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Based on hierarchies of filter lengths, the Large Eddy decomposition and the related
subgrid stresses are recognized to represent generalized central moments for the study
and modelling of the different modes composing turbulence. In particular, the subgrid
stresses and the subgrid dissipation are shown to be alternative observables to quantita-
tively assess the scale-dependent properties of momentum flux (subgrid stresses) and the
energy exchange between the large and small scales (subgrid dissipation). In this work
we present a theoretical framework for the study of the subgrid stress and dissipation.
Starting from an alternative decomposition of the turbulent stresses, a new formalism for
their approximation and understanding is proposed which is based on a tensorial turbu-
lent viscosity. The derived formalism highlights that every decomposition of the turbulent
stresses is naturally approximated by a general form of turbulent viscosity tensor based
on velocity increments which is then recognized to be a peculiar property of small scale
stresses in turbulence. The analysis in a turbulent channel shows the rich physics of the
small scale stresses which is unveiled by the tensorial formalism and usually missed in
scalar approaches. To further exploit the formalism, we also show how it can be used to
derive new modelling approaches. The proposed models are based on the second- and
third-order inertial properties of the grid element. The basic idea is that the structure
of the integration volume for filtering (either implicit or explicit) impacts the anisotropy
and inhomogeneity of the filtered out motions and, hence, these information could be
leveraged to improve the prediction of the main unknown features of small scale turbu-
lence. The formalism provides also a rigorous definition of characteristic lengths for the
turbulent stresses, that can be computed in every type of computational elements, thus
overcoming the rather elusive definition of filter length commonly employed in more clas-
sical models. A preliminary analysis in a turbulent channel show reasonable results. In
order to solve numerical stability issues, a tensorial dynamic procedure for the evolution
of the model constants is also developed. The generality of the procedure is such that it
can be employed also in more conventional closures.

Key words: Multiscale analysis of turbulence, Subgrid stresses, Small scale lengths

1. Introduction

Most of the approaches to turbulence are based on a level or scale decomposition of
the full turbulent field. Famous examples are the Reynolds decomposition of the flow in
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a mean and fluctuating part and the spectral decomposition in a hierarchy of scales of
motion. The general aim is to provide a description of turbulence simpler than that given
by the full Navier-Stokes equations. However, the nonlinearity of the problem challenges
for a reduced description of turbulence giving rise to the well-known closure problem in
statistical theories of turbulence. It consists in a coupling of the different levels and scales
composing turbulence which interact themselves exchanging momentum and kinetic en-
ergy (Domaradzki et al. 1994). In this context, the Large Eddy decomposition represents
a technique to address the multiscale approach to turbulence (Germano 1992; Kerr et al.
1996). Based on a hierarchy of filter lengths, the Large Eddy decomposition is probably
the simplest way to give an intuitive idea of scales of motion (Borue & Orszag 1998) and
the so called Filter-Space Technique, FST (Ni et al. 2014), based on the removal of some
degrees of freedom by filtering, represents an alternative approach to more sophisticated
techniques. The main quantity in the filtering analysis of turbulent flows is the so-called
subgrid turbulent stress. As remarked by Eyink (2006), the subgrid stresses reflect the
interactions of large-scale with small-scale velocity modes and, as such, its study is of
overwhelming interest. Hence, the subgrid stresses represent the large and small scale
contribution to the momentum flux. Analogously, the so-called subgrid dissipation repre-
sents the energy exchange between large and small scales. A relevant example is the use
of the filtering approach as an efficient quantitative method to assess the physical mul-
tiscale phenomena at the basis of the direct and inverse cascade in turbulence (Rivera
et al. 2003; Chen et al. 2006; Wang et al. 2018). Furthermore, as shown in Germano
(2012), the subgrid stresses formally extend to a generic large scale filtering operator the
statistical central moments and, hence, can be read as generalized central moments of
the second order.

Different formulations and decompositions of the subgrid turbulent stress can be in-
troduced, and a particular formulation based on the spatial velocity increments has been
recently proposed in Germano (2007). This formulation suggests that the scaling proper-
ties of the mean subgrid stress are similar to the properties of the second order structure
function. Moreover, as remarked in Cimarelli & De Angelis (2012), another possible merit
of this formulation is to mimic the nonlinear anisotropic feature of the energy sourcing in
wall-flows. However, a general theory on the subgrid stresses is at present missing even if
that would be very important in order to understand the scale interactions in turbulence
and to face the closure problem.

The above reasonings give impetus to fundamental investigations of nonlinear inter-
actions in turbulent flows, which may eventually provide better models. Here, we try
to address this problem by developing alternative formalisms and closures for a reduced
description of the scale-space properties of momentum and energy transfer in turbulence.
The paper is organized as follows. In section §2 we theoretically exploit the properties
of the subgrid stress tensor and by starting from an alternative decomposition we derive
a new formalism for their reduced description which is based on a tensorial viscosity. A
generalization of the gradient model approximation is also provided. In sections §4 and
§5, we analyse both the different contributions to the subgrid stress and subgrid dissipa-
tion and the new formalism, respectively, by using Direct Numerical Simulation data of
a turbulent channel which are in turn described in section §3. Starting from the tensorial
viscosity approximation, we show in §6 how it is possible to derive a new closures for the
turbulent stresses. A preliminary assessment of the models properties together with the
derivation of a tensorial dynamic procedure for the evolution of the models constants, is
shown in section §7. The paper is finally closed by final comments and remarks in section
§8. The present results are also extended to the subgrid flux associated with a scalar field
as reported in appendix A.
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In what follows we will often make use of classical nomenclature taking origin from
LES studies. However, let us remark that the developed theoretical framework allows
also for the study of the momentum and energy transfer in turbulence. In this context,
the filter length has to be understood as cross-over scale for the filtering technique that
allows us to decompose turbulence in large and small scales. Accordingly, the subgrid
stresses and subgrid dissipation are intended as observables for the study of the scale-
dependent properties of the momentum flux and of the energy transfer between large
and small scales, respectively.

2. Theoretical framework

Let us consider the subgrid stress tensor τ(ui, uj), defined as

τ(ui, uj) = uiuj − ūiūj (2.1)

and let us assume that the generic average can be represented as Leonard (1974)

ūi =

∫
G(x, ξ)ui(ξ)dξ (2.2)

where ∫
G(x, ξ)dξ = 1 , (2.3)

and G is the kernel of a generic filter in space. As shown in Germano (2007), we remark
that the subgrid stresses are equivalently given by the relation,

τ(ui, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[ui(ξ)− ui(η)][uj(ξ)− uj(η)]dξdη . (2.4)

Equation (2.4) directly connects the subgrid stresses with the velocity increments between
two points,

δui = ui(ξ)− ui(η) (2.5)

in terms of a double convolution integral. As it is well-known, the velocity increment
vector characterizes the local structure of turbulence and its study is fundamental for
the characterization of the subgrid stress intermittency and energy dissipation (Cerutti
& Meneveau 1998). By introducing the fluctuations defined as

ui = ūi + υi , (2.6)

we can decompose the subgrid stresses as

τ(ui, uj) = τ(ūi, ūj) + τ(ūi, υj) + τ(υi, ūj) + τ(υi, υj) (2.7)

where

τ(ūi, ūj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][ūj(ξ)− ūj(η)]dξdη (2.8)

τ(ūi, υj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][υj(ξ)− υj(η)]dξdη (2.9)

τ(υi, υj) =
1

2

∫∫
G(x, ξ)G(x,η)[υi(ξ)− υi(η)][υj(ξ)− υj(η)]dξdη . (2.10)

We remark that this decomposition is Galilean invariant, due to the fact that is composed
by Galilean invariant terms. The decomposition of subgrid stresses is recognized to be a
fundamental step for the characterization and modelling of the scale-dependent properties
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of the momentum exchange. Indeed, from decomposition (2.7) it is possible to derive
several reduced descriptions and modelling approaches. As an example, if we make the
following approximation

τ(ui, uj) ≈ τ(ūi, ūj) (2.11)

we directly recover the modelling approach given by the similarity models (Bardina et al.

1983b), i.e.

τ(ui, uj) ≈ τ(ūi, ūj) = ūiūj − ¯̄ui ¯̄uj . (2.12)

If we also assume that the large scale motion ūi is sufficiently smooth at the filter scale,
by considering in equation (2.8) the following expansion

ūi(ξ)− ūi(η) ≈ (ξk − ηk)∂kūi

ūj(ξ)− ūj(η) ≈ (ξh − ηh)∂hūj (2.13)

we obtain a generalized form of the so-called gradient model approximation for the sub-
grid stresses (Clark et al. 1979),

τ(ui, uj) ≈ τ(ūi, ūj) ≈ −ν
(g)
kj ∂kūi − ν

(g)
ki ∂kūj (2.14)

where the associated subgrid viscosity is a tensor given by

ν
(g)
ki = −

1

2
τ(xk, xh)∂hūi (2.15)

and

τ(xk, xh) =
1

2

∫∫
G(x, ξ)G(x,η)(ξk − ηk)(ξh − ηh)dξdη . (2.16)

When considering a regular Cartesian control volume and a top-hat filter, we have

τ(xk, xh) =
1

12
∆2

hδkh , (2.17)

where ∆h are the lengths of the filtering operation in the three spatial directions. In these
settings, the generalized gradient model (2.14) recovers the classical approximation

τ(ui, uj) ≈ τ(ūi, ūj) ≈
1

12
∆2

h∂hūi∂hūj . (2.18)

Hence, in a LES context, the generalized gradient model approximation (2.14) can be
understood as a refinement of the classical gradient model (2.18) in complex flows where
unstructured irregular grids are commonly employed.

