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1. Introduction

Given a real interval I = [0, ℓ], we consider the thermoelastic beam model of Timoshenko
type [21]

(1.1)











ρ1ϕtt − κ(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0,

ρ3θt + qx + δψtx = 0,

where the unknown variables

ϕ, ψ, θ, q : (x, t) ∈ I× [0,∞) 7→ R

represent the transverse displacement of a beam with reference configuration I, the rota-
tion angle of a filament, the relative temperature (i.e. the temperature variation field from
an equilibrium reference value) and the heat flux vector, respectively. Here, ρ1, ρ2, ρ3 as
well as κ, b, δ are strictly positive fixed constants. The system is complemented with the
Dirichlet boundary conditions for ϕ and θ

ϕ(0, t) = ϕ(ℓ, t) = θ(0, t) = θ(ℓ, t) = 0,

and the Neumann one for ψ
ψx(0, t) = ψx(ℓ, t) = 0.

Such conditions, commonly adopted in the literature, seem to be the most feasible from
a physical viewpoint. To complete the picture, a further relation is needed: the so-called
constitutive law for the heat flux, establishing a link between q and θ. This is what really
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characterizes the dynamics, since no mechanical dissipation is present in the system, and
any possible loss of energy can be due only to thermal effects.

1.1. The Fourier thermal law. A first choice is to assume the classical Fourier law of
heat conduction

(1.2) βq + θx = 0,

where β > 0 is a fixed constant. In which case, the third equation of (1.1) becomes

ρ3θt −
1

β
θxx + δψtx = 0.

The exponential stability of the resulting Timoshenko-Fourier system has been analyzed
in [17]. There, the authors introduce the so-called stability number1

χ =
ρ1

κ
− ρ2

b
,

representing the difference of the inverses of the propagation speeds. The main result
of [17] reads as follows: the contraction semigroup generated by (1.1)-(1.2) acting on the
triplet (ϕ, ψ, θ) is exponentially stable (in the natural weak energy space) if and only if
χ = 0.

1.2. The Cattaneo thermal law. The drawback of the Fourier law lies in the physical
paradox of infinite propagation speed of (thermal) signals, a typical side-effect of parabol-
icity. A different model, removing this paradox, is the Cattaneo law [4], namely, the
differential perturbation of (1.2)

(1.3) τqt + βq + θx = 0,

for τ > 0 small. A natural question is whether the semigroup generated by (1.1) coupled
with (1.3), now acting on the state variable (ϕ, ψ, θ, q), remains exponentially stable within
the condition χ = 0 above. As shown in [8], the answer is negative: exponential stability
can never occur when χ = 0. More recently, in [20] a new stability number is introduced
in order to deal with the Timoshenko-Cattaneo system, that is,2

χτ =

[

ρ1

ρ3κ
− τ

][

ρ1

κ
− ρ2

b

]

− τ
ρ1δ

2

ρ3κb
.

The system is shown to be exponentially stable if and only if χτ = 0. Quite interestingly,
the Fourier case is fully recovered in the limit τ → 0, when (1.3) collapses into (1.2).
Indeed, for τ = 0 the equality

χ0 =
ρ1

ρ3κ
χ

holds, which tells at once that

χ0 = 0 ⇔ χ = 0.

1The notion of stability number is actually introduced in the subsequent paper [20], defined there as
χ = κ/ρ1 − b/ρ2. The difference is clearly irrelevant with respect to the relation χ = 0. The motivation
of our choice of χ is to render more direct the comparison with the Cattaneo law.

2The value of χτ in [20] differs from ours for a multiplicative constant.



It is worth mentioning that the proof of exponential stability in [20] is carried out via
linear semigroup techniques, whereas the analogous result of [17] for the Fourier case is
obtained by constructing explicit energy functionals.

1.3. The Gurtin-Pipkin thermal law. The aim of the present work is studying the
Timoshenko system (1.1) assuming the Gurtin-Pipkin heat conduction law for the heat
flux [15]. More precisely, we consider the constitutive equation

(1.4) βq(t) +

∫

∞

0

g(s)θx(t− s) ds = 0,

where g, called the memory kernel, is a (bounded) convex summable function on [0,∞)
of total mass

∫

∞

0

g(s) ds = 1,

whose properties will be specified in more detail later on. Equation (1.4) can be viewed
as a memory relaxation of the Fourier law (1.2), inducing (similarly to the Cattaneo law)
a fully hyperbolic mechanism of heat transfer. In this perspective, it may be considered
a more realistic description of physical reality. Accordingly, system (1.1) turns into

(1.5)



















ρ1ϕtt − κ(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0,

ρ3θt −
1

β

∫

∞

0

g(s)θxx(t− s) ds+ δψtx = 0.

Rephrasing system (1.5) within the history framework of Dafermos [6], we construct a
contraction semigroup S(t) of solutions acting on a suitable Hilbert space H, accounting
for the presence of the memory. Then, introducing the stability number

χg =

[

ρ1

ρ3κ
− β

g(0)

][

ρ1

κ
− ρ2

b

]

− β

g(0)

ρ1δ
2

ρ3κb
,

our main theorem can be stated as follows.

