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High-Fidelity Trajectory Optimization with Application to
Saddle Point Transfers

Diogene A. Dei Tos∗ and Francesco Topputo†

Politecnico di Milano, 20156 Milan, Italy

A method to optimize space trajectories subject to impulsive controls is presented. The

method employs a high-fidelity model and a multiple shooting technique. The model accounts

for an arbitrary number of gravitational attractions, their corrections due to celestial bodies

oblateness, and solar radiation pressure. The peculiarity of this paradigm is that the equations

of motion are written in a roto-pulsating frame, where two primaries are at rest despite the

fact that their motion and the one of the perturbers is given by a real ephemeris model. Direct

transcription of the dynamics coupled with a multiple shooting technique, and an efficient

computation of the Jacobian of the defects are used to optimize trajectories subject to a finite

number of impulsive controls. The method has been applied to find a multitude of solutions to

the problem of transferring a spacecraft from the Sun–Earth collinear Lagrange points to the

Sun–Earth gravitational saddle point, where a theoretical zero background acceleration allows

testing possible deviations from General Relativity. The problem of targeting the Sun–Earth

saddle point with high accuracy represents a major flight dynamics challenge. The applicative

scenario encompasses the possible mission extension option for LISA Pathfinder as special case.

I. Introduction
The design of space missions is generally characterized by severe requirements on the ∆v budget. Navigation is also

becoming more and more challenging, asking for the satisfaction of stringent conditions characterized by unprecedented

accuracy [1]. As a consequence, an increased complexity in the trajectory design is needed, ultimately leading to

employing high-fidelity models already in the early stages of trajectory design [2]. Flying in highly nonlinear gravity

fields allows exploiting unique features, such as libration point orbits (LPO) [3], ballistic captures [4], and low-energy

transfers [5]. Beside generating unique orbits, multi-body models involve propellant savings, launch window widening,

and overall safety increase [6, 7]. These features are achieved by exploiting the sensitivity in initial conditions of

highly nonlinear environments, and open up new scenarios for spacecraft characterized by very limited thrust authority.

Examples are interplanetary CubeSats, where incorporating the additional forces earlier in the design may be the key to

success.
∗PostDoc Research Fellow, Department of Aerospace Science and Technology; diogenealessandro.deitos@polimi.it.
†Assistant Professor, Department of Aerospace Science and Technology; francesco.topputo@polimi.it. Member AIAA.



Several aspects of high-fidelity modeling have been studied. The introduction of a novel solar system model in

rotating coordinates [8] and a hierarchal approach have proven beneficial in numerical continuation processes [9]. The

impact of a dynamical selection of primaries on the accuracy and computational cost of propagations is investigated in

[10]. Efforts have been put into a fast, accurate, and smooth planetary ephemeris retrieval system [11]. Direct methods

leveraging the full gravitational potential have proven effective for orbit design of ultra low thrust orbits [12].

In this work, a model that describes the motion of a massless particle subject to an arbitrary number of gravitational

attractions, their corrections due to bodies oblateness, and solar radiation pressure is presented. The developed paradigm

departs from standard Newtonian approach and builds a model that employs a roto-pulsating frame, where two primaries

are at rest despite their true motion, which is given by ephemeris look-up tables. This model is ideal to refine preliminary

solutions designed in restricted three- or four-body problems since these are described in rotating frames, convergence

is smoother, a quicker geometrical interpretation of results is granted, and a hierarchical approach is leveraged [9]. The

variational equations are also derived, from which the state transition matrix can be achieved. (A basic version of the

roto-pulsating restricted n-body problem (RPRnBP) accounting for third bodies perturbations can be found in [2, 8, 9].)

The literature on space trajectory optimization with multiple shooting is vast, and thus the focus is only on those works

where a rich dynamics is considered. Multiple shooting methods with propagation of the variational equations in n-body

dynamics are used in [13, 14] for trajectory optimization, and in [15] to analyze the evolution of quasi-periodic orbits in

the Earth–Moon system. Multiple shooting techniques are used to compute constrained transfers to LPO with a sequence

of impulsive control maneuvers [16], as well as for the solution of low-thrust transfers in the Earth–Moon system,

including applications to LPO [17]. Direct transcription of the dynamics is also employed in low-thrust trajectories

to boost numerical efficiency [18]. Pseudo-spectral methods for optimal control have also shown promising results

[19, 20]. In this work, a multiple-burn, multiple-shooting optimization is carried out in the RPRnBP. A transcription

strategy that reduces interdependence among shooting arcs is formulated to ease solution convergence. A fast, efficient

computation of the defects vector Jacobian is also implemented.

