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1. Introduction

In [5, 6], we addressed the problem of studying a class of weakly
complete spaces, namely, complex manifolds of dimension 2 endowed
with a real analytic plurisubharmonic exhaustion function.

Stein spaces are obviously an instance of weakly complete spaces,
where the exhaustion function can be taken to be strictly plurisubhar-
monic and we have abundance of holomorhpic functions; more gen-
erally, holomorphically convex spaces give a wide range of examples,
which admit a proper holomorphic map onto a Stein space, their Cartan-
Remmert reduction.

A completely different example of weakly complete space is due to
Grauert (cfr. [7]). As a generalization of the latter, we say that a com-
plex surface X is of Grauert type if it admits a real analytic plurisub-
harmonic exhaustion function α, such that the regular level sets of
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α are Levi-flat hypersurfaces, foliated by dense complex leaves; such
surfaces do not admit non-constant holomorphic functions.

Our classification result, losely stated, is that a weakly complete com-
plex surface with a real analytic plurisubharmonic exhaustion function
either admits a proper map onto a Stein space or is a surface of Grauert
type. The precise statement is the following.

Main Theorem. Let X be a weakly complete complex surface, with a
real analytic plurisubharmonic exhaustion function α. Then one of the
following three cases occurs:

i) X is a modification of a Stein space of dimension 2,
ii) X is proper over a (possibly singular) open complex curve,

iii) X is a Grauert type surface.

Moreover, in case iii), either the critical set Crt(α) of α has dimension
≤ 2 and then

iii-a) the absolute minimum set Z of α is a compact complex curve
Z ⊂ X and there exists a proper pluriharmonic function χ :
X \Z → R such that every plurisubharmonic function on X \Z
is of the form γ ◦ χ,

or it is of dimension 3 and then

iii-b) there exist a double holomorphic covering map π : X∗ → X and
a proper pluriharmonic function χ∗ : X∗ → R such that every
plurisubharmonic function on X∗ is of the form γ ◦ χ∗.

In both cases, γ is a convex, increasing real function.

We refer to [5] for an overview of the main examples and the ideas
of proof and to [6] for the technical details.

In particular, if X is a surface of Grauert type, in order to obtain
a proper pluriharmonic function, we need either to remove a compact
complex curve or to pass to a holomorphic double cover; Hopf sur-
faces, with one compact curve removed, give an example of the first
phenomenon.

In this short note we want to analyze some properties of Grauert type
surfaces and give an example of the case iii-b of the Main Theorem,
i.e. an instance where we need to pass to a double holomorphic cover
to be able to produce the desired pluriharmonic function.

In Section 2, we study the compact complex curves which can be
found in a Grauert type surface and we show that they are all negative
curves in the sense of Grauert, sitting in the singular levels of α.

Section 3 is devoted to prove that the level sets of the proper pluri-
harmonic function χ are connected, showing in some sense that such
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a function is “minimal” and completing the analogy with the Cartan-
Remmert reduction of a holomorphically convex space: for a surface
of Grauert type, up to a double cover, we produced a proper plurihar-
monic function with connected level sets such that all the other pluri-
harmonic functions are obtained by composing it with the (pluri)harmonic
functions of the image (i.e. linear functions, the image being R).

In Section 4 we construct a family of examples of complex surfaces
of Grauert type which do not admit a proper pluriharmonic function,
but whose holomorphic double covers do.

2. Compact curves in Grauert type surfaces

We know from [6, Theorem 4.2] that no regular level of χ can contain
a compact curve, because this would imply thatX is a union of compact
complex curves, which is not the case, X being of Grauert type. This
section’s results inspect what happens in the singular levels, but first
we need the analogue of [6, Lemma 7.2] for singular curves.

Lemma 2.1. Let W be a complex 2-dimensional manifold and C a
compact complex curve in W . Then there is a finite covering {Bj}nj=1

of C by open subsets of X such that

i) C ⊂
⋃n
j=1Bj

ii) every Bj is simply connected
iii) Bj ∩ C is connected for j = 1, . . . , n
iv) whenever Bj ∩ Bk 6= ∅, then also Bj ∩ Bk ∩ C 6= ∅ and Bj ∩ Bk is

connected, for 1 ≤ j, k ≤ n.

Proof. Since C is a semianalytic subset of W , by [4, Theorem 2], we
find a pair (K,L), with K a locally finite simplicial complex and L ⊂
K a finite closed subcomplex, which gives a triangulation of the pair
(X,C), through a homeomorphism h : (|K|, |L|)→ (X,C). Consider a
barycentric subdivision K1 of K and the induced subdivision L1 of L.