Theorem 1. The semigroup S(t) is exponentially stable3 if and only if χg = 0.

As we will see in the next section, Theorem 1 actually subsumes and generalizes all
the previously known results on the exponential decay properties of the thermoelastic
Timoshenko system (1.1).

Plan of the paper. In Section 2 we compare Timoshenko systems of the form (1.1)
subject to different laws of heat conduction, viewed as particular instances of (1.5) for
suitable choices of the memory kernel. The comparison with the Timoshenko-Cattaneo
system of [8, 20], only formal at this stage, is rendered rigorous in the final Section 8.
After introducing some notation (Section 3), in Section 4 we define the semigroup S(t)
describing the solutions to (1.5). The subsequent three sections are devoted to the proof

3We recall that S(t) is said to be exponentially stable on H if there are ω > 0 and C ≥ 1 such that

‖S(t)z‖H ≤ Ce−ωt‖z‖H, ∀z ∈ H.



of Theorem 1. Firstly, we introduce some auxiliary functionals (Section 5), needed in the
proof of the sufficiency part of the theorem carried out in Section 6. The necessity of the
condition χg = 0 in order for exponential stability to occur is proved in Section 7.

2. Comparison with Earlier Results

2.1. The Fourier case. The Fourier law (1.2) can be seen as a (singular) limit of the
Gurtin-Pipkin law (1.4). Indeed, defining the ε-scaling of the memory kernel g by

gε(s) =
1

ε
g
(s

ε

)

, ε > 0,

we consider in place of the original (1.4) the constitutive equation

(2.1) βq(t) +

∫

∞

0

gε(s)θx(t− s) ds = 0.

Since gε → δ0 in the distributional sense, where δ0 denotes the Dirac mass at 0+, it is
clear that, in the limit ε → 0, equation (2.1) reduces to the classical constitutive law (1.2).
According to Theorem 1, exponential stability for the Timoshenko-Gurtin-Pipkin model
with memory kernel gε occurs if and only if

χgε =

[

ρ1

ρ3κ
− βε

g(0)

][

ρ1

κ
− ρ2

b

]

− βε

g(0)

ρ1δ
2

ρ3κb
= 0.

Letting ε→ 0, we recover the condition

χδ0 =
ρ1

ρ3κ
χ = 0

of the Fourier case. The convergence of the Timoshenko-Gurtin-Pipkin model to the
Timoshenko-Fourier one as ε → 0 can be made rigorous within the proper functional
setting, along the same lines of [2].

2.2. The Cattaneo case. The Cattaneo law (1.3) can be deduced as a particular in-
stance of (1.4), corresponding to the memory kernel

gτ (s) =
β

τ
e−

sβ

τ .

Indeed, changing the integration variable, we can write the flux vector q in the form

q(t) = − 1

β

∫ t

−∞

gτ(t− s)θx(s) ds.

Since

g′τ(s) = −β
τ
gτ (s),

we draw the relation

qt(t) = − 1

β

∫ t

−∞

g′τ (t− s)θx(s) ds−
gτ (0)

β
θx(t) =

1

τ

∫ t

−∞

gτ (t− s)θx(s) ds−
1

τ
θx(t),

which is nothing but (1.3). Besides, we have the equality of the stability numbers

χgτ = χτ .



2.3. The Coleman-Gurtin case. A further interesting model, midway between the
Fourier and the Gurtin-Pipkin one, is obtained by assuming the (parabolic-hyperbolic)
Coleman-Gurtin law for the heat flux, namely,

(2.2) βq(t) + (1− α)θx(t) + α

∫

∞

0

g(s)θx(t− s) ds = 0, α ∈ (0, 1).

The limit cases α = 0 and α = 1 correspond to the fully parabolic Fourier case and the fully
hyperbolic Gurtin-Pipkin case. The corresponding Timoshenko-Coleman-Gurtin system,
whose third equation now reads

ρ3θt −
1

β

[

(1− α)θxx + α

∫

∞

0

g(s)θxx(t− s) ds

]

+ δψtx = 0,

generates (similarly to the Timoshenko-Gurtin-Pipkin system) a contraction semigroup
Σ(t) on H. For this system, the following theorem holds.

Theorem 2. The semigroup Σ(t) is exponentially stable if and only if χ = 0.

Hence, the picture is exactly the same as in the Fourier case. This, as observed in [20],
is due to the predominant character of parabolicity. Theorem 2 can be given a direct
proof, following the lines of the next sections. In fact, the situation here is much simpler,
do to the presence of instantaneous dissipation given by the term −θxx in the equation.
However, it is also possible to obtain Theorem 2 as a byproduct of Theorem 1. To this
end, it is enough to consider the Timoshenko-Gurtin-Pipkin system with kernel

gε(s) =
1− α

ε
g
(s

ε

)

+ αg(s),

whose exponential stability takes place if and only if

χgε =

[

ρ1

ρ3κ
− βε

(1− α + αε)g(0)

][

ρ1

κ
− ρ2

b

]

− βε

(1− α + αε)g(0)

ρ1δ
2

ρ3κb
= 0.