Motivated by the proposed mission extension of LISA Pathfinder, the application scenario deals with transfers

from the Sun–Earth L1,2 LPO to the Sun–Earth gravitational saddle point (SP). Unlike the Lagrange points where

the gravitational potential has to cancel out the centrifugal acceleration, saddle points are regions of arbitrarily small

gravitational force residing in a finite domain of very small extent. They are, therefore, ideal locations for undertaking

tests in a ultra-weak gravitational field, where possible deviations from General Relativity can be tested [21]. Targeting

the saddle point with high accuracy has become a major flight dynamic challenge.

Because LISA Pathfinder was proposed to conduct this experiment, the focus has been on finding low-∆v solutions,

in the range of 1–2 m/s, which is relative to LISA Pathfinder end-of-life conditions. This stringent requirement justifies

the high-fidelity model developed, although the ∆v budget may be larger for dedicated SP missions, thus widening the

design space [22]. Moreover, the specific option for LISA Pathfinder restricts the study to the actual spacecraft orbit, and

2



can be retrieved as a special case of the results presented. In essence, compared to previous works on the same subject

[23–25], the present work features a higher degree of fidelity as well as a more sophisticated optimization scheme.

The paper is structured as follows. Section II is devoted to the derivation of the equations of motion with Lagrangian

formalism and a mapping from inertial to roto-pulsating frame (RPF). The optimization techniques are described in

Section III, whereas Section IV describes the results obtained for the selected case study. Section V summarizes the

main outcomes and draws critical conclusions.

II. High-fidelity models

A. Inertial restricted n-body problem

A model for the description of the motion of a massless particle, P, subjected to the gravitational field of other n − 1

celestial bodies Pj is the restricted n-body problem. We define the kinetic and potential energies per unit mass of P as

T =
1
2
ÛR> ÛR, V = −

∑
j∈S

µj

[
1

‖R − R j ‖
+

J2 j R2
B j

2

(
1

‖R − R j ‖3
−

3(Z − Z j)2

‖R − R j ‖5

)]
, (1)

where R = [X,Y, Z]> is the position of P in a solar barycentric inertial frame of reference, dots indicate time derivatives,

S is the set containing Pj primaries characterized by µj gravitational parameter, R j = [X j,Yj, Z j]> position, RB j

equatorial radius, and J2j second harmonic coefficient related to inhomogeneous mass distribution. Accurate values for

R j(t), RB j , and J2j are retrieved through the SPICE toolkit∗ [26, 27]. On top of the conservative terms in Eq. (1), a

high-fidelity model also requires the inclusion of nonconservative forces. In this work, the effect of solar radiation

pressure (SRP) is considered, which imparts a net acceleration to the spacecraft in the Sun-to-P direction equal to

aSRP = SP0
R − Rs

‖R − Rs ‖3
, (2)

where SP0 is the SRP parameter,

SP0 = (1 + cr )
A
m

Ψ0d2
0

c
, (3)

and cr is the reflectivity coefficient of P, A/m its area to mass ratio, Ψ0 the solar flux intensity at a distance d0 from the

Sun, c the speed of light, and Rs the Sun position. In Eq. (2), the cannonball model is assumed, for which the solar flux

is inversely proportional to the square of the spacecraft distance from the Sun.

The equations of motion of P can be derived through a Lagrangian mechanics formalism, so yielding

ÜR + ∇V = aSRP, (4)

∗The toolkit is freely available through the NASA NAIF website http://naif.jpl.nasa.gov/naif/. Last accessed on Oct. 11 2017.

3

http://naif.jpl.nasa.gov/naif/


where

∇V =
∑
j∈S

µj

[
R − R j

‖R − R j ‖3
+

3
2

J2 j R2
B j

(
I + 2Iz
‖R − R j ‖5

−
5I(R − R j)>Iz(R − R j)

‖R − R j ‖7

)
(R − R j)

]
(5)

is the gradient of V , I is the 3-by-3 identity matrix, and Iz is a 3-by-3 null matrix except for the third diagonal component,

which is 1.

B. Roto-pulsating restricted n-body problem

The equations of motion for P are now written in a form resembling that of the circular restricted three-body problem

(CRTBP). To do so, a mapping from the inertial to a roto-pulsating frame (RPF) is needed [8]. In this frame, a pair of

primaries, P1 and P2, are at rest on the x-axis (see Fig. 1). Let {t, R,V } be the dimensional time, position, and velocity

of P in the inertial frame, respectively, and let {τ, ρ, η} be their nondimensional counterparts in the RPF, respectively.

(Note that η = ρ′ := dρ/dτ.) The transformation between the barycentric inertial frame and the RPF are [2]

R(t) = b(t) + k(t)C(t)ρ(τ), (6a)

V (t) = Ûb + ÛkCρ + k ÛCρ + kC Ûτη, (6b)

τ = ω(t − t0), (6c)

where

b(t) = m1R1 + m2R2
m1 + m2

, k(t) = ‖R2 − R1‖, C(t) = [e1, e2, e3] , (7)

with

e1 =
R2 − R1

k
, e2 = e3 × e1, e3 =

(V2 − V1) × (R2 − R1)
‖(V2 − V1) × (R2 − R1)‖

. (8)

In Eqs. (7)–(8), mi , Ri , and Vi are the mass, position, and velocity of the selected primaries Pi , respectively, i = 1, 2.

