JnS(s)Jn − S(s))e(s−t)A ds

∣∣∣∣∣
2

L(H)

≤ δ1−2ρ
E

∫ T

r

|S(s)− JnS(s)Jn|2K ds.

Summing up all these estimates we deduce that there exists a constant C depending
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only on MC , ρ such that

E sup
t∈[T−δ,T−ε]

|P (t)− P̂n(t)|2L(H)

(3.50)

≤ C

(
ε−2ρ

E|M − JnMJn|2K + δ1−2ρ
E

∫ T

T−δ

|P (s)− JnP (s)Jn|2K ds

δ1−2ρ
E

∫ T

T−δ

|Q(s)− Q̂n(s)|2K ds+ δ1−2ρ
E

∫ T

r

|S(s)− JnS(s)Jn|2K ds

)
.

Thanks to previous considerations, in particular (3.43), and recalling that by

the dominated convergence theorem E
∫ T

T−δ |P (s) − JnP (s)Jn|2K → 0, we deduce the
thesis.

4. Backward stochastic Riccati equations and LQ optimal control. Be-
sides Hypothesis 2.1, let us fix T > S > 0 and consider the following infinite dimen-
sional stochastic control problem, with the state equation given by

(4.1)

{
dy(t) = (Ay(t) +B(t)u(t)) dt + C(t)y(t) dW (t), S ≤ r ≤ t ≤ T,
y(r) = x,

where u is the control and takes values in another Hilbert space U .
Besides Hypothesis 2.1 we assume the following.

(A4) We assume that B ∈ L∞
P,S(Ω× [0, T ];L(U ;H)). We denote by MB a positive

constant such that

|B(t, ω)|L(U ;H) < MB P− a.s. and for a.e. t ∈ (0, T ).

We recall the definition of a mild solution.
Definition 4.1. Given x ∈ H and u ∈ L2

P(Ω× [t, T ];U), a mild solution of (4.1)
is a process y ∈ L2

P(Ω× [t, T ];H) such that, almost everywhere in Ω× [t, T ],

y(s) = e(s−t)Ax+

∫ s

t

e(s−σ)AB(σ)u(σ) dσ +

∫ s

t

e(s−σ)AC(σ)y(σ) dW (σ).

The following existence and uniqueness results hold.
Theorem 4.2. Assume Hypothesis 2.1. Given any x ∈ H and u ∈ L2

P(Ω ×
[t, T ];U) problem (4.1) has a unique mild solution y ∈ CP([t, T ];L2(Ω;H)). Moreover,

(4.2) sup
s∈[t,T ]

E|y(s)|2 ≤ C2

[
|x|2 + E

∫ T

t

|u(s)|2 ds
]

for a suitable constant C2 depending only on T,MB,MC (notice that C2 ≥ 1).
Finally if p > 2 and

E

(∫ T

t

|u(s)|2 ds
) p

2

< ∞

then we have that y ∈ Lp
P(Ω;C([t, T ];H)) and

(4.3) E sup
s∈[t,T ]

|y(s)|p ≤ Cp

⎡⎣|x|p + E

(∫ T

t

|u(s)|2 ds
) p

2

⎤⎦
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for some positive constant Cp depending on p, T,MB,MC. The cost functional to
minimize over all processes taking values in L2

P(Ω× [0, T ], U)—the space of admissible
controls—is

(4.4) E

∫ T

0

(
|
√
S(s)y(s)|2H + |u(s)|2H

)
ds+ E〈My(T ), y(T )〉H .

Associated with this linear and quadratic control problem we have the following BSRE
(see [3, 15] and [8] for the present infinite dimensional version):
(4.5)⎧⎪⎨⎪⎩

−dP (t) = (AP (t) + P (t)A+ C∗(t)P (t)C(t) + C∗(t)Q(t) +Q(t)C(t)) dt

− (P (t)B(t)B∗(t)P (t)− S(t)) dt+Q(t) dW (t), t ∈ [0, T ],

P (T ) = M.

In this section we will prove that such an equation has a unique mild solution, in the
sense of Definition 3.1, improving the result obtained in [8]. To be more specific we
have the following definition.