Performing the limit ε → 0, we obtain the distributional convergence

gε → (1− α)δ0 + αg,

yielding in turn
∫

∞

0

gε(s)θxx(t− s) ds→ (1− α)θxx + α

∫

∞

0

g(s)θxx(t− s) ds.

Accordingly, we see that

χ(1−α)δ0+αg =
ρ1

ρ3κ
χ,

and we recover the same stability condition of the Timoshenko-Fourier system.

2.4. Heat conduction of type III. We finally mention another model, resulting from
the constitutive law of type III of Green-Naghdi for the heat flux [12, 13, 14]

(2.3) βq + θx + dpx = 0, d > 0,

where

p(t) = p(0) +

∫ t

0

θ(r) dr



is the so-called thermal displacement. Plugging (2.3) into (1.1), one obtains










ρ1ϕtt − κ(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + κ(ϕx + ψ) + δptx = 0,

ρ3ptt − 1
β
ptxx − d

β
pxx + δψtx = 0.

In [16], the system is shown to be exponentially stable if χ = 0. Again, the partial
parabolicity of the model prevails, so that the exponential stability condition is the same
as in the Fourier case. Though, the constitutive law (2.3) cannot be deduced from (1.4),
not even as a limiting case. Possibly, this feature may reflect the fact that the theory of
heat conduction of type III seems to be at the limit of thermodynamic admissibility (see
the analysis of [9]).

3. Functional Setting and Notation

3.1. Assumptions on the memory kernel. Calling

µ(s) = −g′(s),
the prime denoting the derivative with respect to s, let the following conditions hold.

(i) µ is a nonnegative nonincreasing absolutely continuous function on R+ such that

µ(0) = lim
s→0

µ(s) ∈ (0,∞).

(ii) There exists ν > 0 such that the differential inequality

µ′(s) + νµ(s) ≤ 0

holds for almost every s > 0.

Remark. For every k > 0, the exponential kernel g(s) = ke−ks meets the hypotheses
(i)-(ii).

In particular, µ is summable on R+ with
∫

∞

0

µ(s) ds = g(0).

Besides, the requirement that g has total mass 1 translates into
∫

∞

0

sµ(s) ds = 1.

3.2. Functional spaces. In what follows, 〈·, ·〉 and ‖ · ‖ are the standard inner product
and norm on the Hilbert space L2(I). We introduce the Hilbert subspace

L2
∗(I) =

{

f ∈ L2(I) :

∫ ℓ

0

f(x) dx = 0

}

of zero-mean functions, along with the Hilbert spaces

H1
0(I) and H1

∗ (I) = H1(I) ∩ L2
∗(I),



both endowed with the gradient norm, due to the Poincaré inequality. We also consider
the space H2(I) and so-called memory space

M = L2(R+;H1
0 (I))

of square summable H1
0 -valued functions on R

+ with respect to the measure µ(s)ds,
endowed with the inner product

〈η, ξ〉M =

∫

∞

0

µ(s)〈ηx(s), ξx(s)〉 ds.

The infinitesimal generator of the right-translation semigroup on M is the linear operator

Tη = −Dη
with domain

D(T ) =
{

η ∈ M : Dη ∈ M, lim
s→0

‖ηx(s)‖ = 0
}

,

where D stands for weak derivative with respect to the internal variable s ∈ R+. The
phase space of our problem will be

H = H1
0 (I)× L2(I)×H1

∗ (I)× L2
∗(I)× L2(I)×M

normed by

‖(ϕ, ϕ̃, ψ, ψ̃, θ, η)‖2H = κ‖ϕx + ψ‖2 + ρ1‖ϕ̃‖2 + b‖ψx‖2 + ρ2‖ψ̃‖2 + ρ3‖θ‖2 +
1

β
‖η‖2M.

3.3. Basic facts on the memory space. For every η ∈ D(T ), the nonnegative func-
tional

Γ[η] = −
∫

∞

0

µ′(s)‖ηx(s)‖2 ds

is well defined, and the following identity holds (see [11])

(3.1) 2〈Tη, η〉M = −Γ[η].

Moreover, in light of assumption (ii) on µ, we deduce the inequality

(3.2) ν‖η‖2M ≤ Γ[η],

which will be crucial for our purposes.

4. The Contraction Semigroup

Firstly, we introduce the auxiliary variable

η = ηt(x, s) : (x, t, s) ∈ I× [0,∞)× R
+ 7→ R,

accounting for the integrated past history of θ and formally defined as (see [6, 11])

ηt(x, s) =

∫ s

0

θ(x, t− σ) dσ,

thus satisfying the Dirichlet boundary condition

ηt(0, s) = ηt(ℓ, s) = 0



and the further “boundary condition”

lim
s→0

ηt(x, s) = 0.

Hence, η satisfies the equation
ηtt = −ηts + θ(t).

