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Abstract

In this paper we study by probabilistic techniques the convergence of the value function for a two-scale,

infinite-dimensional, stochastic controlled system as the ratio between the two evolution speeds diverges.

The value function is represented as the solution of a backward stochastic differential equation (BSDE)

that it is shown to converge towards a reduced BSDE. The noise is assumed to be additive both in the

slow and the fast equations for the state. Some non degeneracy condition on the slow equation is required.

The limit BSDE involves the solution of an ergodic BSDE and is itself interpreted as the value function

of an auxiliary stochastic control problem on a reduced state space.

1 Introduction

The purpose of this paper is to give a representation of the limit of the value functions of a sequence of

optimal control problems for a singularly perturbed infinite dimensional state equation. Namely we consider

the following system of controlled stochastic differential equations:{
dXε,α

t = AXε,α
t + b(Xε,α

t , Qε,αt , αt)dt +RdW1
t , X0 = x0,

εdQε,αt = (BQε,αt + F (Xε,α
t , Qε,αt )) dt+Gρ(αt)dt+ ε1/2GdW2

t , Q0 = q0,
(1.1)

where both state components Xε,α and Qε,α take values in a Hilbert space. In the above equation A and

B are unbounded linear operators, α represents the control, (W1
t )t≥0, (W2

t )t≥0 are infinite dimensional

cylindrical Wiener processes, b, F , ρ are functions and R and G are bounded linear operators satisfying

suitable assumptions. We notice that the presence of the constant ε in the second equation corresponds

to the fact that Q evolves with a speed which is larger by a factor 1/ε then the speed of evolution of the

component X. In other words the above equation is a good model for a so called two scale system. The
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optimal control problem is then completed by a standard cost functional of the form:

Jε(x0, q0, α) := E
(∫ 1

0
l(Xε,α

t , Qε,αt , αt)dt+ h(Xε,α
1 )

)
, (1.2)

and the value function is defined in the usual way:

V ε(x0, q0) := inf
α
Jε(x0, q0, α), (1.3)

where the infimum is extended over a suitable class of progressively measurable control processes (α).

Our purpose is to give a characterization of the limit of V ε(x0, q0) as ε (that is the ratio between the speed

of slow and the quick evolution) converges to 0.

Several authors have studied the convergence of singular stochastic control problems in finite dimensional

spaces, see for instance [2], [3], [18], [19], [21]. In particular [2] has been an inspiration for the present work.

In that paper the authors represent the value function of a singular stochastic control problem, in finite

dimensions, by the solution, in viscosity sense, of an Hamilton-Jacobi-Bellman equation. Then they show,

by PDE methods their convergence towards the solution, again in viscosity sense, of a reduced parabolic

PDE with smaller state space and a new nonlinearity usually called effective Hamiltonian. Such analysis

is performed in the case of periodic boundary conditions. Although PDE techniques perfectly fit the finite

dimensional case allowing to cover general situations (including state equations with control dependent

diffusions) they are not adaptable to this infinite dimensional case and consequently to the case of two scale

stochastic control problems for stochastic PDEs. Namely comparison of viscosity solution would require, in

infinite dimensional frameworks, additional assumptions such as a trace class noise and strong regularity of

solutions (see [11]) that would hold only in special situations and, in any case, woluld not allow to cover

our case where we consider cylidrical Wiener noises (see, as well, the discussion in the Introduction of [16]

about use of viscosity solutions in infinite dimensional control problems).

In this paper we choose a completely different approach based on Backward Stochastic Differential Equations,

BSDEs in short, (see [22], and [16] as a reference, respectively, for the finite and infinite dimensional case)

that has already proved to be well adapted to infinite dimensional extensions. This choice eventually allows

us to give a representation of the limit of V ε(x0, q0) (see (1.3)) in a general Hilbertian framework that

constitutes, at the best of our knowledge, the first result in this direction. Moreover our assumptions are

general enough to cover a pretty large class of two scale systems of controlled partial differential equations,

possibly driven by cylindrical Wiener processes (see, for instance, the system of controlled reaction diffusion

equations driven by space-time white noise in Example 6.6). As a counterpart we notice that we consider

state equation in which the control only affects the drift and in which the noise of the slow component is

assumed to be non-degenerate.

We try now to give a few more details on our method and results.

We will solve the control problem in the weak formulation, see [13]. This means, in particular, that the

Wiener process will not be fixed (still the formulation allows to fix a priori a filtration (Ft) and work

with a (Ft) Wiener process, (see Remark (6.3) and Section 6 here, in additon section 7 in [16] for further

considerations).

To start with we consider, for each ε > 0, the following uncontrolled forward-backward system:
dXt = AXt dt+RdW 1

t ,

εdQεt = (BQεt + F (Xt, Q
ε
t )) dt+ ε1/2GdW 2

t ,

−dY ε
t = ψ(Xt, Q

ε
t , Z

ε
t ,Ξ

ε
t/
√
ε) dt− Zεt dW 1

t − ΞεtdW
2
t ,

X0 = x0 Qε0 = q0, Y ε
1 = h(X1),

(1.4)
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where ψ will eventually be the Hamiltonian corresponding of the stochastic control problem:

ψ(x, p, z, ξ) = inf
α∈U
{l(x, q, α) + z[R−1b(x, q, α)] + ξρ(α)}.

Then, once we have a solution (X,Qε, Y ε, Zε) to system (1.4), we exploit the well known identification

between Y ε
0 and V ε(x0, q0) (see [10] or [16]) in order to study the limit of the value functions by the limit

of the sequence Y ε
0 as ε→ 0. Our main result is indeed stated in terms of Y ε, that is, see Theorem 5.4, we

prove that:

Y ε
0 → Ȳ0, P− a.s.

where (X, Ȳ , Z̄) is the unique solution of the following decoupled forward backward system of stochastic

differential equations: 
dXt = AXt dt+RdW 1

t ,

−dȲt = λ(Xt, Z̄t) dt− Z̄t dW
1
t ,

X0 = x0, Ȳ1 = h(X1).

The statement of the above mentioned result is formulated and proved in Section 5 as a general result on

singular limits of BSDEs since it is independent of its control theoretic interpretation and, we believe, the

proving argument has some interest on its own. It is worth mentioning that the ‘reduced nonlinearity’ λ is

itself a component of the unique solution (Y̌ , Ž, λ) of the parametrized version of a, so called, Ergodic BSDE

(see (4.1) and Theorem 4.2) similar to the ones introduced in [15] (see [9] and [20] as well). Function λ can

also be interpreted as the optimal cost of an ergodic optimal control problem, see Remark 6.5. Moreover,

as it happens in the finite dimensional case, the space in which the above reduced forward-backward system

lives is a subspace of the original one (corresponding to the slow evolution alone).

As a by-product of our main result, using the Bismut Elworthy formula in [17] we immediately get that the

solution of the reduced BSDE, and therefore the limit value function, depends on x0 in a differentiable way

and is linked to the unique mild solution of a semilinear parabolic PDE in infinite dimensional spaces:
∂v(t, x)

∂t
+

1

2
Tr[RR∗∇2

xv(t, x)] + 〈Ax,∇v(t, x)〉 = λ(x,∇v(t, x)R), t ∈ [0, 1], x ∈ H,
v(1, x) = h(x).

Finally, in the last section, exploiting the concavity of λ we give a representation of Ȳt as the value function

of an auxiliary stochastic control problem on a reduced state space.

The paper is organized in the following way. In Section 2 we set the notation and we introduce some

functional spaces while Section 3 contains some estimates on the two scale state equation that will be useful

in the paper. In Section 4 we introduce parametrized ergodic BSDEs and study their regularity with respect

to parameters. In Section 5 we state the form of the limit equations and prove a convergence result for

BSDEs that represents the main technical issue of this paper. In Section 6, we finally link our results to the

stochastic singular control problem. Finally, in section 7 we interpret the solution of the reduced BSDE in

terms of a stochastic optimal control problem.