Accordingly with the above examples, the study of the subgrid stress decomposition
(2.7) is recognized to highlight the complex nature of the small scale motion and to reveal
different modelling approaches. In this respect, we remark however that another possible
decomposition of the subgrid stresses can be used in order to further shed light on the
small scale motion and its modelling. This decomposition is given by

τ(ui, uj) = [τ(ūi, uj) + τ(υi, uj) + τ(ui, ūj) + τ(ui, υj)] / 2 (2.19)

where

τ(ūi, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][uj(ξ)− uj(η)]dξdη (2.20)

and

τ(υi, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[υi(ξ)− υi(η)][uj(ξ)− uj(η)]dξdη . (2.21)
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We remark that also this decomposition of the subgrid stresses is Galilean invariant as
clearly highlighted by the Galilean invariance of different terms. Moreover let us notice
that the tie between the two decompositions is given by the following relations

[τ(ūi, uj) + τ(ui, ūj)] /2 = τ(ūi, ūj) + [τ(ūi, υj) + τ(υi, ūj)] /2 (2.22)

[τ(υi, uj) + τ(ui, υj)] /2 = τ(υi, υj) + [τ(ūi, υj) + τ(υi, ūj)] /2 . (2.23)

Starting from the decomposition (2.19), a different approximation for the subgrid stresses
could be the following

τ(ui, uj) ≈ [τ(ūi, uj) + τ(ui, ūj)]/2 (2.24)

which, coupled with the expansions (2.13), would lead to a different approach to the
subgrid stresses in the form

τ(ui, uj) ≈ −νkj∂kūi − νki∂kūj (2.25)

where the associated subgrid viscosity is a tensor given by

νki = −
1

2
τ(xk, ui) = −

1

4

∫∫
G(x, ξ)G(x,η)[ξk − ηk][ui(ξ)− ui(η)]dξdη . (2.26)

Let us pointing out that in the proposed subgrid stress approximation (2.25) and the
related subgrid viscosity (2.26), there is not proportionality between the turbulent stress
tensor and the strain rate tensor thus removing the limitation related to classical eddy
viscosity models. Indeed, it is well known that the alignment of the subgrid flux tensor
with the strain rate is not verified (Härtel et al. 1994), also in isotropic homogeneous
turbulence (Abbà et al. 2003).

In closing this section, let us point out that the same reasoning here reported for the
derivation of tensorial subgrid viscosity approach for the subgrid stresses can be easily ex-
tended also for the subgrid flux associated with a scalar field as reported in the appendix
A. Moreover, we would like to stress that the present analysis has been conducted for
a generic filtering operation. If the filtering operator is the Reynolds average, provided
by the usual properties of the statistical average, it is easy to show that the classical
decomposition (2.7) leads to

τ(ui, uj) = τ(υi, υj) = υiυj (2.27)

since τ(ūi, ūj) = 0 and τ(ūi, υj) + τ(υi, ūj) = 0. Analogously, the alternative decomposi-
tion (2.19) leads to

τ(ui, uj) = [τ(υi, uj) + τ(ui, υj)]/2 = υiυj (2.28)

since [τ(ūi, uj)+τ(ui, ūj)]/2 = 0. The right-hand sides of equations (2.27) and (2.28) are
then recognized as the Reynolds stresses.

3. Filtered DNS data set

In order to study the properties of the different decompositions of the subgrid stresses
defined in (2.7) and (2.19) and of the tensorial subgrid viscosity defined in (2.26), we use
Direct Numerical Simulation data of a turbulent channel. Indeed, due to its statistical
symmetries, the turbulent channel represents the simplest kind of inhomogeneous and
anisotropic flow thus allowing for detailed statistical analysis of the physical mechanisms
underlying turbulence.

The Direct Numerical Simulation (DNS) data are obtained by means of a pseudo spec-
tral simulation of a turbulent channel at a nominal friction Reynolds number Reτ = 550.
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Filter ∆+
x ∆+

z ∆+
y,w ∆+

y,c DoF/DoF

F1 36 18 0.37 20 0.031
F2 72 36 1.03 33 0.004
F3 108 54 2.02 47 0.001

Table 1. Size of the filters applied to the DNS field of turbulent channel flow. ∆+
x and ∆+

z are
the filter lengths in the streamwise and spanwise directions. In the wall-normal direction the
filter length varies from the smaller value at the wall ∆+

y,w to the larger one at channel centre

∆+
y,c. The ratio between the degrees of freedom of the filtered field, DoF , with respect those of

the unfiltered one, DoF , is also reported for the different sets of filter widths adopted.
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Figure 1. Small and large scale decomposition of turbulent kinetic energy given by the filtering
approach. The left plot reports the wall-normal profiles of turbulent kinetic energy associated
with the large, ū+

i , and small, υ+

i , scale motion. The right plot shows the representation given
by the premultiplied Fourier spectra of the decomposition for a single wall-distance, y+ = 60,
as a function of the streamwise wavelength. In both plots, the large and small scale motion are
indicated with dashed and dotted lines, respectively. The arrows indicate the filtered case F1,
F2 and F3, respectively.

The width of the numerical domain is (Dx,Dy,Dz) = (4πh, 2h, 2πh) in the stream-
wise, wall-normal and spanwise directions, respectively, and h is the channel half-height.
In the following the index i = 1, 2, 3 corresponds to the x, y, and z directions respec-
tively. The number of Fourier modes and Chebyshev polynomials used in the horizontal
and vertical directions are (Nx, Ny, Nz) = (768, 257, 768) which leads to a resolution
(∆+

x ,∆
+min
y ,∆+max

y ,∆+
z ) = (9, 0.04, 6.5, 4.5) where the superscript + denotes the cus-

tomary adimensionalization with viscous units. The time integration is performed with
a partially implicit, Crank-Nicholson/Runge-Kutta scheme.
The filtered velocity field is computed by means of a top-hat filter in physical space,

G(x, ξ) = G(y, r) =
1

∆x∆y(y)∆z

3∏

i=1

H(∆g
i /2− |ri|) (3.1)

where ri = xi − ξi, ∆
g
x = ∆x, ∆

g
z = ∆z and ∆g

y = 2[H(ry)∆
t
y + H(−ry)∆

b
y], with

∆t
y = yj+1 − yj and ∆b

y = yj − yj−1 where yj is the vertical coordinate of the jth

computational point so that ∆y(y) = ∆t
y + ∆b

y. For the symmetries of the channel,
the filter operator changes with the wall-normal position y. It is worth noting that the
filter operator is an independent variable that, together with the filter length, specifically
defines the large and small scales of the decomposition. In the present context, the use of
a top-hat filter is justified by its compact support in physical space so that the range of
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Stresses Description

CD τ(ūi, ūj) + τ(ūi, υj) + τ(υi, ūj) + τ(υi, υj) Classical decomposition (2.7)
CD1 τ(ūi, ūj) Large scale interactions
CD2 τ(ūi, υj) + τ(υi, ūj) Large and small scale interactions
CD3 τ(υi, υj) Small scale interactions

AD [τ(ūi, uj) + τ(υi, uj) + τ(ui, ūj) + τ(ui, υj)] / 2 Alternative decomposition (2.19)
AD1 [τ(ūi, uj) + τ(ui, ūj)] /2 Interaction with large scales
AD2 [τ(υi, uj) + τ(ui, υj)] /2 Interaction with small scales

Table 2. Analysed stress decompositions.

small and large scales are clearly defined in space. Indeed, we aim at assessing a general
framework for the study of the different contributions to turbulence as alternative to
more classical approaches such as those given by the spectral decomposition where sharp-
cutoff filters are certainly better suited. Furthermore, let us point out that the theoretical
formalism here described is sufficiently general to overcome possible limitations given by
the specific filtering operator. As an example, even in the extreme case of the Reynolds
average as filtering operator, the developed formalism remains unaltered.

Three sets of filter lengths have been considered and are reported in table 1. The
resulting decomposition of turbulence in a large and small scale motion is described
in the left plot of figure 1 where the wall-normal profiles of turbulent kinetic energy
associated with the two range of scales is shown. In the right plot of figure 1, the spectral
description of the decomposition given by the filtering approach is also shown for a single
relevant distance from the wall.

4. Properties of the subgrid stress decompositions

As pointed out in Germano (2012), the subgrid stresses and their possible decomposi-
tions can be understood as generalized central moments of the second order that are very
relevant for the study of the different parts composing turbulence at different levels. For a
given fixed filter length, the different parts composing turbulence are the large and small
scales which nonlinearly interact among themselves and exchange momentum and energy.
The study of their different decompositions could shed light on the multiscale nature of
turbulence and on its modelling. The analysis will be performed by grouping together
subgrid stresses components of the same nature. For the sake of clarity, the expressions of
the classical decompositions (2.7) and the alternative one (2.19), their components and
the way they are referred in the following analysis are reported in table 2. For brevity
reasons, we will report the statistical behaviour of the different decompositions only for
the dominant component of the subgrid stress tensor, namely τ12.

