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Stabilizing and manipulating topological magnetic quasiparticles in thin films is of great 

interest for potential applications in data storage and information processing. Here, we present 

a strategy for stabilizing magnetic vortices and Bloch lines with controlled position, vorticity 

and chirality in a continuous exchange bias system. By tailoring vectorially the unidirectional 

anisotropy of the system at the nanoscale, via thermally assisted magnetic scanning probe 

lithography (tam-SPL), we show experimentally and via micromagnetic simulations the non-

volatile creation of vortex-antivortex pairs. In addition, we demonstrate the deterministic 

stabilization of cross and circular Bloch lines within patterned Néel magnetic domain walls. 

This work enables the implementation of complex functionalities based on the control of 

tailored topological spin-textures in spintronic and magnonic nanodevices. 

 

Topologically protected magnetic spin-textures, such as magnetic vortices, Bloch lines, and 

skyrmions, are increasingly attracting attention for their applications in a wide variety of fields, 

ranging from data storage and processing1–5, to medicine6. For example, in racetrack memories7–9, 

the information is stored by means of magnetic quasiparticles which are controllably stabilized and 

manipulated via external stimuli within nanowire-based spintronic devices. The dynamic properties 

of vortices, i.e. their excitation, the core reversal, and their coupling10–14 have been extensively studied 

and are at the basis, for example, of magnetic vortex oscillators15–17. Furthermore, the spin-texture 

topology has a crucial role in the propagation of domain walls18,19. The interaction of vortices with 

spin-waves have been investigated20–22 and in particular, recently, the use of vortex cores as emitters 

of short-wavelength spin-waves was demonstrated23.  

For all these applications, the development of methods for stabilizing and manipulating topological 

solitons is of capital importance. Among these methods, patterning ferromagnetic micro and nano-

structures such as disks or ellipses is widely employed, and it allows the stabilization of vortices (with 

topological winding number +1) by exploiting the shape anisotropy of the system, which favors the 

circulation of the magnetization, for removing magnetostatic charges at the disk edges24,25. The 

injection of a spin-polarized current in the nanocontact geometry is a well-established method for 

nucleating vortex-states in a continuous film through spin-transfer torque26. The controlled 

stabilization of antivortex ground states (with topological winding number -1), on the other hand, is 

more challenging and is usually achieved as a result of the stabilization of multiple vortices in a 

vortex-antivortex (V-A) array17,27–29.  

Nevertheless, positioning and manipulating single topological spin-textures with deterministically 

controlled position, vorticity and chirality, and in a non-volatile way, is extremely challenging. In this 

work, we demonstrate a straightforward strategy for stabilizing and manipulating with nanoscale 
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precision magnetic topological solitons, by reversibly patterning the unidirectional anisotropy of a 

continuous exchange bias system via thermally assisted magnetic scanning probe lithography (tam-

SPL)30–33. In particular, we show experimentally and with micromagnetic simulations, the non-

volatile stabilization and manipulation of vortices with tailored vorticity and chirality, and the 

nucleation of single Bloch lines within patterned Néel domain walls. Furthermore, we show that 

Bloch lines stabilized within patterned arbitrarily-shaped domain walls can be controllably displaced 

along the wall via static external fields. 

The studied systems consist in Ir22Mn78 7-10 /Co40Fe40B20 5-20 /Ru 2 (thicknesses in nm) multilayers 

grown via magnetron sputtering as reported in Ref. 30, featuring an exchange bias field ranging from 

2.5 to 9 mT, depending on the antiferromagnetic and ferromagnetic film thicknesses.  Tam-SPL was 

performed via NanoFrazor Explore (SwissLitho AG, Zurich), a commercial thermal scanning probe 

lithography system, using a cantilever design (See Supplementary Note 1) that provides higher tip 

heater temperatures compared to the previous design34 at temperatures higher than the silicon 

inversion temperature. For patterning, the thermal probe was swept on the sample surface in a raster-

scan fashion, and heated via joule effect by applying voltage pulses across the heater region of the 

cantilever. The heating time was 40 s/pixel, with a 10 nm x 10 nm pixel size and a 100 s/pixel 

pixel time. For patterning regions with different exchange bias direction, the orientation of the 

external magnetic field during the localized field cooling was controlled by a rotatable permanent 

magnet which generated a uniform 600 Oe magnetic field directed within the plane of the sample. 