The way to render the argument rigorous is recasting (1.5) in the history space framework
devised by C.M. Dafermos [6]. This amounts to considering the partial differential system
in the unknowns ϕ = ϕ(t), ψ = ψ(t), θ = θ(t) and η = ηt

ρ1ϕtt − κ(ϕx + ψ)x = 0,(4.1)

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0,(4.2)

ρ3θt −
1

β

∫

∞

0

µ(s)ηxx(s) ds+ δψtx = 0,(4.3)

ηt = Tη + θ.(4.4)

Remark. The analogy with the original system (1.5) is not merely formal, and can be
made rigorous within the proper functional setting (see [11] for more details).

Introducing the state vector

z(t) = (ϕ(t), ϕ̃(t), ψ(t), ψ̃(t), θ(t), ηt),

we view (4.1)-(4.4) as the ODE in H

(4.5)
d

dt
z(t) = Az(t),

where the linear operator A is defined as

A

















ϕ

ϕ̃

ψ

ψ̃

θ

η

















=



















ϕ̃
κ
ρ1
(ϕx + ψ)x

ψ̃
b
ρ2
ψxx − κ

ρ2
(ϕx + ψ)− δ

ρ2
θx

1
βρ3

∫

∞

0
µ(s)ηxx(s) ds− δ

ρ3
ψ̃x

Tη + θ



















with domain

D(A) =







































(ϕ, ϕ̃, ψ, ψ̃, θ, η) ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ ∈ H2(I)
ϕ̃ ∈ H1

0 (I)
ψx ∈ H1

0 (I)

ψ̃ ∈ H1
∗ (I)

θ ∈ H1
0 (I)

η ∈ D(T )
∫

∞

0
µ(s)η(s) ds ∈ H2(I)







































.

Theorem 3. The operator A is the infinitesimal generator of a contraction semigroup

S(t) = etA : H → H.



The proof of this fact is based on the classical Lumer-Phillips theorem [18], and is here
omitted (see however [3] for an application of the Lumer-Phillips theorem to equations
with memory in the past history framework). Thus, for every initial datum

z0 = (ϕ0, ϕ̃0, ψ0, ψ̃0, θ0, η0) ∈ H
given at time t = 0, the unique solution at time t > 0 to (4.5) reads

z(t) = (ϕ(t), ϕt(t), ψ(t), ψt(t), θ(t), η
t) = S(t)z0.

Besides, ηt fulfills the explicit representation formula (see [11])

ηt(s) =

{

∫ s

0
θ(t− σ) dσ s ≤ t,

η0(s− t) +
∫ t

0
θ(t− σ) dσ s > t.

Remark. As observed in [17], the choice of the spaces of zero-mean functions for the
variable ψ and its derivative is consistent. Indeed, calling

Θ(t) =

∫ ℓ

0

ψ(x, t) dx

and integrating (4.2) on I we obtain the differential equation

ρ2Θ̈(t) + κΘ(t) = 0.

Hence, if Θ(0) = Θ̇(0) = 0 it follows that Θ(t) ≡ 0.

Remark. For the existence of the contraction semigroup S(t) the hypotheses (i)-(ii) on
the kernel are overabundant. It is actually enough to require that µ be a (nonnull and
nonnegative) nonincreasing absolutely continuous summable function on R+, possibly
unbounded in a neighborhood of zero.

For any fixed initial datum z0 ∈ H, we define (twice) the energy as

E(t) = ‖S(t)z0‖2H.
The natural multiplication of equation (4.5) by z(t) in the weak energy space, along with
an exploitation of (3.1), provide the energy identity

(4.6)
d

dt
E(t) = 2〈Az(t), z(t)〉H =

2

β
〈Tηt, ηt〉M = − 1

β
Γ[ηt],

valid for all z0 ∈ D(A).

As anticipated in the Introduction, the main Theorem 1 of this paper tells that

S(t) exp. stable ⇔ χg = 0.

The proof of the result is carried out in the next Sections 5-7.

Remark. We mention that an alternative approach is also possible. Namely, to set the
problem in the so-called minimal state framework [7], rather than in the past history one.
In which case, the necessary and sufficient condition χg = 0 of exponential decay remains
the same. In fact, one can show in general that the exponential decay in the history space
(i.e. what proved here) implies the analogous decay in the minimal state space (cf. [1, 7]).



5. Some Auxiliary Functionals

In this section, we define some auxiliary functionals needed in the proof of the sufficiency
part of Theorem 1. As customary, it is understood that we work with (regular) solutions
arising from initial data belonging to the domain of the operator A. Along the section,
C ≥ 0 will denote a generic constant depending only on the structural quantities of
the problem. Besides, we will tacitly use several times the Hölder, Young and Poincaré
inequalities. In particular we will exploit the inequality

∫

∞

0

µ(s)‖ηx(s)‖ ds ≤
(
∫

∞

0

µ(s) ds

)
1

2

(
∫

∞

0

µ(s)‖ηx(s)‖2 ds
)

1

2

=
√

g(0) ‖η‖M.