The coordinates transformation, Eq. (6a), is composed of three parts: 1) A translation of the origin from the solar system

barycenter to the primaries center of mass, b(t); 2) A nondimensionalization through the scaling factor k(t), which

is the actual distance between the primaries; and 3) A rotation by means of the orthogonal cosine angle matrix, C(t).

It is easy to verify that in the RPF P1 and P2 have a constant distance and are always aligned with the x-axis, their

position being ρ1 = [−µ, 0, 0]> and ρ2 = [1 − µ, 0, 0]>, respectively, and η1 = η2 = 0; µ = m2/(m1 + m2) is the mass

parameter of the P1–P2 system. As a result, the new frame rotates and pulsates in a nonuniform fashion. The time

transformation, Eq. (6c), shifts the initial epoch to t0 and scales the time unit by means of the primaries mean motion

about their common barycenter, ω. By choosing a constant mean motion, the average primaries revolution period is 2π,

and Ûτ = ω.

The equations of motion for the roto-pulsating restricted n-body problem (RPRnBP) are thus derived by substituting
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Fig. 1 Inertial frame (X,Y, Z) and roto-pulsating frame (x, y, z).

Eqs. (6) into Eqs. (4)–(5). After some manipulations [2],

ρ′′ +
1
ω

(
2 Ûk
k

I + 2C> ÛC
)
ρ′ +

1
ω2

( Ük
k

I + 2
Ûk
k

C> ÛC + C> ÜC
)
ρ +

C> Üb
kω2 = ∇Ω +

SP0

ω2k3
δs

δ3
s

, (9)

where ρs is the Sun position in the RPF, δs = ρ−ρs , δs = ‖δs ‖, and∇Ω = ∂Ω/∂ρ is the gradient of the pseudo-potential

Ω =
∑
j∈S

µ̂j

δj

[
1 +

J2 j R2
B j

2k2δ2
j

(
1 −

3δ>j Mδ j

δ2
j

)]
, (10)

that is the equivalent of V in Eq. (1) transformed into nondimensional coordinates: M = C>IzC, µ̂j = mj/(m1 + m2),

δ j = ρ − ρ j , and δj its magnitude. To derive Eq. (9), the relation (µ1 + µ2)/(ω2k3) = 1 is used. Mixed derivative

notation in Eq. (9) acknowledge that ephemeris data is numeric, discrete, and provided for regular dimensional time.

C. Variational equation

Let x = [ρ, η] be the state vector of P in the RPRnBP. Then, the state space representation of Eq. (9) is

x ′ = f (x, τ) :=


fρ

fη

 (11)
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where fρ := η and

fη(ρ, η, τ) := ∇Ω − 1
ω

(
2 Ûk
k

I + 2C> ÛC
)
η − 1

ω2

( Ük
k

I + 2
Ûk
k

C> ÛC + C> ÜC
)
ρ − C> Üb

kω2 +
SP0

ω2k3
δs

δ3
s

. (12)

Let x(τ) = ϕ(x0, τ0; τ) be the solution of Eq. (11) at time τ starting from (x0, τ0). The state transition matrix (STM)

of Eq. (11), that is, Φ(τ0, τ) := dϕ/dx0, is obtained by integrating the variational equation

ÛΦ(τ0, τ) =
[
∂ f

∂x

]
Φ(τ0, τ), Φ(τ0, τ0) = I6×6. (13)

Eq. (13) is equivalent to 36 first-order differential equations for the elements of Φ; it requires the terms in [∂ f /∂x] to

be evaluated along the solution x(τ), and therefore Eqs. (11) and (13) are to be integrated simultaneously, thus yielding

a system of 42 first-order equations. With the expression of f given in Eq. (11), the Jacobian [∂ f /∂x] in Eq. (13) is

[
∂ f

∂x

]
:=


0 I

∂ fη

∂ρ

∂ fη

∂η

 , (14)

where
∂ fη

∂ρ
= − 1

ω2

( Ük
k

I + 2
Ûk
k

C> ÛC + C> ÜC
)
−

∑
j∈S

µ̂j

{
I
δ3
j

−
3δ jδ>j
δ5
j

+
3J2 j R2

B j

2k2

[
I + 2M
δ5
j

−

(5I + 10M)δ jδ>j + 5δ>j Mδ j I + 10δ jδ>j M

δ7
j

+ 35δ>j Mδ j
δ jδ
>
j

δ9
j

]}
+

SP0

ω2k3

[
I
δ3
s

− 3δsδ>s
δ5
s

]
,

(15)

and
∂ fη

∂η
= − 2

ω

( Ûk
k

I + C> ÛC
)
. (16)

In this work, Eq. (11) and (13) are integrated with a 7th/8th order variable step Runge–Kutta–Fehlberg scheme

implemented with a Matlab mex file, and absolute and relative error tolerances set to 2.5 × 10−14. Emphasis is put on

the heaviness of the right-hand side evaluation of these 42 differential equations.