2 Notation

Given a Banach space E, the norm of its elements x will be denoted by |x|E , or even by |x| when no confusion

is possible. If F is another Banach space, L(E,F ) denotes the space of bounded linear operators from E to

F , endowed with the usual operator norm. When F = R the dual space L(E,R) will be denoted by E∗. The

letters Ξ, H and K will always be used to denote Hilbert spaces. The scalar product is denoted 〈·, ·〉, equipped
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with a subscript to specify the space, if necessary. All Hilbert spaces are assumed to be real and separable

and the dual of a Hilbert space will never be identified with the space itself. By L2(Ξ, H) and L2(Ξ,K)

we denote the spaces of Hilbert-Schmidt operators from Ξ to H and to K, respectively. Finally G(K,H)

is the space of all Gateaux differentiable mappings φ from K to H such that the map (k, v) → ∇φ(k)v is

continuous from K ×K to H; see [16] for details.

Let W 1 = (W 1
t )t≥0 and W 2 = (W 2

t )t≥0 be two independent cylindrical Wiener processes with values in Ξ,

defined on a complete probability space (Ω,F ,P). By {Ft, t ∈ [0, T ]} we will denote the natural filtration of

(W 1,W 2), augmented with the family N of P- null sets of F . Obviously, the filtration (Ft) satisfies the usual

conditions of right-continuity and completeness. All the concepts of measurability for stochastic processes

will refer to this filtration. By P we denote σ-algebra of progressive measurable sets on Ω × [0, T ] and by

B(Λ) the Borel σ-algebra of any topological space Λ.

Next we define the following two classes of stochastic processes with values in a Hilbert space V . Given an

arbitrary time horizon T and constant p ≥ 1:

• LpP(Ω× [0, T ];V ) denotes the space of equivalence classes of processes Y ∈ Lp(Ω× [0, T ];V ) admitting

a predictable version. It is endowed with the norm

|Y | =
(
E
∫ T

0
|Ys|p ds

)1/p
.

• Lp,locP (Ω × [0,+∞[;V ) denotes the set of processes defined on R+ such that their restriction to an

arbitrary [0, T ] belongs to LpP(Ω× [0, T ];V ).

• LpP(Ω;C([0, T ];V )) denotes the space of predictable processes Y with continuous paths in V , such that

the norm

‖Y ‖p = (E sup
s∈[0,T ]

|Ys|p)1/p

is finite. The elements of LpP(Ω;C([0, T ];V )) are identified up to indistinguishability.

• Lp,locP (Ω;C[0,+∞[;V )) denotes the set of processes defined on R+ such that their restriction to an

arbitrary [0, T ] belongs to LpP(Ω;C([0, T ];V )).

Given Φ in L2
P(Ω × [0, T ];L2(Ξ, V )), the Itô stochastic integrals

∫ t
0 Φs dW

1
s and

∫ t
0 Φs dW

2
s , t ∈ [0, T ], are

V -valued martingales belonging to L2
P(Ω;C([0, T ];V )).

3 The forward system

For arbitrarily fixed x0 ∈ H and q0 ∈ K we consider the following system of stochastic differential equations

in H ×K: 
dXt = AXtdt+RdW 1

t , X0 = x0, t ≥ 0,

εdQεt = (BQεt + F (Xt, Q
ε
t )) dt+ ε1/2GdW 2

t , Qε0 = q0, t ≥ 0,

(3.1)

where the “slow” variable X takes its values in H and the “fast” variable Qε takes its values in K, ε ∈]0, 1]

is a small parameter.

Finally A : D(A) ⊂ H → H and B : D(B) ⊂ K → K are unbounded linear operators generating C0-

semigroups {etA}t≥0 and {etB}t≥0 over H and K, respectively, while R and G are linear bounded operators

from Ξ to H (respectively to K).

Moreover, we make the following, standard assumptions:
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Hypothesis 3.1 A : D(A) ⊂ H → H is a linear, unbounded operator that generates a C0- semigroup

{etA}t≥0, such that |etA|L(H,H) ≤ MAe
ωAt, t ≥ 0 for some positive constants MA and ωA. B : D(B) ⊂

K → K is a linear, unbounded operator that generates a C0- semigroup {etB}t≥0 such that |etB|L(K,K) ≤
MBe

ωBt, t ≥ 0 for some MB, ωB > 0.

Moreover there exist constants L > 0 and γ ∈ [0, 1
2 [ s.t.:

|esA|L2(Ξ,H) + |esB|L2(Ξ,K) ≤ Ls−γ , ∀s ∈ [0, 1].

Hypothesis 3.2 F : H ×K → K is bounded and there exists a constant LF for which:

|F (x, y)− F (u, v)|K ≤ LF (|x− u|H + |y − v|K).

for every x, u ∈ H, y, v ∈ K.

Moreover we assume that for every x ∈ H, F (x, ·) is Gateaux differentiable, more precisely, F (x, ·) ∈
G1(K,K).

Hypothesis 3.3 B + F is dissipative i.e. there exists some µ > 0 such that:

〈Bq + F (x, q)− (Bq′ + F (x, q′)), q − q′〉 ≤ −µ|q − q′|2,

for all x ∈ H, q, q′ ∈ D(B).

Remark 3.4 The above dissipativity assumption is needed in Section 4 to apply the techniques in [15] when

dealing with an ergodic control problem for the quick evolution (e.g. the second equation in 3.1). As far as

the ergodic control problems is considered such hypothesis can be relaxed when the diffusion operator G is

assumed to be invertible, see [9]. We choose here to stick to the stronger form because, on the one side, we

think it is important to cover the case of degenerate noise in the quick evolution (that can not, for instance,

be covered, even in the finite dimensional case, in [2]) and, on the other side, strong results like the uniform

exponential decay in Lemma 3.10, following from the strong formulation, seem to be technically very helpful

here.

Hypothesis 3.5 R ∈ L(Ξ;H), G ∈ L(Ξ;K).

Remark 3.6 When we will apply our results to a two scale control problem, see Section 6, we will have to

impose invertibility of R (instead of a standard and weaker ‘structure condition’ on the image of the control

operator, see, for instance [16]). This is indeed an unpleasant technical assumption needed to simplify the

structure of the slow evolution after Girsanov transform.

Given any cylindrical Wiener process (βt)t≥0 with values in Ξ we denote by (βBt )t≥0 the stochastic convolution

βBs =

∫ s

0
e(s−`)BGdβ`.

In the following we shall assume, as in [15], that:

Hypothesis 3.7 sups>0 E|βBs |2 <∞.

Remark 3.8 Notice that since (βt) is a centered Gaussian process this implies that, ∀p ≥ 1 it holds

sups>0 E|βBs |p <∞. Moreover hypothesis 3.7 is verified whenever B is a strongly dissipative operator.

We collect here two results we will use in the sequel. We do not provide the proof of the first, that can be

found for instance in [16, Proposition 3.2]. Regarding the second result, for the reader’s convenience, we

briefly report the argument which is a slight modification of the one in [8, Section 6.3.2.].
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Lemma 3.9 Under Hypothesis 3.1 and 3.5 the slow equation in system (3.1) admits a unique mild solution

Xx0
t that has continuous trajectories and for all p ≥ 1 satisfies:

E( sup
t∈[0,1]

|Xx0
t |p) ≤ cp(1 + |x0|p), x0 ∈ H, (3.2)

for some positive constant cp depending only on p and on the quantities introduced in the hypotheses.

Lemma 3.10 Let (Γs)s≥0 be a given, H-valued, predictable process with Γ ∈ Lp,locP (Ω × [0,∞[;H) and let

(gs)s≥0 be a given, K-valued, process with g ∈ Lp,locP (Ω× [0,+∞[;K) for some p ≥ 1.