Micromagnetic simulations of the ground state of the exchange bias system were carried out by 

solving the Landau-Lifshitz-Gilbert equation, using the software MuMax335. The total simulated 

volume had dimensions 5120×5120×5 nm3 with a cell size of 5×5×5 nm3, and a periodic boundary 

condition in the x-direction. For the CoFeB film, the saturation magnetization was Ms = 1140 kA/m, 

exchange constant was Aex = 1.2·10-11 J/m. The Gilbert damping parameter was set to α = 0.5. The 

exchange bias field was modeled as an external magnetic field with different in-plane direction and 

strength, as indicated.  

In Figure 1 we demonstrate the controlled nucleation of vortex-antivortex pairs in a CoFeB 5/IrMn 

7/Ru 2 (dimensions in nm) exchange bias system. The patterned exchange bias field configuration 

(panels (a), (d)), the magnetic force microscopy image (panels (b), (e)), and the results of 

micromagnetic simulations (panels (c), (f)) are presented. Blue arrows indicate the direction of the 

patterned exchange bias field, black arrows the direction of the magnetization. In the micromagnetic 

simulation, the red and blue colors indicate the divergence of the magnetization, which is related to 

the experimental MFM contrast. In panels (a-c), we show that a vortex-antivortex pair is stabilized 

by patterning sequentially 4 triangular-shaped areas with unidirectional anisotropy oriented in a 
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counterclockwise direction. Outside the patterned area, the unidirectional anisotropy is uniformly 

directed along -x. Such a non-uniform configuration of the exchange bias field, which in turn 

stabilized a complex non-uniform magnetization configuration, generates a local potential minimum 

for the vortex core in the center of the patterned region (pink circle in panels a, d), and an antivortex 

core at the boundary of the patterned region (indicated with a yellow circle). The MFM image and 

micromagnetic simulation of the pattern at remanence confirm the stabilization of two 90 deg domain 

walls on the lateral sides of the square pattern, and one 180 deg wall on the bottom side. It is worth 

noting that the 180 deg Néel wall, marked by a yellow dashed line in the sketch, constitutes 

equilibrium positions for the antivortex core, which can be displaced from its initial position via 

external fields, as it will be discussed in the following. We verified the stability of the patterned 

magnetic configuration over time by remeasuring the patterns after 8 months (see also Ref 30). We 

remark that the process of field cooling and the exchange bias are also exploited for memory 

applications36, and magnetic sensing37, e.g. for pinning the magnetization of the reference electrode 

in magnetic tunnel junctions and spin-valves. The properties of the vortex-antivortex pairs can be 

tailored by controlling the direction of the patterned exchange bias field with respect to the 

geometrical shape of the patterned area. In particular, as shown in panels (d-f), by changing the 

direction of the patterned exchange bias field, the chirality of the vortex and the location of the 

antivortex can be controlled. Indeed, the chirality of the vortex is counterclockwise, as the one of the 

patterned exchange bias field, and the locations of both the antivortex and of the 180 deg Néel wall 

shifts to the top side of the patterned area. 

The strength of the patterned exchange bias field determines both the pinning strength of the vortex 

core and the stability of the vortex-antivortex pair against annihilation, driven by the vortex-

antivortex attraction. These two aspects are studied via micromagnetic simulations, as shown in 

Figure 2. In panel a), the black line and circles show the minimum exchange bias field strength Heb 

needed for stabilizing the vortex-antivortex pair, as a function of the lateral size of the square pattern 

L. We observe that, by increasing the size of the patterned area from 0.125 m to 1 m, the minimum 

exchange bias field required decreases from 55 mT down to 2.5 mT. Such trend reflects the fact that 

by increasing the pattern size, also does the distance between the equilibrium positions of the vortex 

and antivortex, which in turn leads to a weaker attractive force that can be countered by weaker 

exchange bias fields. The red curve and squares show the corresponding distance A between the 

vortex and antivortex, ranging from 50 nm to 450 nm. As shown schematically in the inset, the 

equilibrium positions do not represent the geometrical center, for the vortex, and corner, for the 

antivortex, due to the attractive force between the vortex and antivortex.  In panel b), we study via 

micromagnetic simulations the displacement D of the vortex core from its equilibrium position as a 
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function of small external applied fields, for systems characterized by different exchange bias fields. 