Definition 4.3. A mild solution of problem (4.5) is a couple of processes

(P,Q) ∈ L2
P,S(Ω, C([0, T ]; Σ(H)))× L2

P(Ω× [0, T ];Ks)

that solves the following equation, for all t ∈ [0, T ]:

P (t) = e(T−t)AMe(T−t)A +

∫ T

t

e(s−t)AS(s)e(s−t)A ds(4.6)

+

∫ T

t

e(s−t)A
[
C∗(s)P (s)C(s) − P )(s)B(s)B∗(S)P (s)

+ C∗(s)Q(s) +Q(s)C(s)
]
e(s−t)A ds

+

∫ T

t

e(s−t)AQ(s)e(s−t)A dW (s) P− a.s.

We have indeed the following theorem.
Theorem 4.4. Assume that Hypotheses 2.1 hold true and that B verifies as-

sumption (A4). Then there exists a unique mild solution (P,Q) of (4.5) in [0, T ].
Moreover P ∈ L∞

P,S(Ω× (0, T ); Σ+(H)). Moreover, fix T > 0 and x ∈ H, then

1. there exists a unique control u ∈ L2
P(Ω× [0, T ];U) such that

J(0, x, u) = inf
u∈L2

P(Ω×[0,T ];U)
J(0, x, u);

2. if y is the mild solution of the state equation corresponding to u (that is, the
optimal state) then y is the unique mild solution to the closed loop equation

(4.7)

{
dy(r) = [Ay(r) −B(r)B∗(r)P (r)y(r)] dr + Cy(r) dW (r),

y(0) = x;

3. the following feedback law holds P-a.s. for almost every s:

(4.8) u(s) = −B∗(s)P (s)y(s);

4. the optimal cost is given by J(0, x, u) = 〈P (0)x, x〉H .
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Before going into the details of the proof, we establish the following a priori
estimate.

Proposition 4.5. Let (P̄ , Q̄) be a mild solution of (4.5) in [τ, T ] ⊂ [0, T ] such
that P̄ ∈ L∞

P,S(Ω× [τ, T ],Σ(H)), then the following holds for every t ∈ [τ, T ]:

(i) for all t ∈ [τ, T ], P̄ (t) ∈ Σ+(H) P− a.s.;
(ii) for all t ∈ [τ, T ],

(4.9)
|P̄ (t)|L(H) ≤ C2(|M |L∞

P,S(Ω,FT ;L(H))+(T−τ)|S|L∞
P,S(Ω×[τ,T ],L(H))) P−a.s.,

where C2 is given in (4.2).
Proof. Step 1: Fundamental relation for the Lyapunov equation. Let (P,Q) be the

unique mild solution to the Lyapunov equation (3.2) and let yt,x be the mild solution
to (4.1); we claim that for all t ∈ [0, T ], x ∈ H , it holds,

〈P (t)x, x〉H = E
Ft〈Myt,x(T ), yt,x(T )〉+ E

Ft

∫ T

t

〈S(s)yt,x(s), yt,x(s)〉H ds

− 2EFt

∫ T

t

〈P (s)B∗(s)yt,x(s), u(s)〉 ds P-a.s.(4.10)

Let us prove the claim. We will use again the approximants processes (P̂n, Q̂n)
introduced in the proof of Theorem 3.4. From proposition 3.5 we know that there’s a
δ small enough such that, for every ε < δ,

lim
n→∞E sup

t∈[T−δ,T−ε]

|P (t)− P̂n(t)|2L(H) = 0.(4.11)

On the other hand we have already noticed that (P̂n, Q̂n) is a solution in the sense of
Proposition 2.1 of [9]; therefore, by Theorem 5.6 of [8], we have that, for all t ∈ [0, T ],
x ∈ H , it holds, P-a.s. that

〈P̂n(t)x, x〉H

(4.12)

= E
Ft〈P̂n(T − ε)yt,x(T − ε), yt,x(T − ε)〉H

+ E
Ft

∫ T−ε

t

〈S(s)yt,x,u(s), yt,x,u(s)〉H ds

+ E
Ft

∫ T−ε

t

〈[C∗(s)P̂n(s)C(s) − C∗(s)JnP (s)JnC(s)]yt,x,u(s), yt,x,u(s)〉H ds

− 2EFt

∫ T−ε

t

〈P̂n(s)B∗(s)yt,x,u(s), u(s)〉H ds.