Then the following equation:

dQs = (BQs + F (Γs, Qs)) ds+ gsds+Gdβs, s ≥ 0, Q0 = q0, (3.3)

admits a unique mild solution Q ∈ Lp,locP (Ω;C([0,+∞[;K)).

Under hypotheses (3.1)–(3.7), there exists a constant kp (independent of T ) such that for all T > 0:

sup
s∈[0,T ]

E|Qs|p ≤ kp(1 + |q0|p + sup
s∈[0,T ]

E|Γs|p + sup
s∈[0,T ]

E|βBs |p + sup
s∈[0,T ]

E|gs|p). (3.4)

Moreover if (Γ′s)s≥0 is another H-valued, predictable processes in Lp,locP (Ω × [0,∞[;H) and Q′ is the mild

solution of equation:

dQ′s = (BQ′s + F (Γ′s, Q
′
s)) ds+ gsds+Gdβs, s ≥ 0, Q0 = q0,

then, for all T > 0,

|QT −Q′T | ≤ K
∫ T

0
e−µ(T−`)|Γ` − Γ′`| d`, P-a.s.,

where again K does not depend on T .

Proof. Let Zs = eµs(Qs − βBs ). By Itô rule (going through Yosida approximations) we deduce that Z is

the mild solution of the following equation

dZs = µZs ds+BZs ds+ eµsF (Γs, e
−µsZs + βBs ))ds+ eµsgsds.

Differentiating
√
|Zs|2 + ε (going, once more, through Yosida approximations), using dissipativity of B+F ,

see hypothesis 3.3, we obtain

|Zs| ≤
√
|Zs|2 + ε ≤

√
q2

0 + ε+

∫ s

0
eµ`
∣∣F (Γ`, β

B
` ) + g`

∣∣ d`+ µ

∫ s

0

[√
|Z`|2 + ε− |Z`|

]
d`.

Letting ε→ 0, by dominated convergence we obtain:

|Zs| ≤ |q0|+
∫ s

0
eµ`
∣∣F (Γ`, β

B
` ) + g`

∣∣ d`.
Recalling the definition of Z we conclude:

|Qs| ≤ |βBs |+ e−µt|q0|+
∫ s

0
e−µ(s−`) ∣∣F (Γ`, β

B
` ) + g`

∣∣ d`,
and by Hölder inequality (for the last term):

|Qs|p ≤ 3p|βBs |p + 3pe−pµt|q0|p + 3p
(∫ s

0
e−p

∗ µ
2

(s−`)d`

)p/p∗ ∫ s

0
e−p

µ
2

(s−`)|F (Γ`, β
B
` ) + g`|pd`.
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The claim then follows from Hypothesis 3.2.

The proof of the last statement is similar (and easier) noticing that:

ds(Qs −Q′s) = B(Qs −Q′s)ds+ [F (Γs, Qs)− F (Γ′s, Q
′
s)]ds,

and then arguing as before.

If we fix x ∈ H, q0 ∈ K, choose g ≡ 0 and make a change of time s→ εs, then the fast equation in system

(3.1) becomes

dQ̂s = (BQ̂s + F (x, Q̂s)) ds+GdŴ 2
s , s ≥ 0, Q̂0 = q0. (3.5)

where Ŵ 2
s = ε−1/2W 2

εs is a cylindrical Wiener process. So (3.5) is a special case of (3.3), and Lemma 3.10

applies.

We will denote by Q̂x,q0s the unique mild solution of equation (3.5).

4 The ergodic BDSE parametrized

We introduce a function ψ : H × K × Ξ∗ × Ξ∗ → R. We will eventually (see Section 6) choose as ψ the

Hamiltonian of our control problem. Here we only assume that ψ satisfies the following:

Hypothesis 4.1 Function ψ is measurable and there exist Lq, Lx, Lz, Lξ > 0 such that ∀ q, q′ ∈ K, x, x′ ∈ H,

ξ, ξ′, z, z′ ∈ Ξ∗:

|ψ(x, q, z, ξ) − ψ(x′, q′, z′, ξ′)| ≤ Lx(1 + |z|)|x − x′| + Lz|z − z′| + Lq(1 + |z|)|q − q′| + Lξ|ξ − ξ′|.

Moreover we assume that supx∈H,q∈K |ψ(x, q, 0, 0)| < +∞

The next result states existence of a solution to the so called ergodic backward stochastic differential equation

(EBSDE):

−dY̌t = [ψ(x, Q̂x,q0 , z, Ξ̌t)− λ(x, z)] dt− Ξ̌tdŴ
2
t , ∀ t ≥ s. (4.1)

Theorem 4.2 Under hypotheses 3.1, 3.2, 3.3, 3.5, 3.7 and 4.1 there exist measurable functions v̌ : H ×
K × Ξ∗ → R, ζ̌ : H ×K × Ξ∗ → R, λ : H × Ξ∗ → R such that:

1. for all fixed x and z, v̌ is Lipschitz with respect to q and verifies:

|v̌(x, q, z)| ≤ c(1 + |z|)|q|, (4.2)

(c > 0 depends only on the constants introduced in the above mentioned hypotheses) .

2. if we set

Y̌ x,q0,z
t = v̌(x, Q̂x,q0t , z), Ξ̌x,q0,zt = ζ̌(x, Q̂x,q0t , z), (4.3)

then Ξ̌x,q0,z ∈ L2,loc
P ([0,+∞[,Ξ∗) and the EBSDE (4.1) is satisfied by the triplet (Y̌ x,q,z

t , Ξ̌x,q,z, λ(x, z))

that is:

Y̌t = Y̌T +

∫ T

t
[ψ(x, Q̂x,q0s , z, Ξ̌s)− λ(x, z)] ds−

∫ T

t
Ξ̌sdŴ

2
s , P− a.s. for all t ≤ T.

3. it holds:

|λ(x, z)− λ(x′, z′)| ≤ L1
x(1 + |z|)|x− x′|+ L1

z|z − z′|, (4.4)

for some posive constants L1
x and L1

z.
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Proof. Fix x ∈ H and z ∈ Ξ∗. In [15, Theorem 4.4 and Corollary 5.9] authors prove existence of functions

v̌(x, · , z), ζ̌(x, · , z) and λ(x, z) such that (4.2) holds and if (Y̌ x,q0,z, Ξ̌x,q0,z) are defined as in (4.3), then Ξ̌x,q0,z

is in L2,loc
P ([0,+∞[,Ξ∗) and the triplet (Y̌ x,q0,z

t , Ξ̌x,q0,z, λ(x, z)) is a solution to equation (4.1).

Measurably of v̌, ζ̌ and λ with respect to all parameters follows by their construction (see again [15] Theorem

4.4).

We only need to prove (4.4). Fixed x, x′ ∈ H and z, z′ ∈ Ξ∗ we set λ̃ = λ(x, z)−λ(x′, z′), Ỹ = Y x,0,z−Y x′,0,z′ ,

Ξ̃ = Ξ̌x,0,z − Ξ̌x
′,0,z′ ,

θt =


ψ(x, Q̂x,0r , z, Ξ̌x,0,zr )− ψ(x, Q̂x,0r , z, Ξ̌x

′,0,z′
r )

|Ξ̌x,0,zr − Ξ̌x
′,0,z′
r |2Ξ∗

(Ξ̌x,0,zr − Ξ̌x
′,0,z′
r ), if Ξ̌x,0,zr 6= Ξ̌x

′,0,z′
r

0 otherwise

and

ft = ψ(x, Q̂x,0r , z, Ξ̌x
′,0,z′
r )− ψ(x′, Q̂x

′,0
r , z′, Ξ̌x

′,0,z′
r ).

Then we have

Ỹ0 + λ̃T = ỸT +

∫ T

t
fr dr −

∫ T

t
Ξ̃r(θtdt+ dŴ 2

r ), ∀T ≥ t ≥ 0.