The simulated pattern size is a 5 m square, therefore the vortex core equilibrium position is located 

in the geometrical center of the pattern due to the large distance between vortex and antivortex. The 

inset displays the micromagnetic configuration of the system for Heb = 6 mT and Hext= 5 mT, showing 

the vortex core and the 90 deg Néel domain walls displacement with respect to the initial equilibrium 

position. As expected, we observe that the core displacement induced by the external field decreases 

for increasing exchange bias fields ranging from 3 mT up to 18 mT, due to the increased pinning 

strength associated with the unidirectional anisotropy.  

In the following, we demonstrate that it is possible to deterministically stabilize either vortex or 

antivortex Bloch lines (also named circular and cross Bloch lines, respectively) with tailored chirality 

within patterned Néel domain walls, by properly designing the boundary conditions at the domain 

wall edges. Furthermore, we show that the patterned domain wall constitutes a nanoscale racetrack 

for Bloch lines, which can be controlled and steered along the wall via external fields. 

In Figure 3(a-c) we show experimentally and with simulations, the stabilization of a vortex Bloch line 

within a patterned 180 deg Néel wall, in a CoFeB 20 / IrMn 10 / Ru 2 (thicknesses in nm) system. In 

panel (a), a sketch of the configuration of the patterned exchange bias is shown. The 180 deg wall is 

defined by rectangular regions with magnetization oriented in opposite directions along +y and -y. In 

such a system, the orientation of the magnetization within the domain wall, i.e. the chirality of the 

domain wall, is determined by the boundary conditions, hence by the direction of the magnetization 

at the edges of the domain wall. The Bloch line is stabilized by imposing two opposite chiralities at 

the two ends of the wall, by defining two regions with oppositely oriented magnetization. It is worth 

noting, that both the chirality of the Bloch lines, and their vorticity, i.e. vortex or antivortex, can be 

tailored by controlling the orientation of the magnetization of the central domains. In particular, in 

panel (b), we show the MFM image of a vortex Bloch line with clockwise chirality within a straight 

180 deg Néel wall. The magnetization within the wall points towards -x (+x) in the bottom (top) part 

of the wall, as indicated by the opposite MFM contrast, in good agreement with the micromagnetic 

simulations of panel (c). The bright/dark colors at the top and bottom sides of the MFM image confirm 

the opposite direction of the magnetization in the two domains. As shown in panel (e), (f) an 

antivortex Bloch line is stabilized by patterning an opposite magnetization direction in the two central 

domains (as sketched in panel (d)).  

In Figure 4, we show, via micromagnetic simulations, that Bloch lines stabilized via tam-SPL can be 

manipulated within the nanopatterned domain walls via static external magnetic fields, without 

altering the magnetic configuration of the domain wall at remanence. In order to study the Bloch lines 

motion, a damping parameter = 0.02 was used for these simulations38. In panel a), an antivortex 
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Bloch line is stabilized at the top edge of a straight 180 deg wall (see sketch on the left), by applying 

an initialization field Hinit along -x. The exchange bias field strength was 12 mT. The central panels 

show the x-component of the magnetization, which allows to clearly locate the Bloch line within the 

wall, as a function of time. From left to right, we show that, by applying a 6.7 mT static external field 

along +x, the Bloch line can be displaced from the top edge down to the bottom edge of the wall (see 

also Supplementary Note 3). During the displacement, the Bloch line passes through metastable 

states, as shown in Supplementary Note 2 and Fig. S2. In panel b), a vortex Bloch line is stabilized 

on the top edge of a zig-zag 180 deg wall. The shape of the wall is determined by the geometry of the 

patterned central domains, as shown in the sketch on the left. The Bloch line is displaced from its 

initial position, and, interestingly, it follows the complex profile of the wall and stabilizes in proximity 

of the lower domain, demonstrating the possibility of continuously manipulating Bloch lines along 

arbitrarily shaped tracks. Crucially for applications, the position and shape of the domain wall at 

remanence, which is determined by the patterned exchange bias profile, is not affected by the field 

applied for the Bloch line displacement (see Supplementary Note 2 and Fig. S2). 