By (4.11) and recalling that y ∈ Lp
P(Ω;C([t, T ];H)), p ≥ 2 (see (4.3)), we get that

∫ T−ε

t

〈P̂n(s)C(s)yt,x,u(s), C(s)yt,x,u(s)〉ds

→
∫ T−ε

t

〈P (s)C(s)yt,x,u(s), C(s)yt,x,u(s)〉ds
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in L1 norm. Moreover, since E supt∈[0,T ] |P (t)|2L(H) < +∞, by the dominated conver-
gence theorem we obtain that∫ T−ε

t

〈P (s)JnC(s)yt,x,u(s), JnC(s)yt,x,u(s)〉ds

→
∫ T−ε

t

〈P (s)C(s)yt,x,u(s), C(s)yt,x,u(s)〉ds

again in L1 norm.
Thus letting n tend to ∞ in (4.12), we obtain that for every t ∈ [T − δ, T ] P-a.s.,

〈P (t)x, x〉H = E
Ft〈P (T − ε)yt,x(T − ε), yt,x(T − ε)〉H(4.13)

+ E
Ft

∫ T−ε

t

〈S(s)yt,x,u(s), yt,x,u(s)〉 ds

− 2EFt

∫ T−ε

t

〈P (s)B∗(s)yt,x,u(s), u(s)〉 ds.

Now, thanks again to E supt∈[0,T ] |P (t)|2L(H) < +∞, we can let ε go to 0 and get that

for every x ∈ H , and every t ∈ [T − δ, T ] P-a.s.,

〈P (t)x, x〉H = E
Ft〈Myt,x(T ), yt,x(T )〉H + E

Ft

∫ T

t

〈S(s)yt,x,u(s), yt,x,u(s)〉 ds(4.14)

− 2EFt

∫ T

t

〈P (s)B∗(s)yt,x,u(s), u(s)〉 ds.

Choosing u = 0 then (see, also, Theorem 5.6 of [8]) we get that

(4.15) sup
x∈H, |x|H=1

|〈P (t)x, x〉H |

≤ C2(|M |L∞
S (Ω,FT ,P ) + T |S|L∞

P,S(Ω×(0,T );L(H))) ∀t ∈ [T − δ, T ].

We can prove relation (4.13) on the interval [T − 2δ, T − δ] (notice that δ does not
depend on M) and so on to cover the whole interval [0, T ], because P (T −kδ) ∈ L(H)
for every k = 0, 1, 2, 3, . . . and thus we can extend (4.15) to the whole [0, T ].

Step 2: Upper bound. Let (P̄ , Q̄) be the mild solution of the BSRE (4.5) in [τ, T ];
we can see a couple of such processes as the mild solution to the following Lyapunov
equation, for t ∈ [τ, T ]:
(4.16)⎧⎪⎨⎪⎩

−dP̄ (t) = (AP̄ (t) + P̄ (t)A+ C∗(t)P̄ (t)C(t) + C∗(t)Q̄(t) + Q̄(t)C(t) + S̄(t)) dt

+ Q̄(t) dW (t),

P̄ (T ) = M

with S̄ = −B∗P̄ P̄B + S; thus from (4.14) and completing the square, we obtain

〈P̄ (t)x, x〉H = E
Ft〈Myt,x(T ), yt,x(T )〉H + E

Ft

∫ T

t

|u(s)|2 ds(4.17)

+ E
Ft

∫ T

t

〈S(s)yt,x,u(s), yt,x,u(s)〉 ds

− E
Ft

∫ T

t

|P̄ (s)B∗(s)yt,x,u(s) + u(s)|2 ds.
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So, choosing the admissible control u = 0, we get

〈P̄ (t)x, x〉H = E
Ft〈Myt,x,0(T ), yt,x,0(T )〉H + E

Ft

∫ T

t

〈S(s)yt,x,0(s), yt,x,0(s)〉 ds
(4.18)

− E
Ft

∫ T

t

|P̄ (s)B∗(s)yt,x,0(s)|2 ds,

from which we deduce the following upper bound

〈P̄ (t)x, x〉H ≤ C2(|M |L∞
S (Ω,FT ,P ) + T |S|L∞

P,S(Ω×(0,T );L(H))) ∀t ∈ [τ, T ].(4.19)

Step 3: Lower bound. Let us consider the following equations for initial time
t ∈ [τ, T ] and initial state x:

(4.20)

{
dy(s) = [Ay(s)−B(s)B∗(s)P̄ (s)y(s)] ds+ Cy(s) dW (s) s ∈ [t, T ],

y(t) = x.