So, by Girsanov theorem (notice that (θt) is uniformly bounded), there exists a probability P̃ (mean value

denoted by Ẽ) such that W̃t =
∫ t

0 θ`d`+ Ŵ 2
t , t ≥ 0, is a cylindrical Wiener process. Consequently:

λ̃T = ỸT − Ỹ0 +

∫ T

0
fr dr −

∫ T

0
Ξ̃rdW̃r, ∀T ≥ t ≥ 0

and consequently:

|λ̃| ≤ T−1|Ỹ0|+ T−1Ẽ|ỸT |+ T−1

∫ T

0
Ẽ|fs|ds. (4.5)

Thanks to hypothesis 4.1 we get that for all t ≥ 0:

|ft| ≤ Lx(1 + |z|)|x− x′|+ Lz|z − z′|+ Lq(1 + |z|)|Q̂x,0t − Q̂
x′,0
t |, P− a.s.

We notice that with respect to (W̃t) processes Q̂x,0 and Q̂x
′,0 satisfy respectively

dQ̂x,0s = (BQ̂x,0s + F (x, Q̂x,0s )) ds+ θsds+GdW̃s, s ≥ 0,

dQ̂x
′,0
s = (BQ̂x

′,0
s + F (x′, Q̂x

′,0
s )) ds+ θsds+GdW̃s, s ≥ 0,

and Lemma 3.10 yields |Q̂x,0s − Q̂x
′,0
s | ≤ (K/µ)|x− x′| thus:

|ft| ≤ (Lx + LqK/µ)(1 + |z|)|x− x′|+ Lz|z − z′|, P− a.s. for all t ≥ 0. (4.6)

From Lemma 3.10 we also have that for every T ≥ 0 and every p ≥ 1,

sup
s∈[0,T ]

Ẽ|Q̂x,0s |p ≤ kp(1 + |x|p + sup
s∈[0,T ]

Ẽ|θs|p), (4.7)

and

sup
s∈[0,T ]

Ẽ|Q̂x′,0s |p ≤ kp(1 + |x|p + sup
s∈[0,T ]

Ẽ|θs|p). (4.8)

8



Since θ is uniformly bounded it holds:

sup
t∈[0,∞[

Ẽ(|Q̂x,0t |p + |Q̂x,0t |p) <∞,

thus, by (4.2), we get that:

sup
t∈[0,∞[

Ẽ(|Ỹt|) <∞.

Consequently T−1Ẽ(|ỸT |)→ 0 as T →∞ and the claim follows by (4.5) and (4.6) letting T →∞.

Remark 4.3 If, fixed x and z, one restricts the class of triples (Y,Ξ, λ) where to find a solution to equation

(4.1), asking that there must be a constant c > 0 (that may depend on q0, x and z) such that |Yt| ≤ c(1+ |Qt|)
P-a.s. for every t ≥ 0 then, see [15, Theorem 4.6], the third component λ of the solution is uniquely

determined.

5 Limit equation and convergence of singular BSDEs

We’ve eventually got to the forward-backward system for t ∈ [0, 1]
dXt = AXt dt+RdW 1

t ,

εdQεt = (BQεt + F (Xt, Q
ε
t )) dt+ ε1/2GdW 2

t ,

−dY ε
t = ψ(Xt, Q

ε
t , Z

ε
t ,Ξ

ε
t/
√
ε) dt− Zεt dW 1

t − ΞεtdW
2
t ,

X0 = x0 Qε0 = q0, Y ε
1 = h(X1),

(5.1)

that, as we will see in the sequel, is also associated to a controlled multiscale dynamics. Function h : H → R
satisfies:

Hypothesis 5.1 h is Lipschitz continuous with constant L > 0.

We have that:

Theorem 5.2 Assume 3.1–3.7, 4.1 and 5.1.

For every ε > 0 there exists a unique 5-tuple of processes (X,Qε, Y ε, Zε,Ξε), with X ∈ L2
P(Ω;C([0, 1];H)),

Qε ∈ L2
P(Ω;C([0, 1];K)), Y ε ∈ L2

P(Ω;C([0, 1];R)), Zε ∈ L2
P(Ω × [0, 1]; Ξ∗) and Ξε ∈ L2

P(Ω × [0, 1]; Ξ∗) such

that P− a.s. the system (5.1) is satisfied for all t ∈ [0, 1].

Proof. The proof is contained in [16, Propositions 3.2 and 5.2], we just notice that the system is decoupled,

so once the forward equation is solved then it becomes a known process in the backward equation.

The purpose of our work is to study the limit behaviour of Y ε as ε tends to 0.

We introduce the candidate limit equation, that turns out to be a forward-backward system on the finite

horizon [0, 1] and on the reduced state space H.
dXt = AXt dt+RdW 1

t , t ∈ [0, 1],

−dȲt = λ(Xt, Z̄t) dt− Z̄t dW
1
t ,

X0 = x0, Ȳ1 = h(X1).

(5.2)

where λ is defined in Theorem 4.2.

One has that
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Theorem 5.3 Under Hypothesis 3.1—3.7, 4.1 and 5.1, there exists a unique triplet of processes (X, Ȳ , Z̄)

with X∈ LpP(Ω;C([0, 1];H)), Ȳ ∈ LpP(Ω;C([0, 1];R)), Z̄∈ LpP(Ω×[0, 1]; Ξ∗) that fullfils system (5.2), P−a.s.
for every t ∈ [0, 1].

Proof. Thank to the regularity of λ, see (4.4), the proof of existence and uniqueness of the solution to

equation (5.2) is standard (see, for instance [16, Proposition 4.3]).

We can now state our main result:

Theorem 5.4 Under Hypothesis 3.1—3.7, 4.1 and 5.1, the following holds for Ȳ and Y ε found in Theorem

5.2 and Theorem 5.3 respectively:

lim
ε→0

Y ε
0 = Ȳ0. (5.3)

Proof. We start by noticing that if we slow down time, that is, for s ∈ [0, 1/ε[ we set: Q̂εs = Qεεs, Ŷ
ε
s = Y ε

εs,

Ξ̂εs = ε−1/2Ξεεs then the last two equations in (5.1) becomes:
dQ̂εs = (BQ̂εs + F (Xεs, Q̂

ε
s) dt+ GdŴ 2

s ,

−dŶ ε
s = ψ(Xεs, Q̂

ε
s, Z

ε
εs, Ξ̂

ε
s) dt−

√
εZεεsd Ŵ

1
s − Ξ̂εsdŴ

2
s ,

X0 = x0 Q̂ε0 = q0, Ŷ ε
1/ε = h(X1).

(5.4)

where Ŵ `
s = ε−1/2W `

εs, ` = 1, 2. We will often make use of this change of time in the proof.

We must compare:

Y ε
0 − Ȳ0 =

∫ 1

0
(ψ(Xt, Q

ε
t , Z

ε
t ,Ξ

ε
t/
√
ε)− λ(Xt, Z̄t)) dt−

∫ 1

0
(Zεt − Z̄t) dW 1

t −
∫ 1

0
Ξεt dW

2
t .

By adding and subtracting we split the first integral on the right hand side as:∫ 1

0
(ψ(Xt, Q

ε
t , Z

ε
t ,Ξ

ε
t/
√
ε)− λ(Xt, Z̄t)) dt =

∫ 1

0
(ψ(Xt, Q

ε
t , Z

ε
t ,Ξ

ε
t/
√
ε)− ψ(Xt, Q

ε
t , Z̄t,Ξ

ε
t/
√
ε)) dt

+

∫ 1

0
(ψ(Xt, Q

ε
t , Z̄t,Ξ

ε
t/
√
ε)− λ(Xt, Z̄t)) dt. (5.5)

We have to use a discretization argument to cope with the second member of the sum.