In conclusion, we presented a strategy for the reversible, non-volatile stabilization and nanoscale 

manipulation of magnetic vortices and Bloch lines, within continuous exchange bias systems. We 

showed that, by vectorially nanopatterning the unidirectional magnetic anisotropy, it is possible to 

stabilize vortices with controlled position, vorticity and chirality, and to deterministically stabilize 

cross and circular Bloch lines within patterned arbitrarily shaped Néel domain walls. Finally, we 

showed that such domain walls can be employed as reconfigurable conduits where the Bloch lines 

are manipulated and displaced via static external fields. Our work opens the way towards the study 

and integration of functionalities based on tailored topological spin-textures in next-generation 

spintronic and spin-wave devices, such as finely tuned spin-wave emitters/detectors and magnetic 

oscillators based on arrays of coupled vortices. 
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Figures 

 

 

 

Figure 1. Stabilization of vortex-antivortex pairs. (a), (d) Schematics showing the configuration of 

the exchange bias patterned via tam-SPL in the IrMn/CoFeB system, for counterclockwise and 

clockwise chirality, respectively. The direction of the patterned exchange bias is indicated by the blue 

arrow for each area. L marks the lateral size of the pattern. The pink (orange) circles mark the position 

of the vortex core (antivortex) within the pattern. The orange dotted line marks the 180 deg Néel 

domain wall. (b), (e) MFM images of the patterned structure for counterclockwise and clockwise 

orientation, respectively. The direction of the magnetization is indicated by the black arrows. Scale 

bar 2 m.  (c), (f) Corresponding simulated micromagnetic configuration showing the location of the 

vortex and antivortex. The black arrows indicate the direction of the spins, and the red/blue color 

marks div (M), which is related to the measured MFM contrast. 
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Figure 2. (a) Results of micromagnetic simulations showing the minimum exchange bias field 

strength Heb needed for stabilizing vortex-antivortex pairs in the configuration shown in the inset, as 

a function of the lateral size of the pattern L. In red, the corresponding distance A between vortex and 

antivortex. (b) Distance D between the vortex core and the geometrical center of the pattern, as a 

function of the external magnetic field Hext, for different exchange bias field strength ranging from 3 

mT up to 18 mT. In the inset, micromagnetic simulation showing the vortex core displacement and 

the orientation of the external magnetic field. Scale bar 100 nm. 
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Figure 3. Stabilization of antivortex and vortex Bloch lines within patterned domain walls (a), (d) 

Sketches showing the geometry and direction of the patterned exchange bias for stabilizing vortex 

and antivortex Bloch lines, respectively. The vortex (antivortex) Bloch line is indicated by the pink 

(yellow) circle, and the corresponding 180 deg Néel domain wall is marked by the dashed line. The 

direction of the exchange bias field is indicated in blue for each patterned area. (b), (e) MFM images 

of the patterned structures for the vortex and antivortex Bloch line, respectively. The direction of the 

magnetization is indicated by the black arrows. The opposite bright-dark colors in the top and bottom 

parts of the domain wall confirms the change in the wall chirality, and the stabilization of the Bloch 

line in both cases. Scale bars 3 m. (c), (f) Simulated micromagnetic configuration for the vortex and 

antivortex Bloch lines, respectively. The black arrows indicate the direction of the spins, and the 

red/blue color marks div (M), which is related to the MFM contrast. 
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Figure 4. Manipulation of Bloch lines within nanopatterned 180 deg walls, via external fields. (a) 

Controlled displacement as a function of time of an antivortex Bloch line, initially stabilized at the 

top edge of a straight 180 deg Néel wall (see sketch on the left), via a 6.7 mT static magnetic field 

applied along +x. (b) Displacement as a function of time of a vortex Bloch line along a zig-zag shaped 

180 deg Néel wall, via a 6.7 mT static external field applied as sketched. Scale bars: 500 nm. 
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