III. Impulsive trajectory optimization

A. Multiple burns multiple shooting formulation

Let ψ0(x(τ0), τ0) = 0 and ψ f (x(τf ), τf ) = 0 be general expressions for boundary conditions at some (unknown)

initial and final epochs, τ0 and τf , respectively, to which the solution of Eq. (11), x(τ), must obey. A number of impulsive

maneuvers are employed to drive x(τ) from ψ0 to ψ f hypersurfaces. The maneuvers are assumed to instantaneously

alter the spacecraft velocity. A direct multiple shooting technique is developed, which accommodates an arbitrary
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number of these maneuvers. With this method, the optimization is transcribed into a nonlinear programming (NLP)

problem and solved for a finite set of variables [28]. Referring to Fig. 2, we define an arc as the ballistic portion of the

trajectory separated by maneuvers, and a segment as the portion of the trajectory separated by two consecutive nodes.

With n number of maneuvers and m nodes, there are n + 1 arcs and m − 1 segments within each arc. It is convenient to

recall the core of the direct multiple shooting method.

Let τ(j)0 and τ(j)
f

be the initial and final time of j-th arc, respectively, j = 1, . . . , n + 1. The time interval [τ(j)0 , τ
(j)
f
] is

discretized by using m evenly spaced points τ(j)0 = τ
(j)
1 < τ

(j)
2 < · · · < τ

(j)
m = τ

(j)
f

over which the solution is sampled, that

is, x(j)
k
= x(τ(j)

k
), k = 1, . . . ,m. ( j is an index running across arcs, k across nodes within each arc.) Solution continuity

must be guaranteed within the arc, despite its subdivision into segments. The problem is to determine x
(j)
k

such that

ζ (j)
k

:= ϕ(x(j)
k
, τ
(j)
k

; τ(j)
k+1) − x

(j)
k+1 = 0; k = 1, . . . ,m − 1, j = 1, . . . , n + 1. (17)

Eqs. (17) are completed by imposing time and position continuity at both endpoints of each inner arc

ψj := ρ(j)m − ρ(j+1)
1 = 0, σj := τ(j)m − τ(j+1)

1 = 0, j = 1, . . . , n; (18)

and by enforcing boundary conditions ψ0(x(1)1 , τ
(1)
1 ) = 0 and ψ f (x(n+1)

m , τ
(n+1)
m ) = 0 at the beginning of the first arc and

the end of the last arc, respectively. While ψj = 0 guarantee continuity of positions, a discontinuous velocity arises

between two adjacent arcs, namely

∆η j := η(j)m − η(j+1)
1 , j = 1, . . . , n. (19)

Note that Eq. (17) and Eqs. (18)–(19) represent nonlinear and linear equality constraints to the problem, respectively.

A schematic representation of the overall multiple burn multiple shooting method is shown in Fig. 2. Notice that the

interface between two arcs, j and j + 1, features two nodes, x(j)m and x
(j+1)
1 , belonging to the previous and next arc,

Arc (1) Arc (n+1)Arc (j)

......

Segment (1) Segment (m-1)Segment (k)

x
(1)
1

x
(1)
k

x
(1)
k+1 τ

x

x (n+1)
m

x
(n+1)
k+1

x
(n+1)
k

x
(n+1)
1

x
( j )
1

x
( j )
k

x
( j )
k+1 x ( j )

mφ(x
(1)
k , τ

(1)
k ; τ

(1)
k+1 )

x (1)
m ζ

( j )
1 ζ

( j )
k

ζ
( j )
m − 1

∆v (1)

∆v ( j )

ψ 0 (x 0 , τ0 ) ψ f (x f , τf )

τ
(1)
1 τ

(1)
k τ

(1)
k+1 τ

( j )
k τ

( j )
k+1 τ

(n+1)
k τ

(n+1)
k+1 τ (n+1)

m

Fig. 2 Multiple burns, multiple shooting strategy.
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respectively. This choice reduces the interdependence among arcs to obtain a better structured Jacobian matrix (see

Section III.C) at the cost of increasing the number of variables.