In figure 2, the mean and the variance of the different decompositions of τ12 are shown
as a function of the normal to the wall coordinate for the three filter lengths considered.
As expected both the mean and variance of all the terms of the two decompositions
peak in the near-wall region and decrease moving towards the channel core. The effect
of filtering is to increase the intensity of the stresses. In the classical decomposition of
stresses we observe that, for small filter lengths, the largest values of mean and variance
are reached by the stresses associated with interactions between large scales, component
CD1, while the smallest values of stresses are given by interactions between small scales,
component CD3. On the other hand, by increasing the filter scale, this behaviour inverts
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Figure 2. Wall-normal profiles of the mean (top plots) and variance (bottom plots) of the
subgrid stress decomposition of τ+

12. Left plots: CD1 –––, CD2 – –, CD3 · · ·. Right plots: AD1
–––, AD2 – –. The profiles are shown for different filter lengths and the arrows indicate cases
from F1 to F3.

in the near-wall region since the stresses associated with small scales, component CD3,
are the most intense both in terms of mean and variance. This inversion of roles is not
observed in the channel core, thus, highlighting that the near-wall region is characterized
by phenomena of momentum exchange where small scales play a more significant role.
The stresses associated to the interactions between large and small scales, component
CD2, appear to be always in between the stresses CD1 and CD3 in terms of mean and
variance. The new decomposition highlights similar trends consisting, for small filter
lengths, of subgrid stresses dominated by the interactions with large scales, component
AD1, both in the channel core and in the near-wall region. On the other hand, for large
filter scales, the subgrid stresses of the near-wall region are driven by the interactions
with the small subgrid field, component AD2.

The wall-normal profiles of the skewness and kurtosis of the different subgrid stress
decompositions are considered now in order to further characterize the properties of the
decompositions. As shown in figure 3, a strong non-Gaussian behaviour is observed for all
the terms composing the subgrid stresses being their distributions significantly skewed
and characterized by large levels of kurtosis. By starting from the skewness, we observe
that, with exception of a change of sign between the two halves of the channel, the
profiles are almost flat. The largest values of skewness are exhibited by stresses involving
the large scale motion, i.e. components CD1, CD2 and AD1. On the other hand, the
stresses associated to interactions with the small scale field are less skewed, components
CD3 and AD2. As shown in the insets of figure 3, the effect of the filter size is to decrease
the levels of skewness for all the stresses with exception to those associated with the small
scale motion, i.e. terms CD3 and AD2. With regard to kurtosis, we observe that all the
profiles monotonically increase with the wall-distance. Hence, the higher levels of kurtosis
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Figure 3.Wall-normal profiles of skewness (top plots) and kurtosis (bottom plots) of the subgrid
stress decomposition of τ12. Left plots: CD1 –––, CD2 – –, CD3 · · ·. Right plots: AD1 –––, AD2
– –. The profiles are shown for the intermediate filter case F2. The effect of filtering is shown in
the insets where the volume integral of skewness and kurtosis is shown for the three filter cases.

are reached in the channel core region. Contrarily to the behaviour of the skewness, the
deviation from Gaussianity is larger for the stresses CD2, CD3 and AD2 associated with
the small scale motion. Indeed, the smallest values of kurtosis are reached by stresses
related to the large scale motion, components CD1 and AD1. As shown in the insets of
figure 3, also in this case, the effect of filtering is to reduce the non-Gaussianity for all the
terms composing the subgrid stresses. This behaviour could be related to the strongly
non-Gaussian nature of the small scale contribution to the momentum flux whose effect
is weakened by the inclusion of larger and larger scales by increasing the filter length.

Let us now analyse the structural properties Sagaut (2001) of the decompositions of
the subgrid stresses here considered, i.e. the degree to which the reduced description of
the subgrid stresses given by each element of the decompositions succeeds to represent
the total momentum flux. To this aim, the correlation of the different terms composing

the subgrid stress decomposition τ
(dec)
ij with the total ones τ

(tot)
ij = τ(ui, uj),

Cij(y) =
〈τ

(dec)
ij τ

(tot)
ij 〉

√
〈τ

(dec)2
ij 〉〈τ

(tot)2
ij 〉

(4.1)

is shown in figure 4 as a function of the normal to the wall coordinate for different filter
lengths. In the definition (4.1), 〈·〉 is used to denote temporal and spatial average in
the homogeneous directions. As shown in figure 4, the profiles of the contribution to the
subgrid stresses of phenomena involving the large scale motion, components CD1 and
AD1, exhibit an increase of correlation with the total turbulent stresses by moving from
the wall to the channel centre. On the contrary, the contribution given by the small scale
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Figure 4. Wall-normal profiles of the correlation function Cij for the different subgrid stress
decompositions of τ12. Left plots: CD1 –––, CD2 – –, CD3 · · ·. Right plots: AD1 –––, AD2 – –.
The profiles are shown for different filter lengths and the arrows indicate cases from F1 to F3.

motion, components CD3 and AD2, are more correlated with the total turbulent stresses
near the wall rather than in the bulk of the channel. Accordingly, with exception of the
near-wall region, the subgrid stresses CD1 and AD1 due to interactions with the large
scale motion, result to be the best approximation of the total subgrid stresses. This result
is at the basis of the well-known ability of similarity models to reproduce the structural
properties of the subgrid stress tensor. This property is partially mitigated by a double
effect of filtering. Indeed, a reduction of correlation with the total stresses is observed for
the stresses associated with the large scale motion, CD1 and AD1, by increasing the filter
length. On the other hand, the effect of filtering is to increase the degree of correlation
for the stresses due to interactions with the small scale motion, i.e. components CD3
and AD2. This double effect of filtering is particularly effective in the near-wall region.
Indeed, the contribution of stresses involving the small scale motion, components CD3
and AD2, is found to be the best approximation of the near-wall turbulent stresses for
the larger filter case F3. This aspect, further support the well-known idea of a near-wall
region where the role of small scales in the phenomena of momentum flux is stronger
(Domaradzki et al. 1994).

In closing this section, let us consider also the contribution of each element of the
decompositions of the subgrid stresses to the overall energy transfer between large and
small scales. To this aim, we study the so-called subgrid dissipation of turbulent kinetic
energy defined as,

ǫsgs = 〈τ ′ijS̄
′

ij〉 (4.2)

where the prime denotes a fluctuating quantity and S̄′

ij = (∂j ū
′

i+∂iū
′

j)/2 is the strain rate
tensor of the fluctuating resolved velocity field. In a LES context, the subgrid dissipation
is recognized to represent the most important effect on the large scales of the subgrid
stresses that should be reproduced accurately by models (Piomelli et al. 1996; Cimarelli
& De Angelis 2014).

As shown in the main plots of figure 5, the intensity of the subgrid dissipation is higher
in the near-wall region for all the terms of the decompositions and decreases moving away
from the wall. This behaviour is consistent with the presence in the near-wall production
region of stronger energy cascade mechanisms towards dissipation at small scales. In this
context, the stresses related to interactions with large scales, components CD1 and AD1,
are responsible for the larger amount of subgrid dissipation in the case of small filter
lengths. Indeed, the stresses due to the interactions with the small scale motion, CD3
and AD2, give rise to a relative small amount of subgrid dissipation. As before, the mixed
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Figure 5. Wall-normal profiles of the subgrid dissipation ǫ+sgs reproduced by the different de-
compositions of the subgrid stresses. Left plot: the subgrid dissipation is computed using the
components of the CD decompositions, CD1 –––, CD2 – –, CD3 · · ·. Right plot: the subgrid
dissipation is computed using the components of the AD decompositions, AD1 –––, AD2 – –.
In the main plots the profiles show the behaviour for the filter case F1 while in the insets for
the filter case F3.

stresses CD2 of the classical decomposition show a behaviour that is always in between
the two stresses associated with the large and small scales. By increasing the filter length,
the contribution of stresses involving large scales to the energy transfer processes of the
channel core, components CD1 and AD1, remains dominant, see the insets of figure 5.
On the contrary, the behaviour of the subgrid dissipation becomes more complex in the
near-wall region due to the appearance of a double peak. As also shown in Härtel et al.
(1994); Cimarelli & De Angelis (2012), the near-wall region for large filter lengths, is
characterized by a three layer structure where two peaks of high dissipation embed a low
dissipative layer which eventually gives rise to a change of sign and, hence, to a reverse
energy transfer from small to large scales, ǫsgs > 0 (Cimarelli et al. 2013, 2015, 2016).
In this context, we observe that the contribution of stresses involving small scales in the
energy transfer processes of the near-wall region becomes dominant. Indeed, as shown
in the insets of figure 5, for the filter case F3, the stresses related to interactions with
the small scale motion, CD3 and AD2, are responsible for a larger amount of dissipation
with respect to the stresses, CD1 and AD1, associated with the large scale motion. In a
LES context, we argue that this phenomenon is at the basis of the very low-dissipative
behaviour of similarity models. It is also interesting to point out that the phenomenon
of reverse energy transfer from small to large scales, ǫsgs > 0, appears to be mostly
reproduced by stresses given by interactions with the small scale motion, components
CD3 and AD2, e.g. see the works related to this topic Domaradzki et al. (1994) and
Piomelli et al. (1991).

As a final comment of this section let us remark that the present analysis supports
assumption (2.24), i.e.