Let us now introduce for every N positive integer, a partition of the interval [0, 1] of the form tk = k2−N , k =

0, 1, . . . , 2N and define a couple of step processes XN and Z̃N defined as follows:

XN
t = Xtk , t ∈ [tk, tk+1[, k = 0, . . . 2N − 1, (5.6)

Z̃Nt = 2N
∫ tk

tk−1

Z̄` d`, for t ∈ [tk, tk+1[, k = 1, . . . 2N − 1, Z̃t = 0 for t ∈ [0, t1[, (5.7)

where X, Z̄ are part of the solution of (5.2). By construction one has that:

lim
N→∞

E
∫ 1

0
|Z̃Nt − Z̄t|2 dt = 0. (5.8)

We fix N , then for k = 0, 1, . . . , 2N − 1 we consider the following, iteratively defined, class of forward SDE:

dQ̂N,ks = (BQ̂N,ks + F (Xtk , Q̂
N,k
s )) ds+GdŴ 2

s , s ≥ tk/ε, Q̂N,ktk/ε
= Q̂N,k−1

tk/ε
, (5.9)

Moreover we define (see Theorem 4.2):

Y̌ N,k
s = v̌(Xtk , Q̂

N,k
s , Z̃Ntk ), Ξ̌N,ks = ζ̌(Xtk , Q̂

N,k
s , Z̃Ntk ), for s ≥ tk/ε,
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so that the triplet ((Y̌ N,k
s )s≥tk/ε , λ(Xtk , Z̃

N
tk

), (Ξ̌N,ks )s≥tk/ε) verifies:

−dY̌ N,k
s = [ψ(Xtk , Q̂

N,k
s , Z̃Ntk , Ξ̌

N,k
s )− λ(Xtk , Z̃

N
tk

)] ds− Ξ̌N,ks dŴ 2
s , for all s ≥ tk/ε, (5.10)

and

|Y̌ N,k
s | ≤ c(1 + |Z̃Ntk |)|Q̂

N,k
s |, for all s ≥ tk/ε, (5.11)

for some positive constant c > 0 independent of k and N .

We also set for s ∈ [0, 1/ε[:

Q̂Ns =
2N−1∑
k=0

Q̂N,ks I[tk/ε,tk+1/ε[(s), Ξ̌Ns =
2N−1∑
k=0

Ξ̌N,ks I[tk/ε,tk+1/ε[(s), (5.12)

so that, for all N ∈ N and k = 0, ..., 2N − 1 have:

Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
−
∫ tk+1/ε

tk/ε
[ψ(XN

εs , Q̂Ns , Z̃Nεs , Ξ̌Ns )− λ(XN
εs , Z̃

N
εs)] ds+

∫ tk+1/ε

tk/ε
Ξ̌Ns dŴ

2
s = 0. (5.13)

The second integral in the right hand side of (5.5) can be written as:∫ 1

0
(ψ(Xt, Q

ε
t , Z̄t,Ξ

ε
t/
√
ε)− λ(Xt, Z̄t) dt = ε

2N−1∑
k=0

∫ tk+1/ε

tk/ε
[ψ(Xεs, Q̂

ε
s, Z̄εs, Ξ̂

ε
s)− λ(Xεs, Z̄εs)] ds,

and, adding the null terms in (5.13) for k = 1, ..., 2N , as:

∫ 1

0
(ψ(Xt, Q

ε
t , Z̄t,Ξ

ε
t/
√
ε)− λ(Xt, Z̄t)) dt = ε

2N−1∑
k=1

(Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
) (5.14)

+ ε
2N−1∑
k=0

∫ tk+1/ε

tk/ε
[ψ(Xεs, Q̂

ε
s, Z̄εs, Ξ̂

ε
s)− ψ(XN

εs , Q̂Ns , Z̃Nεs , Ξ̌Ns )] ds

+ ε
2N−1∑
k=0

∫ tk+1/ε

tk/ε
Ξ̌Ns dŴ

2
s − ε

2N−1∑
k=0

∫ tk+1/ε

tk/ε
[λ(Xεs, Z̄εs)− λ(XN

εs , Z̃
N
εs)] ds.

Therefore coming back to our original term Y ε
0 − Ȳ0 we have, taking into account (5.5):

Y ε
0 − Ȳ0 = ε

2N−1∑
k=1

(Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
) + ε

∫ 1/ε

0

[
ψ(Xεs, Q̂

ε
s, Z

ε
εs, Ξ̂

ε
s)− ψ(Xεs, Q̂

ε
s, Z̄εs, Ξ̂

ε
s)
]
ds

+ ε

∫ 1/ε

0
[ψ(Xεs, Q̂

ε
s, Z̄εs, Ξ̂

ε
s)− ψ(XN

εs , Q̂Ns , Z̃Nεs , Ξ̌Ns )] ds− ε
∫ 1/ε

0
[λ(Xεs, Z̄εs)− λ(XN

εs , Z̃
N
εs)] ds

−
√
ε

∫ 1/ε

0
(Zεεs − Z̄εs)dŴ 1

s − ε
∫ 1/ε

0
(Ξ̂εs − Ξ̌Ns )dŴ 2

s .

Notice that we can rewrite this difference as follows:

Y ε
0 − Ȳ0 = ε

∫ 1/ε

0
Rε,Ns ds+ ε

2N−1∑
k=1

(Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
)− ε

∫ 1/ε

0
[λ(Xεs, Z̄εs)− λ(XN

εs , Z̃
N
εs)] ds

+ ε

∫ 1/ε

0
[ψ(Xεs, Q̂

ε
s, Z

ε
εs, Ξ̂

ε
s)− ψ(Xεs, Q̂

ε
s, Z̄εs, Ξ̂

ε
s)] ds

+ ε

∫ 1/ε

0
[ψ(XN

εs , Q̂Ns , Z̃Nεs , Ξ̂εs)− ψ(XN
εs , Q̂Ns , Z̃Nεs , Ξ̌Ns )] ds

− ε
∫ 1/ε

0
(Ξ̌Ns − Ξ̂εs) dŴ

2
s −
√
ε

∫ 1/ε

0
(Zεεs − Z̄εs) dŴ 1

s ,

(5.15)
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where Rε,Ns := ψ(Xεs, Q̂
ε
s, Z̄εs, Ξ̂

ε
s) − ψ(XN

εs , Q̂Ns , Z̃Nεs , Ξ̂εs). Then by Hypothesis 4.1 we deduce that for a

suitable constant c, independent from ε and N , the following holds:

|Rε,Ns | ≤ c(1 + |Z̄εs|)|Xεs −XN
εs |+ c(1 + |Z̄εs|)|Q̂εs − Q̂Ns |+ c|Z̄εs − Z̃Nεs |. (5.16)

The presence of the two stochastic terms in (5.15) allows us to get rid of the third and fourth term on the

right hand side by a Girsanov argument, namely we introduce:

δ1,ε(s) =


[ψ(Xεt, Q̂

ε
s, Z

ε
εs, Ξ̂

ε
s)− ψ(Xεs, Q̂

ε
s, Z̄εs, Ξ̂

ε
s)]

|Zεεs − Z̄εs|2
(Zεεs − Z̄εs)∗ if |Zεεs − Z̄εs| 6= 0,

0 if |Zεεs − Z̄εs| = 0,

(5.17)

and

δ2,ε,N (s) =


ψ(XN

εs , Q̂Ns , Z̃Nεs , Ξ̂εs)− ψ(XN
εs , Q̂Ns , Z̃Nεs , Ξ̌Ns )

|Ξ̂εs − Ξ̌Ns |2
(Ξ̂εs − Ξ̌Ns )∗ if |Ξ̂εs − Ξ̌Ns | 6= 0,

0 if |Ξ̂εs − Ξ̌Ns | = 0.