B. Statement of the optimization problem

For each arc, the optimization variables are made of the collection of states at the nodes, x(j)
k
, as well as the initial

and final time, τ(j)1 and τ(j)m . Therefore, the overall (6m + 2) × (n + 1)-dimensional NLP variable column vector is

y =
(
x
(j)
k
, τ
(j)
1 , τ

(j)
m

)
, k = 1, . . . ,m, j = 1, . . . , n + 1 (20)

The NLP variables embed hence the initial and final times of each arc, which are allowed to vary. The aim is to minimize

the sum of impulses, ∆vj , which are related to the propellant consumed. The objective function is thus

J(y) :=
n∑
j=1
(∆vj)2 = ω2

n∑
j=1
‖k(τ(j)m )η(j)m − k(τ(j+1)

1 )η(j+1)
1 ‖2. (21)

The time-dependence of J in Eq. (21) is stressed: given ‖∆η j ‖ (nondimensional), the magnitude of ∆vj (dimensional)

depends upon when the maneuver is executed through k(τ), this being the length unit (see Eq. (6a)).

The impulsive trajectory optimization is to solve the NLP problem

min
y

J(y) s.t. g(y) = 0 and h(y) ≤ 0, (22)

where g and h are vector-valued functions stating equality and inequality constraints, respectively. The former read

g(y) :=
(
ζ (p)
k
,ψj, σj, ψ0, ψ f

)
, k = 1, . . . ,m − 1, j = 1, . . . , n, p = 1, . . . , n + 1, (23)

where the last two entries enforce respect of boundary conditions. The inequality constraints are instead

h(y) := ©­«ω
n∑
j=1

k(τ(j)m )‖∆η(j)‖ − ∆vmax, τ
(n+1)
m − τ(1)1 − ∆τmax, τ

(p)
1 − τ(p)m + ∆τ

(p)
min

ª®¬ , p = 1, . . . , n + 1, (24)

which enforce the respect of (i) an upper limit for the ∆v budget, ω
∑

j k(τ(j)m )‖∆η j ‖ ≤ ∆vmax; (ii) a maximum

transfer duration, τ(n+1)
m − τ(1)1 ≤ ∆τmax; and (iii) a minimum arc duration, τ(p)m − τ(p)1 ≥ ∆τ(p)min, where ∆τ

(p)
min =

max{∆̄τmin,mωk(τ(p)m )‖∆ηp ‖/Tmax}, for p = 1, . . . , n, and ∆τ(p)min = ∆̄τmin for p = n + 1. In the latter, the maneuver

feasibility is considered through a conservative overestimation of the duration that is necessary to spread the impulsive

maneuver ∆vj into an equivalent finite-thrust arc for a probe of mass m thrusting at maximum thrust, Tmax [29].
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C. Accurate computation of Jacobian of defect constraints

Providing accurate and fast information on the objective function and constraints derivatives with respect to the NLP

variables is of paramount importance for the multiple shooting numerical efficiency and convergence performances. In

the present analysis, the objective function and constraints possess simple derivative expressions, with the exception of

the Jacobian of defect constraints (Eq. (17)). To avoid using finite difference methods, these derivatives are extracted

from the STM, which in turn is computed by integrating the variational equations described in Eq. (13). The use of

information contained in the STM not only allows an increased accuracy in the derivatives computation (on the order of

the numerical propagator tolerance), but also an increased robustness of the algorithm itself [30].

The focus is on computing the derivative of ϕ(xk, τk ; τk+1) in Eq. (17) with respect to xk , τk , and τk+1 (superscripts

are dropped to ease notation). An analytical result is used to link the derivative of the flow with its STM [14, 31]:

dϕ
dxk
= Φ(τk, τk+1),

dϕ
dτk
= −Φ(τk, τk+1) f (xk, τk),

dϕ
dτk+1

= f (ϕ(xk, τk ; τk+1), τk+1), (25)

where f is the vector field in Eq. (11). While the first and last relations in Eq. (25) are straightforward and directly stem

from the definition of STM and flow, respectively, the second equation is not trivial and deserves a dedicated treatment.

Remark 1 (Initial Flow Projection). Let ϕ(x0, τ0; τ) be the flow at τ of a general dynamics Ûx = f (x, τ), with

f : Rn+1 → Rn, starting from initial conditions (x0, τ0). A change in the sole initial value of the independent variable,

τ0, affects the flow at τ proportionally to the system state transition matrix from τ0 to τ and vector field at (x0, τ0), i. e.,

dϕ
dτ0
= −Φ(τ0, τ) f (x0, τ0). (26)

The proof of Remark 1 is given in the Appendix. Referring to Fig. 2 and assuming a uniform time discretization

within each arc, with segment duration ∆τ = (τm − τ1)/(m − 1), we have

τk = τ1 + (k − 1)τm − τ1
m − 1

, k = 1, . . . ,m. (27)

Since the NLP variables for each arc are {xk}mk=1, τ1, and τm, the derivatives of ζk in Eq. (17) with respect to these

quantities have to be calculated. By virtue of Remark 1, and using the results in Eqs. (25), these derivatives read

dζk
dxk
= Φ(τk, τk+1),

dζk
dxk+1

= −I6×6, k = 1, . . . ,m − 1,

dζk
dτ1

:=
dτk
dτ1

dϕ
dτk
+

dτk+1
dτ1

dϕ
dτk+1

= −m − k
m − 1

Φ(τk, τk+1) f (xk, τk) +
m − k − 1

m − 1
f (ϕ(xk, τk, τk+1), τk+1),

dζk
dτm

:=
dτk
dτm

dϕ
dτk
+

dτk+1
dτm

dϕ
dτk+1

= − k − 1
m − 1

Φ(τk, τk+1) f (xk, τk) +
k

m − 1
f (ϕ(xk, τk, τk+1), τk+1).