τ(ui, uj) ≈ [τ(ūi, uj) + τ(ui, ūj)] /2 . (4.3)

Indeed, for small filter lengths, the contribution of [τ(υi, uj) + τ(ui, υj)] /2 is negligible in
term of mean and fluctuating intensity, see figure 2, and in the correct reproduction of the
actual stresses and of the subgrid dissipation, see figures 4 and 5. For large filter lengths,
the strength of this assumption remains unaltered in the core of the channel, whereas,
it deteriorates close to the walls, since the contribution of [τ(υi, uj) + τ(ui, υj)] /2 over-
comes that of [τ(ūi, uj) + τ(ui, ūj)] /2. Let us point out that these results can be under-
stood also as a measure of the scale-space locality of the momentum and energy transfer
mechanisms in turbulence (Zhou 1993; Domaradzki et al. 2009). In this context, the
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Figure 6. Mean wall-normal profiles of ν+

21 which is the only non-zero mean component of the
subgrid viscosity tensor (2.26). All the three sets of filter lengths are shown: F1 (solid line), F2
(dashed line) and F3 (dotted line).

largest contribution given by the term AD1 with respect to AD2 to the total subgrid
stresses and dissipation, actually suggests that local mechanisms prevail on non-local
ones in the momentum and energy transfer phenomena, respectively.

5. Properties of the tensorial subgrid viscosity

In section §2 we have shown how the general formalism of the viscosity tensor based on
the velocity increments, equation (2.26), is a natural approximation for the momentum
flux originating from interactions between large and small scales, equation (2.25). The
degree of generality of the formalism is further supported by the fact that can be also
used to give a reduced description of the scalar flux as shown in appendix A. The main
properties of the subgrid viscosity tensor are here described.

Let us point out first that the proposed subgrid viscosity (2.26) is actually strictly
related with the derived generalization of the subgrid viscosity of the gradient model
(2.15). Indeed, by recalling the relation (2.22)

[τ(ūi, uj) + τ(ui, ūj)] /2 = τ(ūi, ūj) + [τ(ūi, υj) + τ(υi, ūj)] /2 , (5.1)

where

τ(ūi, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][uj(ξ)− uj(η)]dξdη , (5.2)

τ(ūi, ūj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][ūj(ξ)− ūj(η)]dξdη , (5.3)

τ(ūi, υj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][υj(ξ)− υj(η)]dξdη , (5.4)

and considering again the approximation for the filtered velocity increment (2.13), we
can write

[τ(ūi, uj) + τ(ui, ūj)]/2 ≈ −νkj∂kūi − νki∂kūj (5.5)

τ(ūi, ūj) ≈ −ν
(g)
kj ∂kūi − ν

(g)
ki ∂kūj (5.6)

[τ(ūi, υj) + τ(υi, ūj)] /2 ≈ −ν
(cross)
kj ∂kūi − ν

(cross)
ki ∂kūj (5.7)

where the corresponding subgrid viscosities are given by,

νki = −
1

4

∫∫
G(x, ξ)G(x,η)[ξk − ηk][ui(ξ)− ui(η)]dξdη (5.8)
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Figure 7. Wall-normal profiles of the standard deviation of ν+

ij . The j-index goes from 1 to 3
moving from left to right while the i-index goes from 1 to 3 moving from top to bottom. All the
three sets of filter lengths are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

ν
(g)
ki = −

1

4
∂hūi

∫∫
G(x, ξ)G(x,η)(ξk − ηk)(ξh − ηh)dξdη (5.9)

ν
(cross)
ki = −

1

4

∫∫
G(x, ξ)G(x,η)[ξk − ηk][υi(ξ)− υi(η)]dξdη . (5.10)

By recalling now relation (5.1), we can write,

νki = ν
(g)
ki + ν

(cross)
ki (5.11)

thus highlighting that the present subgrid viscosity approach is composed by two con-
tributions. The first one is given by the subgrid viscosity of the generalized gradient

model ν
(g)
ki and, hence, is related to the stresses at large scales τ(ūi, ūj). The second one,

ν
(cross)
ki , is due to the cross stresses τ(ūi, υj) + τ(υi, ūj).
Let us remark that equations (5.5) and (5.7) further support the idea that the sub-

grid viscosity tensor based on velocity increments is a natural approximation of the
momentum flux rising from interactions between range of scales of different size. Indeed,
equations (5.8) and (5.10) highlight that the same subgrid viscosity formalism allows
us to represent the interactions between different type of velocity scales once the corre-
sponding velocity increments are used, i.e. ui(ξ) − ui(η) for the stresses τ(ūi, uj) and
υi(ξ)− υi(η) for the stresses τ(ūi, υj).

Let us now analyse the complex features unveiled by the subgrid viscosity tensor (2.26)
in the turbulent channel flow. It is first worth pointing out that in homogeneous isotropic
turbulence all the mean components of the subgrid viscosity tensor (2.26) are null, 〈νki〉 =
0, where 〈·〉 denotes spatial average in the homogeneous directions and temporal average.
Whereas, in inhomogeneous flows we have non zero average components. In the case of
a channel flow, the only non zero average component is ν21. This is one of the ν2i-
components that are used in conjunction with wall-normal gradients of the velocity field
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Figure 8. Wall-normal profiles of the third-order moment of νij . The j-index goes from 1 to 3
moving from left to right while the i-index goes from 1 to 3 moving from top to bottom. All the
three sets of filter lengths are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

for the reconstruction of the subgrid stresses, equation (2.25). As shown in figure 6,
the mean value of the subgrid viscosity peaks in the near-wall region and, as expected,
is found to increase its magnitude by increasing the filter length. An antisymmetric
behaviour with respect to the centerline of the channel is also observed.
The variance of the subgrid viscosity components is shown in figure 7 for different filter

lengths. The overall behaviour consists of wall-normal profiles which start from zero at
the wall, reach a maximum in the near-wall region and then decrease exhibiting a relative
minimum in the channel centre. The effect of the filter length is to increase the intensity
of the fluctuations of the subgrid viscosity for all its components. The anisotropy of the
subgrid viscosity tensor is such that the most intense fluctuations are those of the ν1i-
components, i.e. those that are used in conjunction with the streamwise gradient of the
velocity field to reconstruct the subgrid stress tensor, see equation (2.25). The anisotropy
of the subgrid viscosity tensor reveals itself also in the shape of the wall-normal profiles.
Indeed, from figure 7 it can be seen that the profiles of the ν2i-components show a less
sharp behaviour with maxima located a bit further away from the wall with respect ot
the ν1i- and ν3i-components.

In figures 8 and 9, the third- (skewness) and fourth- (kurtosis) order moments of the
subgrid viscosity tensor (2.26), respectively,

〈ν′3ij 〉

〈ν′2ij 〉
3/2

and
〈ν′4ij 〉

〈ν′2ij 〉
2

(5.12)

are shown. As shown in figure 8, the behaviour of the subgrid viscosity is significantly
skewed. However, different behaviours are observed for the different components. In par-
ticular, the diagonal components, νij with i = j, exhibit a positively skewed symmetric
behaviour with respect the channel centre while the deviatoric components ν12 and ν21
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Figure 9. Wall-normal profiles of the fourth-order moment of νij . The j-index goes from 1 to
3 moving from left to right while the i-index goes from 1 to 3 moving from top to bottom. All
the three sets of filter lengths are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

are antisymmetric. The other deviatoric components, ν13, ν23, ν31 and ν32, recover the
normal distribution being their skewness statistically zero. Interestingly, the effect of fil-
tering is to reduce the non-Gaussianity of the subgrid viscosity in accordance with the
behaviour of the subgrid stresses observed in the previous section. Indeed, we observe
that, by increasing the filter length from case F1 to case F3, the value of skewness signif-
icantly reduces. The behaviour of the kurtosis of the subgrid viscosity is shown in figure
9. In this case a highly non-Gaussian behaviour is observed for all the components of
the subgrid viscosity since the wall-normal profiles of kurtosis is always larger than 3. A
general behaviour is observed for all the components which consists of an increasing of
intermittency from the wall up to the channel centre. As for the skewness, the effect of
filtering is to reduce the intermittency of the subgrid viscosity.