(5.18)

We notice that processes (δ1,ε(s))s∈[0,1/ε] and (δ2,ε,N (s))s∈[0,1/ε] are bounded uniformly by Lz and Lξ respec-

tively, see Hypothesis 4.1. We have:

Y ε
0 − Ȳ0 = ε

∫ 1/ε

0
δ1,ε(s)[Zεεs − Z̄εs] ds− ε

∫ 1/ε

0
δ2,ε,N (s)[Ξ̌Ns − Ξ̂εs] ds

+ ε

∫ 1/ε

0
(Ξ̌Ns − Ξ̂εs) dŴ

2
s +
√
ε

∫ 1/ε

0
(Zεεs − Z̄εs) dŴ 1

s

+ ε

∫ 1/ε

0
Rε,Ns ds+ ε

2N−1∑
k=1

(Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
).

and rescaling time (speeding it up this time)

Y ε
0 − Ȳ0 =

∫ 1

0
δ1,ε(t/ε)[Zεt − Z̄t] dt+

∫ 1

0
δ2,ε,N (t/ε)[Ξ̌Nε−1t − Ξ̌εε−1t] dt

+
√
ε

∫ 1

0
(Ξ̌Nε−1t − Ξ̌εε−1t) dW

2
t +

∫ 1

0
(Zεt − Z̄t) dW 1

t

+

∫ 1

0
Rε,N
ε−1t

dt+ ε
2N−1∑
k=1

(Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
).

We set, for t ∈ [0, 1]:

W̃ 1
t =:

∫ t

0
δ1,ε(r/ε) dr +W 1

t , (5.19)

W̃ 2
t =: ε−1/2

∫ t

0
δ2,ε,N (r/ε) dr +W 2

t . (5.20)

We denote by Ẽε the expectation under the new probability P̃ε with respect to which (W̃ 1
t , W̃

2
t )t∈[0,1] is a

H ×K valued cylindrical Wiener process (recall that (W 1
t ,W

2
t )t∈[0,1] is a H ×K valued cylindrical Wiener

process). Since the left hand side is deterministic, we have:

Y ε
0 − Ȳ0 = Ẽε

∫ 1

0
Rε,Nt/ε dt+ εẼε

2N−1∑
k=1

[Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
]. (5.21)
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Moreover, taking into account (5.16), it holds:

Ẽε
∫ 1

0
|Rε,Nt/ε | dt ≤ cẼ

ε

∫ 1

0

(
(1 + |Z̄t|)|Xt −XN

t |+ (1 + |Z̄t|)|Q̂εt/ε − Q̂
N
t/ε|+ |Z̄t − Z̃

N
t |
)
dt.

Let us start from

Ẽε
∫ 1

0
(1 + |Z̄t|)|Xt −XN

t |dt.

We notice that, with respect to W̃ 1 we have:
dXt = AXt dt−Rδ1,ε(t/ε)dt+RdW̃ 1

t ,

−dȲt = λ(Xt, Z̄t) dt− Z̄t[−δ1,ε(t/ε)dt+ dW̃ 1
t ],

Ȳ1 = h(X1), X0 = x0.

Define:

ρ := exp

(∫ 1

0
δ1,ε(s/ε) dW̃ 1

s −
1

2

∫ 1

0
|δ1,ε(s/ε)|2 ds

)
,

then, byHölder inequality, setting ∆X,N := supt∈[0,1] |Xt −XN
t | it holds:

Ẽε
∫ 1

0
(1 + |Z̄t|)|Xt −XN

t |dt ≤ Ẽε
[
∆X,N

∫ 1

0
(1 + |Z̄t|)dt

]
≤ Ẽε

[
ρ−3/4(ρ1/4∆X,N )ρ1/2

∫ 1

0
(1 + |Z̄t|)dt

]
≤
[
Ẽερ−3

]1/4 [
Ẽε(ρ∆4

X,N )
]1/4

[
Ẽε
(
ρ

∫ 1

0
(1 + |Z̄t|2)dt

)]1/2

.

Again by Girsanov the process
(
−
∫ t

0 δ
1(t/ε)dt+ W̃ 1

t

)
t∈[0,1]

is a cylindrical Wiener process with respect to

ρ dPε. By uniqueness of the solution of the forward backward system (5.2) the law of the process (Xt)t≥0

under ρdPε coincides with its law with respect to P. Moreover we notice that being Z̄t = ζ(Xt) where ζ is

a deterministic Borel function H → Ξ∗ then the law of Z̄ and Z̃N depend only on the law of (X) in a non

anticipating way. So even the law of (Z̄t)t≥0 and (Z̄Nt )t≥0 under ρdPε coincides with its law with respect to

P.

Recalling that δ1,ε is uniformly bounded and consequently (with respect to ε as well) we have Ẽερ−3 ≤ c

(where c does not depend on ε), moreover

Ẽε
(
ρ

∫ 1

0
|Z̄t|2dt

)
= E

(∫ 1

0
|Z̄t|2dt

)
< +∞.

Thus we can conclude

Ẽε
∫ 1

0
(1 + |Z̄t|)|Xt −XN

t | dt ≤ C[E∆4
X,N ]1/4, (5.22)

where C is independent of N and ε.

By the continuity of trajectories of (Xt)t≥0, having also E supt∈[0,1] |Xt|4 <∞, we get:

E∆4
X,N → 0, as N →∞. (5.23)

We also have that:

Ẽε
∫ 1

0
|Z̄t − Z̃Nt |dt ≤ C

[
E
∫ 1

0
|Z̄t − Z̃Nt |2dt

]1/2

= C(E∆Z,N )1/2, (5.24)
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where ∆Z,N =

∫ 1

0
|Z̄t − Z̃Nt |2dt and by (5.8):

E∆Z,N → 0, as N →∞. (5.25)

Now we deal with the term:

Ẽε
∫ 1

0
(1 + |Z̄t|)|Q̂εε−1t − Q̂

N
ε−1t| dt.

Introducing the Pε Wiener process
ˆ̃
W 2

s := (ε)−1/2W̃ 2
εs we have that the process (Q̂εs)s∈[0,1/ε] solves:

dQ̂εs = (BQ̂εs + F (Xεs, Q̂
ε
s)) ds−Gδ2,ε,N (s) ds−+Gd

ˆ̃
W 2
s , s ≥ 0, Q̂ε0 = q0, (5.26)

moreover (Q̂Ns )s∈[0,1/ε] solves:

dQ̂Ns = (BQ̂Ns + F (XN
εs , Q̂Ns )) dt−Gδ2,ε,N (s) ds+Gd

ˆ̃
W 2
s , s ≥ 0, Q̂N0 = q0. (5.27)

Therefore by Lemma 3.10 and hypothesis 4.1 we have for all p ≥ 1:

sup
s∈[0,1/ε]

Ẽε[|Q̂Nt |p] ≤ cp

(
1 + |q0|p + sup

s∈[0,1/ε]
Ẽε|Xs|p + sup

s∈[0,1/ε]
Ẽε
∣∣∣∣∫ s

0
e(s−r)BGd

ˆ̃
W 2
r

∣∣∣∣p + Lξ

)
, (5.28)

for a constant cp independent of ε and N . Arguing as before, we have that

Ẽε|Xs|p = Ẽε(ρ−1/2ρ1/2|Xs|p) ≤ (Ẽερ−1)1/2(Ẽε(ρ|Xs|2p))1/2 ≤ C(E|Xs|2p)1/2,

and

Ẽε
∣∣∣∣∫ s

0
e(s−r)BGd

ˆ̃
W 2
r

∣∣∣∣p = Ẽε
(
ρ−1/2ρ1/2

∣∣∣∣∫ s

0
e(s−r)BGd

ˆ̃
W 2
r

∣∣∣∣p)

≤ (Ẽερ−1)1/2

(
Ẽε
(
ρ

∣∣∣∣∫ s

0
e(s−r)BGd

ˆ̃
W 2
r

∣∣∣∣2p
))1/2

≤ C

(
E
∣∣∣∣∫ s

0
e(s−r)BGdŴ 2

r

∣∣∣∣2p
)1/2

,

for some constant C > 0 independent of ε. Therefore, bearing in mind the estimate (3.2) for the slow

component X and Hypothesis 3.7, we conclude that there exists a constant c > 0, independent of ε and N ,

such that

sup
s∈[0,1/ε]