5.1. The functional I. Let

I(t) = − 2ρ3
g(0)

∫

∞

0

µ(s)〈θ(t), ηt(s)〉 ds.

Lemma 4. For every εI > 0 small, I satisfies the differential inequality

d

dt
I + ρ3‖θ‖2 + ‖η‖2M ≤ εI‖ψt‖2 +

cI

εI
Γ[η]

for some cI > 0 independent of εI.

Proof. In light of (4.3) and (4.4), we have the identity

d

dt
I + 2ρ3‖θ‖2 + ‖η‖2M =− 2ρ3

g(0)

∫

∞

0

µ(s)〈Tη(s), θ〉 ds+ 2

g(0)β

∥

∥

∥

∥

∫

∞

0

µ(s)ηx(s) ds

∥

∥

∥

∥

2

− 2δ

g(0)

∫

∞

0

µ(s)〈ηx(s), ψt〉 ds+ ‖η‖2M.

Integrating by parts in s, we infer that (as shown in [11], the boundary terms vanish)

− 2ρ3
g(0)

∫

∞

0

µ(s)〈Tη(s), θ〉 ds = − 2ρ3
g(0)

∫

∞

0

µ′(s)〈η(s), θ〉 ds

≤ C‖θ‖
√

Γ[η]

≤ ρ3‖θ‖2 + CΓ[η].

Thus, exploiting the inequalities

2

g(0)β

∥

∥

∥

∥

∫

∞

0

µ(s)ηx(s) ds

∥

∥

∥

∥

2

≤ C‖η‖2M

and

− 2δ

g(0)

∫

∞

0

µ(s)〈ηx(s), ψt〉 ds ≤ C‖ψt‖‖η‖M,

appealing to (3.2) we obtain for every εI > 0 small the estimate

d

dt
I + ρ3‖θ‖2 + ‖η‖2M ≤ C‖ψt‖Γ[η] + CΓ[η] ≤ εI‖ψt‖2 +

C

εI
Γ[η],

where C is independent of εI . �



5.2. The functional J . Defining the primitive4

Ψ(x, t) =

∫ x

0

ψ(y, t) dy,

let

J(t) = −2ρ2ρ3
δ

〈θ(t),Ψt(t)〉.

Lemma 5. For every εJ > 0 small, J satisfies the differential inequality

d

dt
J + ρ2‖ψt‖2 ≤ εJ

[

‖ψx‖2 + ‖ϕx + ψ‖2
]

+
cJ

εJ

[

‖θ‖2 + Γ[η]
]

for some cJ > 0 independent of εJ .

Proof. By means of (4.2) and (4.3), we get

d

dt
J + 2ρ2‖ψt‖2

=
2ρ2
βδ

∫

∞

0

µ(s)〈ηx(s), ψt〉 ds−
2ρ3b

δ
〈θ, ψx〉+

2ρ3κ

δ
〈θ, ϕ+Ψ〉+ 2ρ3‖θ‖2.

Estimating the terms in the right-hand side as (here we use again (3.2))

2ρ2
βδ

∫

∞

0

µ(s)〈ηx(s), ψt〉 ds ≤ C‖ψt‖‖η‖M ≤ ρ2‖ψt‖2 + CΓ[η]

and, for every εJ > 0 small,

− 2ρ3b

δ
〈θ, ψx〉+

2ρ3κ

δ
〈θ, ϕ+Ψ〉+ 2ρ3‖θ‖2

≤ C
[

‖ψx‖+ ‖ϕx + ψ‖
]

‖θ‖+ C‖θ‖2

≤ εJ
[

‖ψx‖2 + ‖ϕx + ψ‖2
]

+
C

εJ
‖θ‖2,

with C independent of εJ , the claim follows. �

5.3. The functional K. We introduce the number

γg = κ− g(0)ρ1
βρ3

depending on the memory kernel g. It is readily seen that

χg = 0 ⇒ γg 6= 0.

Then, assuming χg = 0 and calling

K1(t) =
ρ1b

κ
〈ψx(t), ϕt(t)〉+ ρ2〈ψt(t), ϕx(t) + ψ(t)〉,

K2(t) =

∫

∞

0

µ(s)〈ηtx(s), ϕx(t) + ψ(t)〉 ds,

K3(t) = −δρ1
κ

〈θ(t), ϕt(t)〉,

4In particular, Ψ ∈ H1

0
(I).



we set

K(t) =
2κ

γg

[

γg

κ
K1(t)−

ρ1δ

βρ3κ
K2(t) +K3(t)

]

.

Lemma 6. Suppose that χg = 0. Then K satisfies the differential inequality

d

dt
K + κ‖ϕx + ψ‖2 ≤ cK

[

‖ψt‖2 + Γ[η]
]

for some cK > 0.

Proof. In light of (4.1) and (4.2), we obtain the identity

(5.1)
d

dt
K1 + κ‖ϕx + ψ‖2 =

(

ρ2 −
ρ1b

κ

)

〈ψt, ϕtx〉+ ρ2‖ψt‖2 − δ〈θx, ϕx + ψ〉.