(28)
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In Fig. 3 the structure of Jacobian for nonlinear equality constraints is reported for m = 6, n = 2 (5 segments, 3

arcs). The terms across the diagonal block are those given by dζk/dxk and dζk/dxk+1, whereas the columns in the

rightmost part of the matrix represent dζk/dτ1 and dζk/dτm for the three arcs. The bottom part of the Jacobian is made

of dψ0/dx0, dψ f /dx f , and dψ f /dτf . Note that the derivatives of the linear equality constraints in Eq. (23) (ψj and σj)

are not reported for simplicity. In Fig. 3, it can be seen how the choice of repeating the node at arcs interfaces produces

an arc-wise structured Jacobian, which can be constructed recursively once m and n are given.

Variables

Eq
ua

lit
y 

co
ns

tra
in

ts
Arc 1

Arc 2

Arc 3

d⇣k/dxk

d⇣k/dxk+1

d⇣k/d⌧1

d⇣k/d⌧m

d 0/dx0

d f/dxf d f/d⌧f

Fig. 3 Structure of Jacobian for nonlinear equality constraints.

IV. Case study: Optimal transfers to the Sun–Earth saddle point
Evidence is mounting about the importance of the gravitational SP within the solar system [23]. Regions about the

SP present clean, close-to-zero background acceleration environments where possible tests of the General Relativity

can be conducted. In particular, Modified Newtonian Dynamics (MOND) and Tensor-Vector-Scalar (TeVeS) can be

valid alternative gravity theories when accelerations are below 10−10 m/s2 [21, 24, 32]. Among the SP in the solar

system, the Sun–Earth one seems particularly appealing due to its relatively easy accessibility [24, 25, 33]: it is located

at a distance of approximately 258, 800 km from the Earth, along the Sun–Earth line, between the Sun and the Earth.

Although saddle points seem to be remarkable locations in the solar system, they are still unexplored.

In this work, the multiple burns multiple shooting algorithm presented in Section III is applied to find trajectories

that pass through the Sun–Earth saddle point. A miss distance of up to 50 km is tolerated, while no requirement for the

relative velocity at the saddle point is set. In view of a mission extension scenario (e.g., LISA Pathfinder), our analysis

focuses on spacecraft already orbiting about Sun–Earth L1,2 halos. Thus, optimal halo-to-SP transfers in the Sun–Earth

system are sought. Table 1 gives the physical parameters used in the analysis below..
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Table 1 Parameters of the Sun–Earth–Moon system and the spacecraft.

Parameter Symbol Value

Sun–Earth mass ratio µ 3.003480593992993 × 10−6

Earth gravitational parameter µ3 398600.4354360959 km3/s2

Moon gravitational parameter µ10 4902.800066163796 km3/s2

Length unit LU 1.495978706136889 × 108 km
Time unit TU 58.13235351684487 days

Velocity unit VU 29.78473657194809 km/s
Earth mean radius RB3 6371.008366666666 km
Moon mean radius RB10 1737.4 km

Earth oblateness coefficient J23 0.001082616
Moon oblateness coefficient J210 0

SRP parameter SP0 2.210656810849369 × 106 km3/s2

L1 location w.r.t. Earth xL1 −1.491551005309341 × 106 km
L2 location w.r.t. Earth xL2 1.501531764462003 × 106 km
Reflectivity coefficient cr 0.08
Area-to-mass ratio A/m 0.02 m2/kg

Sun–Earth saddle point in the CRTBP x̂SP 258, 813.23 km or 0.998266936932953

A. Location of the Sun–Earth saddle point

By definition, the gravitational saddle point is the location in the configuration space where the net gravitational

accelerations balance. It is a fixed point just in the CRTBP, located at x̂SP (see Table 1). In a higher-fidelity model, the

SP position, RSP, is calculated by solving Newton’s gravitational law

∑
j∈S

µ̂j
R j − RSP

‖R j − RSP‖3
= 0, (29)

once the ephemerides of the celestial bodies in S are known. Eq. (6a) is applied to RSP, solution of Eq. (29), to obtain

the saddle point trajectory in the RPRnBP. The SP trajectory shown in Fig. 4 is computed for 1, 500 days starting on

December 3 2015 04:47:27.928 TDB (LISA Pathfinder launch epoch).