Ẽε[|Q̂Nt |p] ≤ c. (5.29)

Again by Lemma 3.10 one has that for all s > 0,

|Q̂εs − Q̂Ns | ≤ c
∫ s

0
e−η(s−`)|Xε` −XN

ε` |d` ≤ c∆X,N ,

thus, arguing as in (5.22),

Ẽε
∫ 1

0
(1 + |Z̄t|)|Q̂εε−1t − Q̂

N
ε−1t|dt ≤ cẼ

ε

[
∆X,N

∫ 1

0
(1 + |Z̄t|)dt

]
≤ C[E∆4

X,N ]1/4, (5.30)

as above.
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Now we come to the last term. We apply successively (5.11) and (5.29) to get the following estimates (the

value of the constant c below can change from line to line but never depends neither on k nor on N or on

ε): ∣∣∣∣∣∣εẼε
2N−1∑
k=1

(Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
)

∣∣∣∣∣∣ ≤ cε
2N−1∑
k=1

Ẽε
[
(1 + |Z̃Ntk |)(1 + |Q̂Ntk/ε|+ |Q̂

N
tk+1/ε

|)
]

≤ cε
2N−1∑
k=1

[
Ẽε(1 + |Z̃Ntk |)

4/3
]3/4 [

Ẽε(1 + |Q̂Ntk/ε|+ |Q̂
N
tk+1/ε

|)4
]1/4

≤ cε
2N−1∑
k=1

[
1 +

(
Ẽε|Z̃Ntk )4/3

)3/4
]
.

Proceeding as above, recalling that the law of Z̃Ntk depends only on the law of the process (Xt) we have:

Ẽε[(|Z̃Ntk |)
4/3] ≤

[
Eρ−2

]1/3 [E|Z̃Ntk |2]2/3
≤ c2

2
3
N

[
E
∫ t

0
|Z̄t|2dt

]2/3

.

At last we sum up the latter result, (5.22), (5.24) and (5.30) to get:

|Y ε
0 − Ȳ0| ≤ Ẽε

∫ 1

0
|Rε,Nt/ε | dt+ εẼε

2N∑
k=1

|Y̌ N,k
tk/ε
− Y̌ N,k

tk+1/ε
|

≤ C[E∆4
X,N ]1/4 + C(E∆Z,N )1/2 + εc2

3
2
N

(
E
∫ 1

0
|Z̄t|2 dt

)1/2

+ εc2N .

So letting first ε tend to 0 and then N to ∞ the claim follows, by (5.23) and (5.25).

Remark 5.5 Consider the following class of forward backward systems with initial time τ ∈ [0, 1]
dXτ,x

t = AXτ,x
t dt+ RdW 1

t , t ≤ 1,

−dȲ τ,x
t = λ(Xτ,x

t , Z̄τ,xt ) dt− Z̄τ,xt dW 1
t , t ≤ 1,

Xτ,x
τ = x, Ȳ τ,x

1 = h(Xτ,x
1 ).

(5.31)

If we set v(τ, x) = Ȳ τ,x
τ then it is shown in [17] that v is a deterministic continuous function [0, 1]×H → R

being Gateaux differentiable with respect to the second variable. Thus it is the unique mild solution, in the

sense of definition 6.1 of [16] of the nonlinear Kolmogorov equation; see [16, Th. 6.2].
∂v(t, x)

∂t
+ Lv(t, x) = λ(x,∇v(t, x)R), t ∈ [0, 1], x ∈ H,

v(1, x) = h(x),

where L is the second order operator

Lg(x) =
1

2
Tr[RR∗∇2

xg(x)] + 〈Ax,∇v(t, x)〉, g ∈ C2(H),

∇2g(x) ∈ L(H) being the second derivative of g in x.

In particular the limit limε→0 Y
ε

0 can also be represented by the solution of the above HJB equation as:

lim
ε→0

Y ε
0 = Ȳ 0,x0

0 = v(0, x0).
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6 The two scale control problem

In this section we are finally in a position to exploit the convergence of solutions of BSDEs proved in the

previous section to solve our original problem of characterizing the limit of value functions V ε(x0, q0) as

ε→ 0 (see (1.3) in the Introduction).

As we’ve stated in the introduction we formulate the control problem in a weak form, see [13]. This choice

is typical in the BSDEs approach and allows to easily identify the value function with the solution of the

backward equation, see also the Section 7 in [16]. Remark 6.3 below reminds the reader about the relation

with the original formulation.

As we have already explained in Remark 3.6, we need to add the following hypothesis:

Hypothesis 6.1 R admits a bounded right inverse R−1 ∈ L(H; Ξ).

Given the solution (X,Qε) of system (3.1) and a progressively measurable process (αt)t∈[0,1] taking its values

in a complete metric space U we denote by Θε,α the density

Θε,α = exp

(∫ 1

0
R−1b(Xt, Q

ε
t , αt)dW

1
t −

1

2

∫ 1

0
|R−1b(Xt, Q

ε
t , αt)|2 dt

)
× exp

(∫ 1

0

1√
ε
ρ(αt)dW

2
t −

1

2

∫ 1

0

1

ε
|ρ(αt)|2 dt

)
,

where b : H ×K × U → H and ρ : U → K are measurable functions satisfying suitable assumptions listed

below.

We also consider the following cost functional:

Jε(x0, q0, α) = E
[
Θε,α

(∫ 1

0
l(Xt, Q

ε
t , αt)dt+ h(X1)

)]
, (6.1)

where l : H ×K × U → R and h : H → R are measurable and satisfy the assumptions below:

Hypothesis 6.2 There are positive constants L and M such that :

|b(x, q, u)− b(x′, q′, α)| ≤ L(|x− x′|+ |q − q′|), ∀ q, q′ ∈ K,x, x′ ∈ H, α ∈ U,

|l(x, q, α)− l(x′, q′, α)| ≤ L(|x− x′|+ |q − q′|), ∀ q, q′ ∈ K,x, x′ ∈ H, α ∈ U,

|h(x)− h(x′)| ≤ L|x− x′|, ∀x, x′ ∈ H,

|b(x, q, α)|, |l(x, q, α)|, |ρ(α)|, |h(x)| ≤M, ∀q ∈ K,x ∈ H, α ∈ U.

Remark 6.3 We recall that if dPε,α := Θε,αdP then under probability Pε,α the process:

(W1
t ,W2

t ) = (−
∫ t

0
R−1b(Xr, Q

ε
r, αr)dr +W 1

t ,−
1√
ε

∫ t

0
ρ(αr)dr +W 2

t ),

is a cylindrical Ft-Wiener process in Ξ×Ξ, where Ft is the filtration introduced in Section 2. Moreover with

respect to (W1
t ,W2

t ) the couple of processes (Xt, Q
ε
t ) satisfies the controlled system:

dXt = AXt dt+ b(Xt, Q
ε
t , αt)dt +RdW1

t , X0 = x0,

εdQεt = (BQεt + F (Xε
t , Q

ε
t ) dt+Gρ(αt)dt+ ε1/2GdW2

t , Qε0 = q0.

(6.2)

16



Moreover:

Jε(x0, q0, α) = EPε,α
(∫ 1

0
l(Xt, Q

ε
t , αt)dt+ h(X1)

)
,

thus the one introduced here is a correct formulation of our original problem (1.1) and (1.2).

We define, for x ∈ H, q ∈ K and z, ξ ∈ Ξ∗ :

ψ(x, q, z, ξ) = inf
α∈U
{l(x, q, α) + z[R−1b(x, q, α)] + ξρ(α)}, (6.3)

and notice that, by straight forward considerations, under Hypotheses 6.1 and 6.2, the Hamiltonian ψ verifies

hypothesis 4.1.

The main result of this paper is now just an immediate consequence of Theorem 5.4.