By (4.4),

d

dt
K2 = −

∫

∞

0

µ(s)〈Tη(s), (ϕx + ψ)x〉 ds− g(0)〈θ, (ϕx + ψ)x〉

−
∫

∞

0

µ(s)〈ηxx(s), ϕt〉 ds+
∫

∞

0

µ(s)〈ηx(s), ψt〉 ds.

From (4.3) we learn that

−
∫

∞

0

µ(s)〈ηxx(s), ϕt〉 ds = −βρ3〈θt, ϕt〉+ βδ〈ψt, ϕtx〉,

while an integration by parts in s yields (again, the boundary terms vanish)

−
∫

∞

0

µ(s)〈Tη(s), (ϕx + ψ)x〉 ds =
∫

∞

0

µ′(s)〈ηx(s), ϕx + ψ〉 ds.

We conclude that

d

dt
K2 =

∫

∞

0

µ′(s)〈ηx(s), ϕx + ψ〉 ds+
∫

∞

0

µ(s)〈ηx(s), ψt〉 ds(5.2)

− βρ3〈θt, ϕt〉+ βδ〈ψt, ϕtx〉+ g(0)〈θx, ϕx + ψ〉.
Finally, exploiting once more (4.1),

(5.3)
d

dt
K3 = −δρ1

κ
〈θt, ϕt〉+ δ〈θx, ϕx + ψ〉.

At this point, reconstructing K from (5.1)-(5.3), we are led to the differential identity

d

dt
K + 2κ‖ϕx + ψ‖2

= χg

2g(0)κb

βγg
〈ψt, ϕtx〉+ 2ρ2‖ψt‖2

− 2ρ1δ

βγgρ3

[
∫

∞

0

µ′(s)〈ηx(s), ϕx + ψ〉 ds+
∫

∞

0

µ(s)〈ηx(s), ψt〉 ds
]

.



Since χg = 0 by assumption, we are left to control the integral terms in the right-hand
side. We have

− 2ρ1δ

βγgρ3

∫

∞

0

µ′(s)〈ηx(s), ϕx + ψ〉 ds ≤ C‖ϕx + ψ‖
∫

∞

0

−µ′(s)‖ηx(s)‖ ds

≤ C‖ϕx + ψ‖
√

Γ[η]

≤ κ‖ϕx + ψ‖2 + CΓ[η],

and, recalling (3.2),

− 2ρ1δ

βγgρ3

∫

∞

0

µ(s)〈ηx(s), ψt〉 ds ≤ C‖ψt‖‖η‖M ≤ C‖ψt‖2 + CΓ[η].

The proof is completed. �

5.4. The functional L. Let

L(t) = 2ρ2〈ψt(t), ψ(t)〉 − 2ρ1〈ϕt(t), ϕ(t)〉.
Lemma 7. The functional L satisfies the differential inequality

d

dt
L+ ρ1‖ϕt‖2 + b‖ψx‖2 ≤ cL

[

‖ϕx + ψ‖2 + ‖ψt‖2 + ‖θ‖2
]

for some cL > 0.

Proof. By means of (4.1) and (4.2),

d

dt
L+ 2ρ1‖ϕt‖2 + 2b‖ψx‖2 = 2ρ2‖ψt‖2 + 2δ〈θ, ψx〉+ 2κ‖ϕx + ψ‖2 − 4κ〈ϕx + ψ, ψ〉.

Since the right-hand side is easily controlled by

b‖ψx‖2 + C
[

‖ϕx + ψ‖2 + ‖ψt‖2 + ‖θ‖2
]

,

we are done. �

6. Proof of Theorem 1 (Sufficiency)

Within the condition χg = 0, we are now in the position to prove the exponential stability
of S(t). In what follows, E is (twice) the energy, whereas I, J,K, L denote the functionals
of the previous Section 5.

6.1. A further energy functional. For ε > 0, we define

Mε(t) = I(t) + εJ(t) +
ερ2

2cK
K(t) + ε

√
εL(t),

where cK > 0 is the constant of Lemma 6.

Lemma 8. For every ε > 0 sufficiently small, the differential inequality

d

dt
Mε + ε2E ≤ cM

ε
Γ[η]

holds for some cM > 0 independent of ε.



Proof. Collecting the inequalities of Lemmas 4, 5, 6 and 7, we end up with

d

dt
Mε + ε

(κρ2

2cK
− εJ −

√
ε cL

)

‖ϕx + ψ‖2 + ε
√
ε ρ1‖ϕt‖2 + ε(

√
ε b− εJ)‖ψx‖2

+
(ερ2

2
− εI − ε

√
ε cL

)

‖ψt‖2 +
(

ρ3 − ε
√
ε cL − εcJ

εJ

)

‖θ‖2 + ‖η‖2M

≤
(cI

εI
+
εcJ

εJ
+
ερ2

2

)

Γ[η].

At this point, we choose

εI =
ερ2

4
and εJ =

2εcJ
ρ3

.