B. Importance of high-fidelity modeling

Table 2 shows the Sun–Earth SP position shift with respect to its fixed position in the Sun–Earth circular restricted

three body problem for each celestial body considered. The lunar gravity causes the largest perturbation, followed by

Jupiter and Venus. Because in some applications the minimum saddle point distance for a meaningful measurement

can be in the order of 1 km [23], the saddle point location knowledge should be determined at sub-km precision.
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Fig. 4 Sun–Earth saddle point trajectory in the RPRnBP.

This requirement imposes accounting for all the celestial bodies in Table 2. Moreover, the perturbation due to Earth

oblateness is necessary in view of the numerous close encounters experienced in optimal LPO-to-SP transfers (see

Section IV.D). A quantitative analysis on the accelerations due to the solar radiation pressure shows values in the order

of 10−7 m/s2, which is comparable to the perturbation by Jupiter, and is only one order of magnitude smaller than the

thrust-to-mass ratio of a 1000-kg spacecraft equipped with a 1-mN thruster. The importance of the perturbing actions

for the specific application case motivates the high-fidelity model developed.

C. Departure leg and boundary conditions

It is assumed that the spacecraft initially lies on the unstable manifold of a halo orbit about either L1 or L2 of the

Sun–Earth system. The displacement along the unstable direction is 150 km in position and 3 cm/s in velocity [34].

Accordingly, the initial state is specified by using 1) the halo out-of-plane amplitude, Az ∈ [5, 50] × 104 km; 2) the

nondimensional time along the halo, tpo, spanning a complete period; and 3) an initial epoch, t0, through which the

states of all retained celestial bodies are determined. The initial epoch spans a duration of 29 days, from March 30 to

April 28, 2017. This time interval is sufficient for a complete lunar revolution around the Earth and is able to capture the

largest perturbative effects on the spacecraft orbit toward the saddle point. The considered halo out-of-plane interval

encloses the one of LISA Pathfinder, roughly retracing an Az = 40 × 104 km amplitude halo.

Table 2 Shift of Sun–Earth saddle point location in meters.

Moon Jupiter Venus Saturn Mars Mercury Uranus Neptune

Min 241.09 × 103 2.93 × 103 104.33 291.90 5.92 10.02 12.83 6.79
Max 11200.75 × 103 10.33 × 103 4.34 × 103 777.57 324.50 72.31 30.07 15.72
Mean 2055.87 × 103 6.86 × 103 732.50 572.66 68.14 28.26 22.00 11.48
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A thorough exploration of the search space is performed in [22]. Initial guesses correspond to orbits intercepting a

bubble of 10,000 km centered at the saddle point within 5 years. A total of 942/578 solutions departing from L1/L2

are processed by the multiple burns multiple shooting algorithm. The timing, direction, and magnitude of impulsive

maneuvers are optimized to target the saddle point (see [22] for more details on the first guess generation).

D. Results

Optimal transfers to the saddle point have been calculated for n = 5, m = 3. These values are primarily suggested by

numerical simulations and convergence rate analysis of the multiple shooting algorithm in simpler models. The number

of NLP variables is thus 120. Table 3 displays the algorithm performances in terms of converged solutions ratio. The

number of converged solutions is higher for L1-departing transfers. One third of L2 initial conditions provide optimal

transfers to the SP, thus highlighting the difficulty and the larger cost necessary to reach the SP from the L2 LPO region

for the solutions samples studied in this work. This result meets the expectations of the search space exploration in [22].

Figs. 5–6 illustrate a few examples of transfer trajectories starting from L1 (Fig. 5) and L2 (Fig. 6) halo unstable

manifolds. Transfers have been labeled according to geometrical features to aid interpretation and to group the solutions

into families. The implementation of the optimization is able to deal with a wide variety of solutions, from short/direct

transfers to longer ones, characterized by multiple chaotic revolutions and close passages about Earth and/or Moon. The

multiple burns multiple shooting algorithm implemented here scans the solution space and finds optimal transfers with

quite different parameters. This diversity aids a more robust mission analysis.

Fig. 7 shows the time of flight and total ∆v cost for optimal L1 (see Fig. 7a) and L2 (see Fig. 7b). The solutions are

grouped according to the initial halo amplitude into three sets: dark dots for Az ∈ [5, 15] × 104 km, shaded dots for

Az ∈ (15, 30] × 104 km, and light colored dots for Az ∈ (30, 50] × 104 km. A sample LISA Pathfinder mission extension

option is indicated in Fig. 7 (∆v = 1 m/s, ToF = 180 days); a richer solution set can be found in [12]. Interestingly, there

are many solutions with short time of flight (ToF) to the Sun–Earth saddle point featuring also low ∆v. This result

suggests the possibility of successfully leveraging the highly nonlinear nature of the RPRnBP to reach the SP at moderate

cost and duration [35]. The two quasi-vertical lines in Fig. 7a where many optimal solutions cluster, are the fast/direct

σ1 transfers shown in Figs. 5b–5c. The clustering of optimal short ToF solutions is less pronounced for L2-departing

orbits. In both L1,2 transfers, smaller halos reach the SP at a lower cost and shorter ToF. This is conjectured to be driven

Table 3 Number of solutions for the L1,2 cases.