Instantaneously, both positive and negative values of νij are present since 〈·〉 = 0 for
most of the components. This double feature shows a distinct topological behaviour that
can be highlighted with the spatial correlation function,

Rij(rx, rz, y) =
〈νij(x

′, y, z′)νij(x
′′, y, z′′)〉

〈ν2ij〉(y)
(5.13)

where ri = x′

i − x′′

i with i = 1 and i = 3, is the increment of the coordinates in the
homogeneous directions. Accordingly with the gross features of turbulent fluctuations
in channel flows, the subgrid viscosity νij realizes a general flow pattern consisting of
structures elongated in the streamwise direction. Indeed, as shown in figure 10, the spatial
correlation function evaluated for a selected component of the subgrid viscosity tensor
in the near-wall production region highlights a relatively short correlation length in the
spanwise direction and a larger one in the streamwise direction. This topological feature
is retained by all the components (not shown). Interestingly, the correlation function
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Figure 10. Spatial correlation coefficient R12 evaluated in the near-wall production region at
y+ ≈ 21 and shown as a function of the streamwise (left) and spanwise (right) increment. All
the three sets of filter lengths are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

shows also a clear anticorrelation both in the streamwise and spanwise direction, thus
highlighting that regions of positive/negative values of subgrid viscosity are statistically
surrounded by regions of negative/positive values. It is worth pointing out that the
approximation of the subgrid stresses given by the subgrid viscosity tensor formalism is
such that negative values of νij are not strictly related with phenomena of backscatter
as it is for scalar subgrid viscosity approximations. Indeed, the subgrid dissipation under
the subgrid viscosity tensor approximation reads,

ǫsgs = −〈(νkj∂kūi + νki∂kūj)
′ ∂j ū

′

i〉 (5.14)

so that backscatter can be reproduced but not necessarily with a change of sign of νij .
In closing this section, let us point out that the formalism of the subgrid viscosity tensor

introduced with equation (2.26) allows us to highlight the complexity of the small scale
motion in inhomogeneous anisotropic flows. Indeed, as shown here in quantitative terms,
the subgrid viscosity tensor exhibits a strong inhomogeneous and anisotropic behaviour
in terms of intensity, distribution, skewness and intermittency of its different components.
Hence, it is argued how much of this complex behaviour is not taken into account by
classical subgrid viscosity approaches based on more simple and restricted formalisms.

6. Modelling approach

In this section, we show how the developed theoretical framework for the study of
turbulence and, in particular, the reduced description of momentum flux given by the
tensorial viscosity based on the velocity increments, can be used to derive turbulence
closures in a context of LES. Let us point out that the proposed modelling approaches for
the subgrid viscosity can be also used for the modelling of the subgrid flux associated to
a scalar field as shown in appendix A. The derivation and the main theoretical properties
of the developed subgrid closures will be discussed in detail.

6.1. First-order modelling

Let us consider a top-hat filter, defined by the kernel

G(x, ξ) =

{
1/Ω inside the grid element
0 otherwise

where Ω is the volume of the grid element. In this case, approximation (2.26) can be
rewritten as

νki = −
1

4Ω2

∫

Ω

∫

Ω

(ξk − ηk)[ui(ξ)− ui(η)]dξdη . (6.1)
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We now approximate the unfiltered velocity by means of an expansion of the velocity
field ui(ξ) around the filtered value ūi(x),

ui(ξ) = ūi(x) + ∂hūi(x)(ξh − xh) +O2 (6.2)

where x is the position of the barycenter of the grid element and only the first order
derivatives are considered. By applying this approximation we have

νki = −
1

4Ω2

∫

Ω

∫

Ω

(ξk − ηk)[∂hūi(x)(ξh − xh)− ∂hūi(x)(ηh − xh)]dξdη

= −
1

4Ω2

∫

Ω

∫

Ω

[(ξk − xk)− (ηk − xk)][∂hūi(x)(ξh − xh)− ∂hūi(x)(ηh − xh)]dξdη

= −
1

4Ω2
∂hūi(x)

∫

Ω

∫

Ω

[(ξk − xk)− (ηk − xk)][(ξh − xh)− (ηh − xh)]dξdη

= −
1

4Ω2
∂hūi(x)

{∫

Ω

∫

Ω

(ξk − xk)(ξh − xh)dξdη +

∫

Ω

∫

Ω

(ηk − xk)(ηh − xh)dξdη

−

∫

Ω

∫

Ω

(ξk − xk)(ηh − xh)dξdη −

∫

Ω

∫

Ω

(ηk − xk)(ξh − xh)dξdη

}
(6.3)

but ∫

Ω

∫

Ω

(ηk − xk)(ξh − xh)dξdη =

∫

Ω

(ηk − xk)

∫

Ω

(ξh − xh)dξdη = 0 (6.4)

and, hence, the turbulent viscosity tensor takes the following form

νki = −
1

2Ω
∂hūi(x)

∫

Ω

(ξk − xk)(ξh − xh)dξ . (6.5)

The proposed model (6.5) for the turbulent viscosity exploits the idea of taking into
account the distribution of velocity in the three spatial directions within the integration
volume for filtering as suggested by the tensorial approximation (2.26). The way this idea
is realized is based simply on the concept that the structure of the integration volume
used to filter out the small subgrid field, directly impacts the anisotropic features of the
subgrid field itself and, hence, can be used to improve the prediction of the small scale
velocity field distribution given by the filtered gradient. The structure of the integration
volume (grid element in the case of implicit filters) is taken into account in the present
model formulation by the integral in (6.5). Indeed, for k 6= h the integral in (6.5) is equal
to the inertial product of the grid element respect to the barycentric axis in the directions
k and h respectively,

Ikh = −

∫

Ω

(ξk − xk)(ξh − xh)dξ (6.6)

while for k = h it becomes

Ikk −
1

2
Tr(I) = −

∫

Ω

(ξk − xk)
2dξ (6.7)

where Ikk is the inertial momentum with respect the barycentric axis in the k direction,
Ikh are the inertial products and I is the barycentric inertial tensor. Hence, after have
defined

I ′

kh = Ikh −
1

2
Tr(I)δkh , (6.8)

we get,

νki =
1

2Ω
I ′

kh∂hūi (6.9)
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thus highlighting that the anisotropy of the integration volume is directly taken into
account in the present tensorial formulation of the turbulent viscosity. In conclusion, we
can rewrite the subgrid stress tensor as

τ(ui, uj) = −

(
1

2Ω
I ′

kh∂hūj

)
∂kūi −

(
1

2Ω
I ′

kh∂hūi

)
∂kūj . (6.10)

We can observe that this formulation allows us to model also the normal subgrid stress
components

τ(ui, ui) = −

(
1

Ω
I ′

kh∂hūi

)
∂kūi, (6.11)

and so the subgrid turbulent kinetic energy. Since I ′ is a semidefinite negative matrix,
the reliability condition τ(ui, ui) > 0 is also ensured.

6.2. Second-order modelling

In the previous section, only the first order derivatives are considered in the expansion
and higher orders are neglected. In LES, where the unfiltered fields rapidly fluctuate,
this approximation could introduce a considerable error (Clark et al. 1979; Vreman et al.

1997). Hence, in the following a model with higher order approximation is derived. If
second order derivatives are retained in the expansion of the velocity field ui(ξ) around
the filtered value ūi(x),

ui(ξ) = ūi(x) + ∂hūi(x)(ξh − xh) +
1

2
∂hlūi(x)(ξh − xh)(ξl − xl) +O3 (6.12)

additional terms appear in the model for the subgrid viscosity with respect to (6.9)

νki =
1

2Ω
I ′

kh∂hūi(x)−

1

4Ω2

∫

Ω

∫

Ω

(ξk − ηk)
1

2
∂hlūi(x) [(ξh − xh)(ξl − xl)− (ηh − xh)(ηl − xl)] dξdη =

1

2Ω
I ′

kh∂hūi(x)−

1

4Ω2
∂hlūi(x)

∫

Ω

∫

Ω

1

2
[(ξk − xk)(ξh − xh)(ξl − xl) + (ηk − xk)(ηh − xh)(ηl − xl)] dξdη =

1

2Ω
I ′

kh∂hūi(x)−

1

4Ω
∂hlūi(x)

∫

Ω

(ξk − xk)(ξh − xh)(ξl − xl)dξ . (6.13)

We can now define the third order momentum tensor

Mkhl =

∫

Ω

(ξk − xk)(ξh − xh)(ξl − xl)dξ , (6.14)

and we get

νki =
1

2Ω
I ′

kh∂hūi(x)−
1

4Ω
Mkhl∂hlūi(x) . (6.15)

In conclusion, the subgrid stress tensor can be approximated as

τ(ui, uj) =

−

(
1

2Ω
I ′

kh∂hūj −
1

4Ω
Mkhl∂hlūj

)
∂kūi −

(
1

2Ω
I ′

kh∂hūi −
1

4Ω
Mkhl∂hlūi

)
∂kūj .

(6.16)
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6.3. Basic properties in regular Cartesian grids

As pointed out in the previous paragraphs, the proposed first- and second-order approxi-
mation of the subgrid viscosity tensor is based on the filtered velocity derivatives and on
inertial properties of the grid elements. The basic idea is that the structure of the mesh
impacts the anisotropic features of the unresolved motion and, hence, could be lever-
aged to improve the prediction of the main unknown features of small scale turbulence
given by the filtered velocity gradient. This aspect is particularly relevant in real-world
problems where the complexity of the unstructured meshes usually adopted strongly
affects the complexity of the unresolved flow dynamics. In the case of canonical flows
where structured grids are commonly employed, the above mentioned peculiar features
of the proposed modelling approach are partially missed. Indeed, it can be shown that in
barycentric structured Cartesian grids, the first-order and second-order approximation
of the subgrid viscosity tensor become identical. In fact, in these conditions we have that

Mkhl = 0 ∀ k, h, l (6.17)

and, hence, equation (6.15) reduces to equation (6.9). In addition, it can be shown that the
present approximation for the subgrid viscosity (6.9) together with the subgrid viscosity
associated with the generalized gradient model (2.15) exactly reduce to the viscosity of
the classical gradient model (2.18). Indeed, when barycentric structured Cartesian grids
are employed, we have also that

I ′

kh

Ω
= −

1

12
∆2

k for k = h (6.18)

and
I ′

kh

Ω
= 0 for k 6= h (6.19)

so that the subgrid viscosities of the present approximation (6.9) and of the generalized
gradient model (2.15) recover that of the classical gradient model, i.e.