Notice that, thanks to the regularity of P̄ , Theorem 3.2 of [8] applies and in particular
the following estimates holds true for the solution ȳt,x, for every t ∈ [τ, T ]:

(4.21) E
Ft sup

s∈[t,T ]

|ȳ(s)|p ≤ Cp|x|p ∀p ≥ 2,

where Cp depends also on the L∞ norm of P̄ . Therefore ū(s) = B∗(s)P̄ (s)ȳt,x(s) is
an admissible control, i.e., ū ∈ L2

P(Ω× [t, T ], U), and (4.17) corresponds to

〈P̄ (t)x, x〉H = E
Ft

[
〈Mȳt,x((T ), ȳt,x((T )〉H

(4.22)

+

∫ T

t

(|B∗(s)P̄ (s)yt,x((s)|2 + |
√
S(s)ȳt,x(s)|2) ds

]
P− a.s.

Consequently from (4.22) holding for every t ∈ [τ, T ] we get (i). Eventually (4.19)
and (4.22) imply (ii).

We are now in the position to prove Theorem 4.4.
Proof of Theorem 4.4. Step 1: Local existence and uniqueness. In order to be able

to follow the same argument not only on [T − δ, T ] but also on [T − 2δ, T − δ] and so
on (with the same δ) we prove the existence of a solution (for notational convenience,
on [T − δ, T ]) with generic final condition M̃ ∈ L∞

P,S(Ω,FT ;L(H)) with

|M̃ |L∞
P,S(Ω,FT ;L(H)) < C2(|M |L∞

P,S(Ω,FT ;L(H)) + T |S|L∞
P,S(Ω×[0,T ],L(H))).

We fix a number r with

r > C2
2 |M |L∞

S (Ω,FT ,P ) + 2C2
2T |S|L∞

P,S(Ω×(0,T );L(H)),

where C2 is the constant obtained in Proposition 4.5:

B(r) =
{
P ∈ L2

P,S(Ω;C([T − δ, T ];L(H))) : sup
t∈[T−δ,T ]

|P (t, ω)|L(H) ≤ r P-a.s.

}
,
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where δ > 0 will be fixed later on. On B(r) we construct the map Λ : B(r) → B(r),
letting Λ(K) = P , where (P,Q) is the unique mild solution to (3.2) (in [T − δ, T ])

with S replaced by S −KBB∗K and M by M̃ that verifies

P (t) = e(T−t)AM̃e(T−t)A

+

∫ T

t

e(s−t)A[C∗(s)P (s)C(s) + C∗(s)Q(s) +Q(s)C(s)]e(s−t)A ds

+

∫ T

t

e(s−t)AS(s)e(s−t)A ds+

∫ T

t

e(s−t)AK(s)B(s)B∗(s)K(s)e(s−t)A ds

+

∫ T

t

e(s−t)AQ(s)e(s−t)A dW (s).

First of all we check that it maps B(r) into itself. It is enough to show that for all
t ∈ [T − δ, T ] it holds |Λ(K)(t)|L(H) ≤ r P-a.s. Thanks to (4.9) we have that P-a.s.

|Λ(K)(t)|L(H) ≤ C2

[
|M̃ |L∞

S (Ω,FT ;L(H)) + δ|KBB∗K|L∞
P,S(Ω×[T−δ,T ];L(H))

+ δ|S|L∞
P,S(Ω×[T−δ,T ];L(H))) ds

]
≤ C2

2 |M |L∞ + C2r
2δM2

B + 2C2
2T |S|L∞

P,S(Ω×[0,T ];L(H)) < r

as soon as we choose

δ <
r − (C2

2 |M |L∞ + 2C2
2T |S|L∞

P,S(Ω×[0,T ];L(H)))

C2
2M

2
Br

2
.