Taking ε > 0 sufficiently small, the claim follows. �

6.2. Conclusion of the proof of Theorem 1. By virtue of (4.6) and Lemma 8, for
ε > 0 sufficiently small the functional

Gε(t) = E(t) + ε2Mε(t)

fulfills the differential inequality

d

dt
Gε + ε4E ≤ −

( 1

β
− cMε

)

Γ[η] ≤ 0.

It is also clear from the definition of the functionals involved that, for all ε > 0 small,

1

2
E(t) ≤ Gε(t) ≤ 2E(t).

Therefore, an application of the Gronwall lemma entails the required exponential decay
of the energy. �

Remark. It is worth observing that, contrary to what done in [20], here the proof of
exponential stability is based on the construction of explicit energy-like functionals. The
advantage (with respect to linear semigroups techniques) is that the same calculations
apply to the analysis of nonlinear version of the problem, allowing, for instance, to prove
the existence of absorbing sets.

7. Proof of Theorem 1 (Necessity)

In this section, we show that the semigroup S(t) is not exponentially stable when the
stability number χg is different from zero. The proof is based on the following abstract
result from [19] (see also [10] for the statement used here).

Lemma 9. S(t) is exponentially stable if and only if there exists ε > 0 such that

(7.1) inf
λ∈R

‖iλz − Az‖H ≥ ε‖z‖H, ∀z ∈ D(A),

where A and H are understood to be the complexifications of the original infinitesimal

generator and phase space, respectively.



The strategy consists in verifying that condition (7.1) fails to hold. Without loss of
generality, we can take ℓ = π. Accordingly, for every n ∈ N, the vector

ζn =
(

0, sinnx
ρ1

, 0, 0, 0, 0
)

satisfies

‖ζn‖H =
√

π
2ρ1

.

For all n ∈ N, we denote for short

λn =
√

κ
ρ1
n

and we study the equation

iλnzn − Azn = ζn

in the unknown variable

zn = (ϕn, ϕ̃n, ψn, ψ̃n, θn, ηn).

Our conclusion is reached if we show that zn is not bounded in H, since this would violate
(7.1). Straightforward calculations entail the system































ρ1λ
2
nϕn + κ(ϕnx + ψn)x = − sin nx,

ρ2λ
2
nψn + bψnxx − κ(ϕnx + ψn)− δθnx = 0,

iρ3λnθn −
1

β

∫

∞

0

µ(s)ηnxx(s) ds+ iδλnψnx = 0,

iλnηn − Tηn − θn = 0.

We now look for solutions (compatible with the boundary conditions) of the form

ϕn = An sin nx,

ψn = Bn cos nx,

θn = Cn sinnx,

ηn = φn(s) sinnx,

for some An, Bn, Cn ∈ C and some complex square summable function φn on R+ with
respect to the measure µ(s)ds, satisfying φn(0) = 0. This yields































κnBn = 1,

knAn +
(

− ρ2λ
2
n + bn2 + κ

)

Bn + δnCn = 0,

iρ3λnCn +
n2

β

∫

∞

0

µ(s)φn(s) ds− iδλnnBn = 0,

iλnφn + φ′
n − Cn = 0.

An integration of the last equation gives

φn(s) =
Cn

iλn

(

1− e−iλns
)

.



Substituting the result into the third equation above, and denoting by

µ̂(λn) =

∫

∞

0

µ(s)e−iλns ds

the Fourier transform5 of µ, we find the explicit solution

An =
ρ2κn

2 − ρ1bn
2 − ρ1κ

ρ1κ2n2
− δ2β

ρ3κβγg + ρ1κµ̂(λn)
,

where, according to the notation of Section 5,

γg = κ− g(0)ρ1
βρ3

.

At this point, we consider separately two cases.

Case γg = 0. We have

An =
ρ2κn

2 − ρ1bn
2 − ρ1κ

ρ1κ2n2
− δ2β

ρ1κµ̂(λn)
.

Due to the convergence µ̂(λn) → 0, ensured by the Riemann-Lebesgue lemma, we find
the asymptotic expression as n→ ∞

An ∼ − δ2β

ρ1κµ̂(λn)
.

Since

‖zn‖2H ≥ κ‖ϕnx + ψn‖2 + b‖ψnx‖2,
there exists ̟ > 0 such that

‖zn‖H ≥ ̟‖ϕnx‖ = ̟n|An|
(
∫ π

0

cos2 nx dx

) 1

2

=
̟
√
π√
2
n|An| → ∞.

Case γg 6= 0. Exploiting again the Riemann-Lebesgue lemma, we now get

An → 1

κ

(

ρ2

ρ1
− b

κ

)

− δ2

ρ3κγg
=
ρ3bg(0)

ρ1ρ3βγg
χg 6= 0,

as χg 6= 0 by assumption. As before, we end up with

‖zn‖H ≥ ̟
√
π√
2
n|An| → ∞.

This finishes the proof. �

Remark. The proof above actually holds within the same minimal assumptions on the
memory kernel ensuring the existence of S(t), i.e. µ nonnull, nonnegative, nonincreasing,
absolutely continuous and summable on R+.