νki = ν
(g)
ki = −

1

24
∆2

k∂kūi . (6.20)

6.4. Characteristic lengths for the subgrid stresses

Accordingly with the previous sections, the present modelling approach can be under-
stood as a refinement of the gradient model for the solution of complex flows. An addi-
tional outcome of the present approach is given by the fact that it provides a rigorous
definition of the characteristic length for the subgrid stresses which overcomes the rather
elusive definition of filter length, (Horiuti 1993; Carati & Cabot 1996; Abbà et al. 2015).
Here, we try to assess this problem.

Inhomogeneous, anisotropic and irregular grids are usually employed for the simulation
of real-world problems in order to better capture the main features of the large anisotropic
scales and to adapt to the complex geometry of the application considered. In these
conditions, the determination of the characteristic length that must be used to compute
the subgrid stresses is still an open question. As an example, classical scalar subgrid
viscosity models are based on a scalar filter length ∆. In Cartesian anisotropic grids,
the common practice is to use ∆ = (∆x∆y∆z)

1/3 where ∆h is the width of the grid
element or of the explicit filter adopted in the three spatial directions. However, when
unstructured grids are considered, it is difficult to define such a characteristic lengths
and the common practice is to consider the filter length of the model as given by the
cubic root of the element volume, ∆ = Ω1/3 (Farhat et al. 2006; Knight et al. 1998),
or by twice the smallest edge of the computational element (John & Kindl 2010). In a
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different approach Colosqui & Oberai (2008) derived an expression for the Smagorinsky
length scale by an energetic balance and applying the Kolmogorov hypothesis of isotropy
of the small turbulent scales. Differently, Piomelli et al. (2015) and Rouhi et al. (2016),
determine the effective filter size in function of a properly defined integral length scale. On
the other hand, anisotropic filter lengths have been used in conjunction with anisotropic
subgrid scale models (Bardina et al. 1980, 1983a; Abbà et al. 2017). See Trias et al.

(2017) and references therein, for a review of different length scales accounting for the
anisotropy of the flow. Although successfully employed, these anisotropic filter sizes have
been defined in a rather heuristic way. In this context, the alternative modelling approach
for the subgrid viscosity, equation (6.9), together with the generalized gradient modelling,
equation (2.15), suggest a rigorous definition for the characteristic lengths which properly
works also when considering irregular grids. These tensorial subgrid lengths read

(∆ij)
2 =

1

Ω

∫

Ω

(ξh − xh)(ξk − xk)dξ (6.21)

(∆
(g)
ij )2 =

1

2Ω2

∫

Ω

∫

Ω

(ξh − ηh)(ξk − ηk)dξdη , (6.22)

respectively, and can be used in every type of computational grids. For obvious reasons
these definitions of subgrid lengths can be used only in conjunction with anisotropic
subgrid scale models. However, a scalar subgrid length scale that can be used also in
isotropic subgrid scale models can be derived by means of a contraction of the tensorial
definitions (6.21) and (6.22). As an example, by considering the norm and trace we can
derive the following alternative definitions of filter length,

∆2 = |(∆ij)
2| =

∣∣∣∣
1

Ω

∫

Ω

(ξh − xh)(ξk − xk)dξ

∣∣∣∣ (6.23)

∆2 = Tr{(∆ij)
2} =

1

Ω

∫

Ω

(ξh − xh)(ξh − xh)dξ (6.24)

∆2 = |(∆
(g)
ij )2| =

∣∣∣∣
1

2Ω2

∫

Ω

∫

Ω

(ξh − ηh)(ξk − ηk)dξdη

∣∣∣∣ (6.25)

∆2 = Tr{(∆
(g)
ij )2} =

1

2Ω2

∫

Ω

∫

Ω

(ξh − ηh)(ξk − ηk)dξdη , (6.26)

that can be again used for every type of computational grids in conjunction with isotropic
subgrid scale models. Accordingly with the properties shown in section §6.3, when a
Cartesian grid is considered, the two definitions of subgrid lengths given by the present
and the generalized gradient modelling approach, collapse as,

(∆ij)
2 = (∆

(g)
ij )2 =

1

12
∆2

i δij . (6.27)

In this case, the contraction of the tensorial approach leads to two scalar subgrid lengths,

∆2 = |(∆ij)
2| = |(∆

(g)
ij )2| =

1

12

√
∆4

x +∆4
y +∆4

z (6.28)

∆2 = Tr{(∆ij)
2} = Tr{(∆

(g)
ij )2} =

1

12

(
∆2

x +∆2
y +∆2

z

)
. (6.29)

7. Large Eddy Simulations

Accordingly with the basic properties shown in section §6.3, the subgrid closures (6.10)
and (6.16) recover the classical gradient model for the case of turbulent flows solved with
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regular Cartesian grids. The gradient model approximation has been deeply investigated
in the past and has been recognized to provide several important advantages such as
a good correlation with the actual subgrid scale stresses and the ability to reproduce
phenomena of reverse energy transfer from small to large scales, see e.g Vreman et al.

(1997). However, it is well-known that this modelling approach suffers of one important
limitation consisting of a low dissipative behaviour of small scale turbulence which leads
to numerical unstable simulations. Several approaches have been then introduced to
overcome this issue. Famous examples are the Clark mixed model (Clark et al. 1979)
and its dynamic version (Vreman et al. 1996) where a linear combination of the gradient
model with a subgrid viscosity model is used. More recently, the subgrid kinetic energy
evaluated by means of a one-equation model, has been used to modulate the intensity of
gradient model in conjunction with clipping procedures (Lu & Porté-Agel 2010) while a
decomposition of the filtered velocity gradient has been used to regularize the gradient
model by keeping only the terms leading to a direct energy transfer from large to small
scales (Vollant et al. 2016).

Accordingly with the above observations, we expect that the model formulations here
proposed, (6.10) and (6.16), suffer of an under-estimation of the subgrid dissipation thus
leading numerical stability issues. Given the peculiarity of the turbulence closure here
proposed especially in the case of complex geometries solved by means of unstructured
numerical grids, we propose here an alternative tensorial modulation technique based on
a dynamic procedure §7.1. We then test the ability of such a formulation to overcome
the numerical stability issue in the classical settings of a turbulent channel §7.2. The
detailled analysis of the model properties is left to a separate contribution where the
proposed closures will be tested in more complex turbulent flows where the use of non-
Cartesian grids is demanded thus allowing to appreciate how the present formulation
performs with respect to the classical gradient model.

7.1. Tensorial dynamic procedure

The theoretical framework developed in the present work recognizes the tensorial viscosity
formalism based on velocity increments as the natural reduced description for the small
scales of turbulence. In a context of turbulence closures, this result directly leads to the
formulation of a tensorial viscosity based on filtered velocity gradients and on the inertial
properties of the volume of integration used to define the small subgrid scales. In order to
take into account the prominent role of the above aspects, we develop here a modulation
technique for the proposed turbulence closures which further exploits the idea of taking
into account the anisotropic features of turbulence by making use of a further tensorial
approach. In other words, we consider the proposed turbulence closures as modulated by
a tensorial rather than scalar coefficient, i.e.

τ(ui, uj) = −cij (νkj∂kūi + νki∂kūj) (7.1)

with

νki =
1

2Ω
I ′

kh∂hūi , (7.2)

at the first-order approximation, and

νki =
1

2Ω
I ′

kh∂hūi(x)−
1

4Ω
Mkhl∂hlūi(x) , (7.3)

at the second order. No summation is implied for index i and j in equation (7.1). For the
evaluation of the tensorial coeffient we make use of a tensorial dynamic procedure based
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on a test filter denoted as (̃·). The Germano identity (Germano 1992) reads

Lij = Tij − τ̃ij = ˜̄uiūj − ˜̄ui ˜̄uj (7.4)

where

τij = uiuj − ūiūj Tij = ũiuj − ˜̄ui ˜̄uj (7.5)

By assuming that the tensorial coefficient cij is an invariant of scale, we can write (no
summation is again implied for index i and j)

Lij = cij

[(
˜νkj∂kūi + ˜νki∂kūj

)
− (ν̃kj∂k ˜̄ui + ν̃ki∂k ˜̄uj)

]
= cij Nij (7.6)

where

ν̃ki =
1

2Ω̃
Ĩ ′

kh∂h ˜̄ui , (7.7)

at the first-order approximation, and

ν̃ki =
1

2Ω̃
Ĩ ′

kh∂h ˜̄ui(x)−
1

4Ω̃
M̃khl∂hl ˜̄ui(x) , (7.8)

at the second order. In equations (7.7) and (7.8), Ω̃, Ĩ and M̃ represent the volume and
inertial properties of the volume of integration corresponding to the double operation of
filtering. Let us remark that equation (7.6) can be in principle used for the evaluation of
the tensorial coefficient as,

cij =
Lij

Nij
(7.9)

where no contraction is implied. However, the different components of the tensor Nij can
become zero, which would make cij indeterminate or ill-conditioned. In this sense, the
use of an ensamble average does not help because in general also the mean of the different
components of Nij could be zero. Hence, to overcome this issue we multiply and divide
equation (7.9) by Nij and we consider also the ensamble average both at the numerator
and denominator, so that the final equation for the evaluation of the tensorial coefficient
is

cij =
〈LijNij〉

〈NijNij〉
, (7.10)

where no summation is again implied for index i and j.