Let K1 and K2 be in B(r), then by (4.10) evaluated at u = 0 we have

〈(P 1(t)− P 2(t))x, x〉H(4.23)

= E
Ft

∫ T

t

〈K1(s)B(s)B∗(s)(K1(s)−K2(s))yt,x,0(s), yt,x,0(s)〉 ds

− E
Ft

∫ T

t

〈K2(s)B(s)B∗(s)(K1(s)−K2(s))yt,x,0(s), yt,x,0(s)〉 ds,

and thus, by the Hölder inequality,

|〈(P 1(t)− P 2(t))x, x〉H |

(4.24)

≤ 2EFt

∫ T

t

rM2
B |K1(s)−K2(s)|L(H)|yt,x,0(s)|2 ds

≤ 2rM2
B

∫ T

t

(EFt |K1(s)−K2(s)|2L(H))
1/2(EFt |yt,x,0(s)|4)1/2 ds

≤ 2rM2
Bδ

2

(
sup

t∈[T−δ,T ]

E
Ft |K1(s)−K2(s)|2L(H)

)1/2(
sup

t∈[T−δ,T ]

E
Ft |yt,x,0(s)|4

)1/2
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using again Doob inequality and (4.21) which we deduce:

(4.25) E sup
t∈[T−δ,T ]

|P 1(t)−P 2(t)|2L(H) ≤ 16r2M4
Bδ

4C4E sup
t∈[T−δ,T ]

|K1(t)−K2(t)|2L(H),

where C4 = C4(r) is given in (4.21). Therefore reducing if necessary the value of δ,
we obtain that Λ is a contraction.

Step 2: Global existence and uniqueness. We notice that the choice of δ depends
only on r and the constants introduced in Hypothesis 2.1. Therefore we can repeat
the previous step to cover the whole interval [0, T ].

Final step: Synthesis of the optimal control. So far we have proved the existence
and uniqueness of the mild solution for the BSRE and, thanks to Proposition 4.5
we also have that the first component of the solution P ∈ L∞

P,S(Ω × [0, T ];L(H)).
Consequently the closed loop equation (4.7) is well posed and the associated feedback
control is admissible, hence the rest of the claims of the theorem easily follow.

5. The Lyapunov equation of the maximum principle. In this section we
extend Proposition 3.2 and Theorem 3.4 in order to cover the Lyapunov equation
arising in the maximum principle for a class of SPDE; see [6], [7, eq. (4.22)]. We
rewrite such an equation with our notation

(5.1)

⎧⎪⎪⎨⎪⎪⎩
−dP (t) = −Q(t) dW (t) + [AP (t) + P (t)A+A�(t)P (t) + P (t)A�] dt

+[C′(t)P (t)C(t) + C(t)Q(t) +Q(t)C(t) + S(t)] dt

P (T ) = M,

where A� ∈ L∞
P,S((0, T )× Ω;L(H)).

The presence of the bounded term A� is completely irrelevant and we will not
consider it in the following.

On the contrary it is not suitable, in this context, to require assumption (A3).
Indeed, assumption (A3) has to be replaced by this following weaker one.

Hypothesis 5.1.

(A3′) S ∈ L2
P,S((0, T )× Ω;K)) and M ∈ L∞

S (Ω,FT ;L(H)).
Notice that the assumption on M is unchanged.

Under (A3′) the statement of the a priori estimate in Proposition 3.2 becomes
the following.

Proposition 5.2. Let (P,Q) be a mild solution to (5.1). Then there exists a
δ0 > 0 just depending on T and constants MC , ρ introduced in (A1)–(A2) such that
for every 0 ≤ δ ≤ δ0 the following holds:

(5.2) |P |2L2(Ω;C([T−δ,T ];L(H))) + E

∫ T

T−δ

|Q(s)|2K ds

≤ c

(
E|M |2L(H) + δ1−2ρ

E

∫ T

T−δ

|S(s)|2K ds

)
,

where c is a positive constant depending on δ0,MA,MC , ρ, and T .
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Proof. Let us reestimate (3.7). We have (by the Cauchy inequality)

E sup
t∈[r,T ]

∣∣∣∣∣
∫ T

t

e(s−t)AS(s)e(s−t)A ds

∣∣∣∣∣
2

L(H)

(5.3)

≤ E sup
t∈[r,T ]

(∫ T

t

(s− t)−2ρ ds

∫ T

t

|S(s)|2K ds

)

≤ (T − r)1−2ρ

∫ T

r

|S(s)|2K ds ∀t ∈ [T − δ, T ].

Therefore (3.9) becomes

E sup
u∈[T−δ,T ]

|P (u)|2L(H) ≤ C

(
|M |2L(H) + δ2E sup

u∈[T−δ,T ]

|P (u)|2L(H)

(5.4)

+ δ1−2ρ
E

∫ T

T−δ

|Q(s)|2K ds+ δ1−2ρ
E

∫ T

T−δ

|S(s)|2K ds

)
.