5Since µ is continuous nonincreasing and summable, it is easy to see that µ̂(λn) 6= 0 for every n.



8. More on the Comparison with the Cattaneo Model

As previously observed in Section 2, at a formal level it is possible to recover the expo-
nential stability (as well as the lack of exponential stability) of the Timoshenko-Cattaneo
system from our main Theorem 1. Here, we give a rigorous proof of this fact. To this
aim, let us write explicitly the system studied in [8, 20]



















ρ1ϕtt − κ(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0,

ρ3θt + qx + δψtx = 0,

τqt + βq + θx = 0,

which generates a contraction semigroup Ŝ(t) acting on the phase space

Ĥ = H1
0 (I)× L2(I)×H1

∗ (I)× L2
∗(I)× L2(I)× L2(I)

normed by

‖(ϕ, ϕ̃, ψ, ψ̃, θ, q)‖2
Ĥ
= κ‖ϕx + ψ‖2 + ρ1‖ϕ̃‖2 + b‖ψx‖2 + ρ2‖ψ̃‖2 + ρ3‖θ‖2 + τ‖q‖2.

According to the article [20], the semigroup Ŝ(t) is exponentially stable if and only if the
stability number χτ equals zero.

Along with Ŝ(t), we consider the semigroup S(t) on H generated by (4.5) for the
particular choice of the kernel

µ(s) = −g′τ (s) =
β2

τ 2
e−

sβ

τ .

Then, we define the map Λ : M → L2(I) as

Λη = − 1

β

∫

∞

0

µ(s)ηx(s) ds.

On account of the Hölder inequality,

(8.1) τ‖Λη‖2 ≤ τ

β2

[
∫

∞

0

µ(s)‖ηx(s)‖ ds
]2

≤ 1

β
‖η‖2M.

Due to the peculiar form of the kernel, the following result is a direct consequence of the
equations. The easy proof is left to the reader.

Lemma 10. Let z0 = (u0, η0) ∈ H be any initial datum, where u0 subsumes the first 5

components of z0, and call ẑ0 = (u0,Λη0) ∈ Ĥ. Then the first 5 components of S(t)z0 and

Ŝ(t)ẑ0 coincide. Besides, the last component q(t) of Ŝ(t)ẑ0 fulfills the equality

q(t) = Ληt,

where ηt is the last component of S(t)z0.

The full equivalence between the two models is established in the next two propositions.

Proposition 11. If S(t) is exponentially stable on H, then so is Ŝ(t) on Ĥ.



Proof. Let ẑ0 = (u0, q0) ∈ Ĥ be fixed. Choosing η0 ∈ M of the form

η0(x, s) = −τ
∫ x

0

q0(y) dy,

it is readily seen that Λη0 = q0 and

1

β
‖η0‖2M =

τ 2

β
‖q0‖2

∫

∞

0

µ(s) ds = τ‖q0‖2.

Lemma 10 yields the identity

‖Ŝ(t)ẑ0‖Ĥ = ‖Ŝ(t)(u0,Λη0)‖Ĥ = ‖(u(t),Ληt)‖
Ĥ
,

where u(t) denotes the first 5 components of either solution. On the other hand, we infer
from (8.1) and the exponential stability of S(t) that

‖(u(t),Ληt)‖
Ĥ
≤ ‖(u(t), ηt)‖H ≤ C‖(u0, η0)‖He−ωt,

for some ω > 0 and C ≥ 1. Since

‖(u0, η0)‖H = ‖ẑ0‖Ĥ,

we are finished. �

Proposition 12. If Ŝ(t) is exponentially stable on Ĥ, then so is S(t) on H.

Proof. To simplify the notation, we introduce the 5-component space

V = H1
0 (I)× L2(I)×H1

∗(I)× L2
∗(I)× L2(I)

normed by

‖(ϕ, ϕ̃, ψ, ψ̃, θ)‖2V = κ‖ϕx + ψ‖2 + ρ1‖ϕ̃‖2 + b‖ψx‖2 + ρ2‖ψ̃‖2 + ρ3‖θ‖2.

For a fixed z0 = (u0, η0) ∈ H, we set

ẑ0 = (u0,Λη0) ∈ Ĥ.

The exponential stability of Ŝ(t) and (8.1) imply that

‖u(t)‖2V ≤ ‖Ŝ(t)ẑ0‖2Ĥ ≤ Ce−ωt‖ẑ0‖2Ĥ ≤ Ce−ωt‖z0‖2H,

for some ω > 0 and C ≥ 1. Again, on account of Lemma 10, u(t) denotes the first
5 components of either solution. Thus, exploiting the energy identity (4.6) together
with (3.2), we arrive at the differential inequality

d

dt
‖S(t)z0‖2H + ν‖S(t)z0‖2H ≤ ν‖u(t)‖2V ≤ Cνe−ωt‖z0‖2H.

A standard application of the Gronwall entails the sought exponential decay estimate. �
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