Theorem 6.4 Denote by V ε the value function of our control problem that is:

V ε(x0, q0) := inf
α
Jε(x0, q0, α),

where the infimum is taken over all progressive processes α with values in U .

The sequence V ε(x0, q0) converges to the solution Ȳ0 of equation (5.2) evaluated at zero.

Proof. In [14] it is shown that V ε(x0, q0) = Y ε
0 (see (5.1)). The claim then follows by Theorem 5.4.

Remark 6.5 The nonlinearity λ in the limit equation (5.2) has itself a control theoretic interpretation.

Namely, fixed x ∈ H and z ∈ Ξ∗, let us consider the following ergodic control problem with state equation

dQ̂βs = BQ̂βs ds+ F (x, Q̂βs ) ds+Gρ(βs)ds+GdŴ 2
s , (6.4)

and ergodic cost functional:

J̌(x, z, β) = lim inf
δ→0

E δ
∫ 1

δ

0
[zR−1b(x, Q̂βs , βs) + l(x, Q̂βs , βs)]ds. (6.5)

Then λ(x, z) is the value function of the ergodic control problem that we have just described, that is:

λ(x, z) = inf
β
J̌(x, z, β),

where the infimum is taken over all progressive processes β : [0,∞[→ U .

Moreover notice that, in particular, being the infimum of linear functionals, the map z → λ(x, z) is concave.

Finally notice that the result was proven in [15] with lim inf replaced by lim sup in the definition (6.5) of

the ergodic cost nevertheless, as it can be easily verified, this substitution is inessential in the argument

reported in [15]

Example 6.6 We provide a simple example to which our result applies. Let us consider the following two

scale system of classical controlled reaction diffusion SPDEs in one space dimension driven by space time
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white noises see, for instance [8] Section 11.2 or [12]:

∂

∂t
uε(t, x) =

∂2

∂x2
uε(t, x) + b(uε(t, x), vε(t, x), α(t, x)) + σ(x)

∂

∂t
W1(t, x),

ε
∂

∂t
vε(t, x)=(

∂2

∂x2
−m)vε(t, x)+f(uε(t, x), vε(t, x)) + ρ(x)r(α(t, x))

+ ε1/2ρ(x) ∂∂tW
2(t, x),

uε(t, 0) = uε(t, 1) = vε(t, 0) = vε(t, 1) = 0,

uε(0, x) = u0(x), vε(0, x) = v0(x), t ∈ [0, 1], x ∈ [0, 1],

(6.6)

where (W1(t, x)) and (W2(t, x)) are independent space-time white noises. Here (uε) represents the slow

state, (vε) the quick one and α is the control.

We make the following assumptions on the coefficients:

1. m is a positive constant.

2. b, f are continuous maps, b is bounded and Lipschitz continuous w.r.t to the first two variables uniformly

w.r.t. the control, moreover f is Lipschitz continuous with a constant smaller then m.

3. σ, ρ are measurable and bounded functions [0, 1] → R. Moreover we ask that |σ(x)| ≥ cσ, for a.e.

x ∈ [0, 1] and a suitable constant cσ > 0.

4. r : R→ R is a measurable and bounded map.

5. An admissibile control α is any bounded progressive measurable process α : Ω× [0, 1]× [0, 1]→ R and

the cost functional is

Jε(u0, v0) = E
∫ 1

0

∫ 1

0
`(uε(t, x), vε(t, x), α(t, x)) dx dt+

∫ 1

0
h(uε(1, x)) dx,

with ` and h Lipschitz continuous and bounded functions.

The abstract formulation in H = K = L2(0, 1) and U = L2(0, 1) is identical to the one in [17, section 5]. In

this same place it is shown that Hypotheses 3.1—3.7, 4.1, 5.1 and 6.2 hold. Notice that thus Theorem 5.4

and Theorem 6.4 apply.

7 Control interpretation of the limit forward-backward system

Since we were able to interpret the limit value function as the solution of a reduced forward-backward system

we can now hope to see it as the value function of a correspondingly reduced control problem.

Most of our analysis in this section is based on the fact that λ is concave with respect to z. In particular,

by Fenchel-Moreau theorem (translated in the obvious way for concave functions instead than for convex

ones), we can write λ = λ∗∗ where for all x ∈ H:

λ∗(x, p) = inf
z∈Ξ∗

(
−zp− λ(x, z)

)
, p ∈ Ξ

and the map λ∗(x, ·) is an upper semicontinuous concave function with non empty domain in Ξ. Thus for

all x ∈ H, z ∈ Ξ∗:

λ(x, z) = inf
p∈Ξ

(
−zp− λ∗(x, p)

)
.
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Recalling that λ is Lipschitz continuous with respect to z uniformly in x and denoting by L the Lipschitz

constant we have:

λ∗(x, p) = −∞, whenever |p| > L.

and consequently:

λ(x, z) = inf
p∈Ξ, |p|≤L

(
−zp− λ∗(x, p)

)
. (7.1)

Moreover, λ∗(x, p) ≤ −λ(x, 0) ≤ c(1 + |x|), thus, for any process (pt)0≤t≤1 with values in Ξ, the process(∫ t

0
λ∗(Xs, ps)ds

)
0≤t≤1

is well-defined and takes values in [−∞,∞).

We have the following characterization:

Theorem 7.1 Assume 3.1—3.7, 4.1 and 5.1 then it holds:

Ȳ0 = inf
p
Ep

(
h(X1)−

∫ 1

0
λ∗(Xt, pt)dt

∣∣∣∣Ft),
where:

1. (Xt)t≥0 is, as before, the mild solution of the following stochastic differential equation:

dXt = AXtdt+RdW 1
t , X0 = x0;

2. the infimum is extended to all Ξ-valued, progressively measurable processes (ps)0≤s≤1 that are bounded

by L;

3. Ep denotes the mean value with respect the probability Pp under which

W p
t :=

∫ t

0
psds+W 1

t

is a Wiener process.

Notice that, with respect to (W p) process (X) solves the controlled stochastic differential equation:

dXt = AXtdt−R ptdt+RdW p
t , X0 = x0.

Proof. Given any Ξ valued progressively measurable process (pt)t≥0 with |pt| ≤ L by (7.1) we get:

Ȳt = h(X1) +

∫ 1

t
λ(Xs, Z̄s)ds−

∫ 1

t
Z̄sdW

1
s

≤ h(X1)−
∫ 1

t

(
Z̄sps + λ∗(Xs, ps)

)
ds−

∫ 1

t
Z̄sdW

1
s .

and by the definition of (W p):

Ȳt ≤ h(X1)−
∫ 1

t
λ∗(Xs, ps)ds−

∫ 1

t
Z̄sdW

p
s ,

which shows that:

Ȳt ≤ Ep

(
h(X1)−

∫ 1

t
λ∗(Xs, ps)ds

∣∣∣∣Ft).
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Conversely, we may choose, for any n ≥ 1, (pnt )0≤t≤1 such that |pnt | ≤ L and

−Z̄tpnt − λ∗(Xt, p
n
t )− 1/n ≤ λ(Xt, Z̄t).

By a measurable selection theorem, see for instance Theorem 6.9.13 in [5], we can also assume the process

pn to progressive measurable.

We have

Ȳt ≥ h(X1)−
∫ 1

t

(
Z̄sp

n
s + λ∗(Xs, p

n
s ) +

1

n

)
ds−

∫ 1

t
Z̄sdW

1
s ,

and rewriting the above in terms of W pn :

Ȳt +
1− t
n
≥ h(X1)−

∫ 1

t
λ∗(Xt, p

n
t )dt−

∫ 1

t
Z̄tdW

pn

t .

Therefore we can conclude that:

Ȳt ≥ lim
n→∞

Epn
(
h(X1)−

∫ 1

t
λ∗(Xs, p

n
s )ds

∣∣∣∣Ft).
and the claim is proved.
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