From which we deduce

E sup
u∈[T−δ,T ]

|P (u)|2L(H)(5.5)

≤ C

(
|M |2L(H) + δ1−2ρ

E

∫ T

T−δ

|Q(s)|2K ds+ δ1−2ρ
E

∫ T

T−δ

|S(s)|2K ds

)
.

Regarding the duality argument used to estimate E
∫ T

T−δ |Q(s)|2Kds, the only thing to
check is that (3.26) still holds:

∣∣∣∣∣E
∫ T

T−δ

〈Xn(s), JnS(s)Jn〉L2(H) ds

∣∣∣∣∣
(5.6)

=

∣∣∣∣∣∣E
∫ T

T−δ

∑
k≥1

〈Xn(s)ek, JnS(s)Jnek〉H ds

∣∣∣∣∣∣
≤
⎛⎝∫ T

T−δ

E

∑
k≥1

λ2ρ
k |Xn(s)ek|2 ds

⎞⎠1/2⎛⎝∫ T

T−δ

E

∑
k≥1

λ−2ρ
k |JnS(s)Jnek|2 ds

⎞⎠1/2

≤
(
δ

∫ T

T−δ

|Qn(s)|2K ds

)1/2
⎛⎝∫ T

T−δ

E

∑
k≥1

λ−2ρ
k |S(s)ek|2 ds

⎞⎠1/2

≤ δ1/2

(∫ T

T−δ

|Qn(s)|2K ds

)1/2(∫ T

T−δ

|S(s)|2K ds

)1/2

≤ 2δE

∫ T

T−δ

|S(s)|2L(H)ds+
1

8
E

∫ T

T−δ

|Qn(s)|2K ds.

Thus we again deduce (3.27), that together with (5.5) leads to the proof of (5.2).
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We also have the following theorem.
Theorem 5.3. Under assumptions (A1)–(A2)–(A3′), (5.1) has a unique mild

solution (P,Q).
Proof. The only thing to check is that the following still holds:

(5.7) lim
n,m→+∞E

∫ T

T−δ

|JnS(s)Jn − JmS(s)Jm|2K ds = 0.

Recalling that ek ∈ V , for every k ≥ 1, we have

(5.8) lim
n,m→+∞ |JnS(s)Jnek − JmS(s)Jmek|2K ds = 0 ∀k ≥ 1.

Moreover

(5.9) E

∫ T

T−δ

|JnS(s)Jn − JmS(s)Jm|2K ds ≤ 2E

∫ T

T−δ

|S(s)|2K ds.

Thus by the dominated convergence theorem we get that (5.7). The rest of the proof
follows then identically to Theorem 3.4.

Example 5.4. Notice that in the mentioned papers [6] and [7], H = L2([0, 1])
and the operator S(t) is the multiplication operator by an adapted stochastic random
field H : (Ω× [0, T ]× [0, 1]) → R, namely,

[S(t)e](ξ) = H(t, x)e(x) ∀e ∈ L∞([0, 1]) ∀x ∈ [0, 1] with E

∫ t

0

∫ 1

0

H(t, x)2dtdx

(notice that in thes case S(t) is not even defined on the whole H).
Moreover the infinitesimal generator A is the realization of the Laplacian in

L2([0, 1]) with Dirichlet boundary conditions.
Thus we have, choosing the basis, {em}m∈N, of eigenvectors of A:
(a) supm≥1 |em|L∞([0,1]) < ∞;
(b) S is self-adjoint and

|S(s)em|2 =

∫ 1

0

(H2(s, x)e2m(x) dx ≤ sup
m≥1

|em|2L∞([0,1])|H(s, ·)|L2([0,1]);

(c)

|S(s)|K =
∑
k≥1

∑
m≥1

λ−2ρ
m |〈S(s)ek, em〉L2([0,1])|2

=
∑
m≥1

λ−2ρ
m

∑
k≥1

|〈ek, S(s)em〉L2([0,1])|2

=
∑
m≥1

λ−2ρ
m |S(s)em|2L2([0,1])

≤ |H2(s, ·)|L2([0,1]) ·
∑
m≥1

λ−2ρ
m ≤ cost|H2(s, ·)|L2([0,1]);

and assumptions (A1), (A2), (A3′) hold.
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