Departure LPO Initial guesses Optimal solutions Convergence rate

L1 942 393 41.72%
L2 578 191 33.04%
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(a) δ1 transfer (∆v = 0.991 m/s and ToF = 239.45 days).
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(b) σ1 transfer (∆v = 0.260 m/s and ToF = 188.10 days).
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(c) σ1 transfer with one Moon close passage (termed LGA) (∆v = 0.297 m/s and ToF = 172.72 days).
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(d) g1 transfer with one Earth close passage (∆v = 1.337 m/s and ToF = 129.89 days).

Fig. 5 Optimal transfer samples to the SP from L1.
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(a) δ2 transfer with one Moon close passage (termed LGA) (∆v = 0.706 m/s and ToF = 173.26 days).
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(b) σ2 transfer (∆v = 1.261 m/s and ToF = 111.17 days).
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(d) Transfer with multiple Earth close passages (∆v = 0.720 m/s and ToF = 537.83 days).

Fig. 6 Examples of optimal transfers to the SP from L2.
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Fig. 7 Time of flight and total deterministic ∆v cost for optimal halos-to-SP transfers in the RPRnBP.

by the geometry of the unstable manifolds emanating from smaller halos, when compared to those emanating from

larger ones.

In view of the accurate position knowledge required at the saddle point, navigation and orbit determination errors

play an important role both for the correct injection onto the halo unstable manifold and for the accurate execution of

the impulsive maneuvers. A preliminary analysis estimates the navigation cost of the fast direct transfers in the order

of 1 m/s with initial position and velocity knowledge typical of already-operative spacecraft [12]. The sum of design

(deterministic) and navigation (stochastic) cost suggest feasibility of low-∆v transfers from Sun–Earth LPO to SP as

viable mission extension of end-of-life spacecraft.

V. Conclusions
In this work, a direct multiple burns multiple shooting technique is applied to the Sun–Earth gravitational saddle

point transfer problem. Efficient algorithmic procedures are implemented to solve a complex problem with a rich

high-fidelity dynamics, where many fuel-optimal trajectories are sought from the Sun–Earth libration point orbits region

to the saddle point. Results in the Sun–Earth–Moon system — 393/191 solutions departing from L1/L2 are found

— indicate an abundance of options with a variety of characteristics, including low time of flight, low total ∆v, and

self-disposing nature. The case of LISA Pathfinder mission extension is included in the application scenario.

Targeting the Sun–Earth gravitational saddle point, for instance to test of General Relativity-related theories, is

more cost-effective for L1-departing transfers when compared to L2 orbits. Due to the geometry of the problem and the

effects of solar radiation pressure, L2-departing transfers requires, on average, higher ∆v and longer cruises to reach the

saddle point. However, the total deterministic ∆v is below 20 m/s for all presented transfers, a value well within the

technological capabilities of spacecraft currently orbiting or scheduled to orbit in LPO regions.
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Appendix: Proof of Remark 1
Proof. By definition,

dϕ
dτ0
= lim
δτ0→0

ϕ(x0, τ0 + δτ0; τ) − ϕ(x0, τ0; τ)
δτ0

. (30)

It can be noticed that

ϕ(x0, τ0 + δτ0; τ) = ϕ(x0 + δx0, τ0; τ), (31)

which states that the solution triggered by an infinitesimal initial time shift, δτ0, is equivalent to the flow generated from

the unperturbed initial time, τ0, subject to an infinitesimal change in initial state, δx0. A time variation is thus translated

into a variation of state, provided that the nominal and perturbed solutions are sufficiently close. A visual interpretation

is provided in Fig. 8. By using the definition of STM, the right-hand side of Eq. (31) can be written up to the first order

as

ϕ(x0 + δx0, τ0; τ) = ϕ(x0, τ0; τ) + dϕ
dx0

δx0 = ϕ(x0, τ0; τ) + Φ(τ0, τ)δx0, (32)

and substituting Eqs. (31)–(32) in Eq. (30) one gets

dϕ
dτ0
= Φ(τ0, τ) lim

δτ0→0

δx0
δτ0

. (33)

Note that Eqs. (31)–(33) hold valid as long as the displaced state ϕ(x0, τ0 + δτ0; τ) remains in a neighborhood of

ϕ(x0, τ0; τ). Under the assumption of infinitesimal variations, x0 = (x0 + δx0)+ δτ0 f (x0, τ0) (Euler step), which yields

δx0 = − f (x0, τ0) δτ0. Substitution of the latter into Eq. (33) generates Eq. (26).

Fig. 8 Representation of the Initial Flow Projection (Remark 1).
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