7.2. Numerical stability and preliminary results in a turbulent channel

To test the reliability of the proposed turbulence closures and of the developed tenso-
rial dynamic procedure, we performed Large Eddy Simulations in the classical settings
of a plane turbulent channel flow. The governing equations are solved by means of the
same numerical techniques used for the production of the DNS data set and described
in section §3. The nominal friction Reynolds number is Reτ = 550. The width of the
numerical domain is (Dx,Dy,Dz) = (8πh, 2h, 4πh). Two simulations with two different
resolutions are considered. The number of Fourier modes and Chebyshev polynomials
used in the horizontal and vertical directions for the two simulations are (Nx, Ny, Nz) =
(256, 193, 256) and (Nx, Ny, Nz) = (128, 129, 128), which leads to a resolution in fric-
tion units (∆+

x ,∆
+min
y ,∆+max

y ,∆+
z ) = (54, 0.07, 9, 27) and (∆+

x ,∆
+min
y ,∆+max

y ,∆+
z ) =

(108, 0.16, 13.5, 54), for the high and low resolution cases, respectively. The sharp Fourier
cutoff is used as test filter in the homogeneous directions. No test filtering is performed
in the wall-normal direction. The adopted ratio between test filter width and the grid
filter width is 2.
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Figure 11. Large Eddy simulations of turbulent channel flows. Mean velocity (left) and turbu-
lent intensities (right) profiles as a function of the wall distance. The LES data (dashed lines)
are compared with DNS data (solid lines) described in section §3. The main plots report the
behaviours of the well-resolved LES while the insets of the coarse LES.

In order to verify the numerical stability, after reaching a statistical steady state, the
simulations have been performed for about N = 1500 large-eddy turnover times T =
h/Ucl, where Ucl is the average velocity at the centreline. No instabilities are observed,
thus showing the ability of the tensorial dynamic procedure developed in section §7.1 to
stabilize the otherwise unstable turbulence closures. It is worth noting that numerical
simulations with no model have been also performed and found to be numerically unstable
thus supporting the effectiveness of the modelling approach here proposed.

The statistical steady-state regime of the two simulations is shown in figure 11, where
the behaviour of the mean velocity and of the turbulent intensities is shown and compared
with DNS data. Reasonable results are observed both in terms of mean and variance.
In particular, the mean velocity profile is found to be slightly underestimated by both
the simulations. On the other hand, the variance of the turbulent velocity components is
found to be nicely reproduced especially by the well-resolved LES. Indeed, a slight near-
wall overprediction and bulk underestimation of the turbulent intensity values is observed
for the coarse LES which are however compatible with the levels of resolution adopted.
In conclusion, the tensorial dynamic procedure here introduced is found to stabilize
the gradient model approximation and to give reliable results in a turbulent channel
and, hence, can be considered as an alternative technique to the mixed, modulated and
regularized approaches (Clark et al. 1979; Lu & Porté-Agel 2010; Vollant et al. 2016), for
the solution of turbulent flows with the gradient model approximation.

8. Final remarks

Turbulence is widely recognized to be a multilevel and multiscale phenomenon. The
non-linearity of the physical phenomena underlying turbulence gives rise to complex in-
teractions and exchanges of momentum and energy among the different levels and scales
composing it. The study of these interactions is then recognized to be fundamental both
for theory and modelling. In this context, most of the approaches to turbulence are based
on a decomposition of the turbulent field in different contributions. Classical examples of
the multilevel and multiscale decomposition of turbulence are the Reynolds and spectral
decompositions, respectively. An additional decomposition is based on hierarchies of fil-
ter lengths and is given by the Large Eddy decomposition thus providing an additional
framework for the study of the multiscale feature of turbulence. For a given filter length,
turbulence is decomposed in large and small scales, the so-called resolved and subgrid
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motion. The two range of scales interact among themselves and exchange momentum
and energy thus giving rise to a coupling non-linear term in the equations, the so-called
subgrid stress tensor. By varying the filter lengths, the subgrid stresses become general-
ized central moments of the second order (Germano 2012) that can be used to study and
model the different parts composing turbulence at different levels. In the present work
we address these aspects by proposing a general theoretical framework for a reduced
description of the interscale momentum flux and energy exchange given by the subgrid
stresses and for their modelling.

The subgrid stresses are classically decomposed in three main contributions represent-
ing non-linear interactions occurring in the large scales, in between large and small scales
and finally in the small scale field,

τ(ui, uj) = τ(ūi, ūj) + [τ(ūi, υj) + τ(υi, ūj)] + τ(υi, υj) , (8.1)

respectively. Here, we propose an alternative decomposition where two main contributions
appear representing interactions of the total velocity field with the large and small scales
composing it,

τ(ui, uj) = [τ(ūi, uj) + τ(ui, ūj)] / 2 + [τ(υi, uj) + τ(ui, υj)] / 2 , (8.2)

respectively. Starting from an exact equation connecting the subgrid stresses with the
spatial velocity increments between two points (Germano 2007),

τ(ui, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[ui(ξ)− ui(η)][uj(ξ)− uj(η)]dξdη , (8.3)

we develop a general formalism for the study of the different contributions to the subgrid
momentum flux,

τ(ūi, ūj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][ūj(ξ)− ūj(η)]dξdη , (8.4)

τ(ūi, υj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][υj(ξ)− υj(η)]dξdη , (8.5)

τ(υi, υj) =
1

2

∫∫
G(x, ξ)G(x,η)[υi(ξ)− υi(η)][υj(ξ)− υj(η)]dξdη , (8.6)

τ(ūi, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[ūi(ξ)− ūi(η)][uj(ξ)− uj(η)]dξdη , (8.7)

τ(υi, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[υi(ξ)− υi(η)][uj(ξ)− uj(η)]dξdη . (8.8)

In the proposed framework, the spatial velocity increment is a central object. By analysing
Direct Numerical Simulation data of a turbulent channel, a rich physics underlying the
different contributions to the subgrid stresses is unveiled. We find that the subgrid stresses
are dominated by contributions given by the nonlinear phenomena involving the large
scale motion and its interactions with the small scale field, i.e. the terms

τ(ūi, ūj) [τ(ūi, υj) + τ(υi, ūj)] [τ(ūi, uj) + τ(ui, ūj)] . (8.9)

Indeed, such terms are those found to contribute mostly to the momentum flux and energy
transfer exploited by the subgrid stresses. This is particularly true for not very large filter
lengths and away from the wall regions. Interestingly, all the terms contributing to the
subgrid stresses show a significant non-Gaussian behaviour in terms of both skewness
and kurtosis which is partially reduced by increasing the filter length. By assuming that
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the filtered velocity increment can be expanded as

ūi(ξ)− ūi(η) ≈ (ξk − ηk)∂kūi (8.10)

we find that a reduced description for the dominant contributions to the subgrid stresses,
terms (8.9), is given by

τ(ūi, ūj) ≈ −ν
(g)
kj ∂kūi − ν

(g)
ki ∂kūj (8.11)

[τ(ūi, υj) + τ(υi, ūj)] /2 ≈ −ν
(cross)
kj ∂kūi − ν

(cross)
ki ∂kūj (8.12)

[τ(ūi, uj) + τ(ui, ūj)] /2 ≈ −νkj∂kūi − νki∂kūj (8.13)

where the associated turbulent viscosities are tensors given by,

ν
(g)
ki = −

1

4
∂hūi

∫∫
G(x, ξ)G(x,η)(ξk − ηk)(ξh − ηh)dξdη (8.14)

ν
(cross)
ki = −

1

4

∫∫
G(x, ξ)G(x,η)[ξk − ηk][υi(ξ)− υi(η)]dξdη (8.15)

νki = −
1

4

∫∫
G(x, ξ)G(x,η)[ξk − ηk][ui(ξ)− ui(η)]dξdη . (8.16)

These three viscosities are strictly related each other by

νki = ν
(g)
ki + ν

(cross)
ki (8.17)

thus highlighting that the most significant term of the new decomposition, [τ(ūi, uj) + τ(ui, ūj)] /2,
together with its reduced description given by the turbulent viscosity tensor, νki, takes
into account the two most significant terms of the old decomposition. The above equa-
tions also highlight that every decomposition of the subgrid stresses involving interactions
between large and small scales, is naturally approximated by a turbulent viscosity tensor
formalism based on the velocity increments which is then recognized to be a peculiar
property of small scale stresses in turbulence. Accordingly, we use Direct Numerical Sim-
ulation data of a turbulent channel flow to analyse the complex physics unveiled by
the tensorial viscosity approach. The observed behaviour of the different components of
the subgrid viscosity tensor, in terms of intensity, distribution, skewness and kurtosis,
highlights complex anisotropic and inhomogeneous features that are actually missed in
more classical scalar turbulent viscosity approaches based on the Kolmogorov hypothesis
of isotropy of the small scales of turbulence. Hence, the introduced turbulent viscosity
formalism appears as a valid alternative candidate for the development of theories on the
interscale momentum and energy transfer in turbulence.

To further support the potentiality of the developed theoretical framework, we also
show how the turbulent viscosity tensor formalism based on the velocity increments can
be used to derive alternative turbulence closures in a context of LES. The procedure
leads to an anisotropic turbulent viscosity model that reads

τ(ui, uj) = −νkj∂kūi − νki∂kūj (8.18)

with

νki =
1

2Ω
I ′

kh∂hūi , (8.19)

at the first-order approximation, and

νki =
1

2Ω
I ′

kh∂hūi(x)−
1

4Ω
Mkhl∂hlūi(x) , (8.20)

at the second order. The models are based on the filtered velocity derivatives and on
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the second- and third-order inertial properties of the grid elements. The basic idea is
that the structure of the computational element can be used to model the unknown
distribution of the subgrid velocity field within it. Indeed, not only the size but also
the anisotropic feature of the unresolved motion significantly depends on the geometrical
properties of the computational volume. This is simply due to the fact that the integration
volume together with the filter kernel in the case of explicit filters, is responsible for the
definition of the subgrid field itself by splitting the velocity field into large and small
scales. Hence, the prediction of the subgrid velocity distribution within the computational
volume given by the filtered velocity derivatives, ∂hūi and ∂hlūi, can be improved by
using the known geometrical properties of the computational volume. These aspects are
particularly relevant when the geometrical features of the computational mesh conform
with the peculiar features of the problem, i.e. when the inhomogeneous distribution of
resolution is able to take into account flow regions characterized by relative small scales
(e.g. near-wall turbulence) and when the anisotropy of the computational elements is
able to conform with the anisotropies of the flow (e.g. such as the anisotropy induced by
the presence of a predominant flow direction imposed by the geometry of the problem).
These kind of information are carried by the computational grid and can be grasped by
the proposed modelling approach.

An interesting result of the model formulation is that it allows to model the normal
subgrid stresses and, hence, to give a measure of the subgrid kinetic energy. An additional
outcome of the proposed model is given by the fact that it provides a rigorous definition
of characteristic lengths for the subgrid stresses,

(∆ij)
2 =

1

Ω

∫

Ω

(ξh − xh)(ξk − xk)dξ , (8.21)

that can be computed in every type of computational elements, thus overcoming the
rather elusive definition of filter length commonly employed in more classical subgrid
models. By means of a contraction of the tensorial formulation, it is finally pointed out
that the above definition can be used also to compute a scalar subgrid scale to be used
in isotropic subgrid scale models when applied to complex unstructured computational
grids.

In barycentric structured Cartesian grids, the present approximation of the subgrid
viscosity reduces to the viscosity of the gradient model. This modelling approach is widely
recognized to have a good correlation with the actual subgrid stresses but also to suffer of
numerical stability issues. To solve this problem, several approaches have been introduced
in literature and found to properly work. Here, in order to emphasize the anisotropic
character of the proposed closures, we developed an alternative modulation technique
based on a tensorial dynamic procedure for the evolution of the model constants. The
generality of the procedure is such that it can be employed also in other type of models.
Preliminary analysis in a turbulent channel show promising results thus forming the
basis for future assessments of the model performances in more complex flow where non-
Cartesian grids are demanded and the present closures differ from the gradient model
approximation.

Appendix A. On the subgrid flux associated with the scalar θ

Let us consider the subgrid flux associated with the scalar field θ,

τ(θ, uj) = θuj − θ̄ūj (A 1)
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where the overbar stands for a generic filter operator that can be represented as

θ̄ =

∫
G(x, ξ)θ(ξ)dξ (A 2)

with ∫
G(x, ξ)dξ = 1 . (A 3)

Let us now express both the scalar and velocity fields as the sum of two terms

θ = θ̄ + ϑ uj = ūj + υj (A 4)

where ϑ and υ are the fluctuations associated with the averaging operator G. If we apply
the Galilean invariant decomposition of the subgrid flux (Germano 1986), we can write

τ(θ, uj) = τ(θ̄, uj) + τ(ϑ, uj) (A 5)

where

τ(θ̄, uj) = θ̄uj −
¯̄θūj

τ(ϑ, uj) = ϑuj − ϑ̄ūj (A 6)

and we remark that this decomposition is Galilean invariant, due to the fact that is
composed by Galilean invariant terms. A further decomposition of the subgrid flux leads
to

τ(θ, uj) = τ(θ̄, ūj) + τ(θ̄, υ) + τ(ϑ, ūj) + τ(ϑ, υj) . (A 7)

We remark that the total subgrid flux and its decompositions are equivalently given by
a double convolution integral of the scalar and velocity increments between two points
(Germano 2007). For the first term on the right-hand side of equations (A 5) and (A 7),
this relation reads

τ(θ̄, uj) =
1

2

∫∫
G(x, ξ)G(x,η)[θ̄(ξ)− θ̄(η)][uj(ξ)− uj(η)]dξdη (A 8)

τ(θ̄, ūj) =
1

2

∫∫
G(x, ξ)G(x,η)[θ̄(ξ)− θ̄(η)][ūj(ξ)− ūj(η)]dξdη , (A 9)

that clearly evidence the Galilean invariance of the different terms. The two decomposi-
tions given by equations (A 5) and (A 7) suggest two possible approximations of the total
subgrid flux,

τ(θ, uj) ≈ τ(θ̄, uj) (A 10)

τ(θ, uj) ≈ τ(θ̄, ūj) , (A 11)

respectively. We remark that the approximation of the subgrid flux decomposition (A 11)
directly recovers the approach given by the scale similarity models, i.e.

τ(θ, uj) ≈ τ(θ̄, ūj) = θ̄ūj −
¯̄θ, ¯̄uj . (A 12)

If we now further assume that the LES averaged values θ̄ and ūj are sufficiently smooth
at the LES scale, we can consider the following expansion

θ̄(ξ)− θ̄(η) ≈ (ξk − ηk)∂kθ̄ (A 13)

ūj(ξ)− ūj(η) ≈ (ξk − ηk)∂kūj , (A 14)

to show that approximation (A 11) reduces also the a generalized form of gradient model
for the subgrid flux,

τ(θ, uj) ≈ τ(θ̄, ūj) ≈ −ν
(g)
kj ∂kθ̄ (A 15)
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where the associated subgrid viscosity is a tensor given by

ν
(g)
kj = −τ(xk, xh)∂hūj (A 16)

and

τ(xk, xh) =
1

2

∫∫
G(x, ξ)G(x,η)(ξk − ηk)(ξh − ηh)dξdη . (A 17)

When considering a Cartesian control volume and a top-hat filter, we have

τ(xk, xh) =
1

12
∆2

hδkh , (A 18)

and the generalized gradient model approximation for the subgrid flux (A 15) recovers
the classical gradient model,

τ(θ, uj) ≈ τ(θ̄, ūj) ≈

(
1

12
∆2

k∂kūj

)
∂kθ̄ . (A 19)

In alternative, by applying expansion (A 13) to the approximation given by the first
decomposition of the subgrid flux (A 10) we have

τ(θ, uj) ≈ τ(θ̄, uj) ≈ −νkj∂kθ̄ (A 20)

where the associated subgrid viscosity is again a tensor given by

νkj = −τ(xk, uj) (A 21)

and

τ(xk, uj) =
1

2

∫∫
G(x, ξ)G(x,η)(ξk − ηk)[uj(ξ)− uj(η)]dξdη . (A 22)

Equation (A 22) further supports the idea that a subgrid viscosity tensor based on ve-
locity increments is a natural approximation of multiscale phenomena of momentum and
scalar flux originating from interactions between scales of different sizes. By following the
reasoning reported in section §6, the reduced description given by the subgrid viscosity
tensor (A 22) can be also used to derive turbulence closures as

νkj =
1

Ω
I ′

kh∂hūj (A 23)

νkj =
1

Ω
I ′

kh∂hūj −
1

2Ω
Mkhl∂hlūj , (A 24)

for the first- and second-order approximation, respectively. In closing this section, let us
point out that the subgrid viscosity approximations given by the present and gradient
modelling approach, equations (A 23), (A 24) and (A 16) respectively, only depend on the
velocity field uj and on the LES filtering operator G and they have no relations with the
scalar field θ. As such they are peculiar of the given turbulent velocity field. Accordingly
with the main outcomes of work, the proposed models can be understood as a refinement
of the classical gradient approach to the modelling of the subgrid flux in complex flows
where unstructured irregular computational grids are commonly used.
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Härtel, C., Kleiser, L., Unger, F. & Friedrich, R. 1994 Subgrid-scale energy transfer in
the near-wall region of turbulent flows. Phys. Fluids 6, 3130–3143.

Horiuti, K. 1993 A proper velocity scale for modeling subgrid-scale eddy viscosities in large
eddy simulation. Phys. Fluids A 5 (1).

John, V. & Kindl, A. 2010 Numerical studies of finite element variational multiscale methods
for turbulent flow simulations. Comput. Methods Appl. Mech. Eng. 199, 841852.

Kerr, R.M., Domaradzki, J.A. & Barbier, G. 1996 Small-scale properties of nonlinear



30 Cimarelli et al.

interactions and subgrid-scale energy transfer in isotropic turbulence. Phys. Fluids 8 (1),
197–208.

Knight, D., Zhou, G. & Okongo, N. et al. 1998 Compressible large eddy simulation using
unstructured grids. Tech. Rep.. AIAA Paper. 980535.

Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. in
Geophysics 18, 237–248.
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