All the simplices are considered to be open. We write x ≺ y if x is
a face of y.

For every a ∈ L1, we define the star of a with respect to K1 as

Ba =
⋃

a≺s∈K1

s .

It is clear that Ba gives, through h, an open, simply connected neigh-
bourhood Ua of h(|a|) in X, which intersects C in a connected set. L1

being a finite subcomplex, its vertices are in finite number, hence we
have a finite collection of open sets Ua with a a vertex of L1.
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If Ba ∩Bb 6= ∅, we find a simplex s1 ∈ Ba ∩Bb and it is not difficult
to show that its edge (a, b) is contained in L1. In terms of open sets
Ua, Ub, we obtained that if Ua ∩ Ub 6= ∅ then Ua ∩ Ub ∩ C 6= ∅ as well.

Finally, since Ba ∩ Bb is a union of simplices of K1 and every such
simplex has (a, b) as a face, Ba ∩ Bb = B(a,b), i.e. the star of (a, b) in
K1; therefore it is connected. �

Now, we are in the position to formulate and prove the counterpart
of Lemma 4.1 in [6] for critical levels; however, as the proof we give
here works also for regular levels, we state the result for those as well.

Lemma 2.2. Let χ : W → R be a pluriharmonic function on a complex
surface W ; assume that the level set {χ = d} is non empty and contains
a connected compact complex curve C. Then

(1) there exist a neighborhood V of C and nonconstant holomorphic
function G : V → C such that G vanishes on C;

(2) if, in addition, W is a Grauert type surface, we can construct
G such that {G = 0} is connected but different from C.

Proof. Choose a covering {Vj}nj=1 of C as given by Lemma 2.1. Con-
sider χ|Vj , j fixed. Assuming r > 0 small enough so that Vj is contained

in a topological ball in W , we conclude that χ has a pluriharmonic
conjugate in this ball, and so in Vj, say τ ′j : Vj → R. Since χ|C = d, a
constant, we conclude that its harmonic conjugate on C ∩ Vj is locally
constant. Since C ∩ Vj is connected τ ′j |C∩Vj

is constant. Subtracting

the latter constant from τ ′j we obtain a function τj : Vj → R such that

• τj is a pluriharmonic conjugate of χ|Vj ;

• τj|C∩Vj ≡ 0.

Consider now two intersecting neighborhoods Vj, Vk and define V0 :=
Vj ∩ Vk 6= ∅. Since V0 is connected, τj − τk = a constant in V0 and so
τj− τk ≡ 0 in V0, because τj |V0∩C ≡ 0 ≡ τk |V0∩C . (Note that V0∩ C 6= ∅
if V0 6= ∅.) Thus τj(p) = τk(p), whenever p ∈ Vj∩Vk. Consequently, the
family {τj}nj=1 defines a single-valued pluriharmonic function τ :V →R,

where V=
n⋃
j=1

Vj, such that F (p)=χ(p) + iτ(p), p ∈ V , is holomorphic.

Therefore, there exists F ∈ O(V ), a non constant holomorphic func-
tion, such that F|C = d. We take d = 0, proving (1).

To show (2), suppose that W is a Grauert type surface and, by
contradiction, that C is a connected component of {F = 0}. Take
V0 ⊆ V connected such that F0 = F |V0 : V0 → C is proper and {F0 =
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0} = {F = 0} ∩ V0 = C. Obviously, χ(V0) is an open interval in R
and it contains at least one regular value t0; consider p0 ∈ V0 such that
χ(p0) = t0 and define

C0 = {p ∈ V0 : F0(p) = F0(p0)} .

By properness, this is a compact complex curve in χ−1(t0); but, W
being a Grauert type surface, regular levels of χ are foliated by dense
(hence non compact) complex curves. This is a contradiction, so C
cannot be a connected component of {F = 0}. �

The previous result is enough for our purposes, however, we can
prove a bit more about compact curves in Grauert type surfaces.

We recall that an irreducible compact complex curve C in a complex
surface X is said to be negative if it has negative self-intersection or,
equivalently, if O(−C) has a nonzero section.

It is a celebrated result of Grauert (see [2]) that this is equivalent to
being contractible, i.e. to the existence of a proper holomorphic map
f : X → X ′ onto a complex space X ′, a biholomorphism outside C,
such that f(C) consists of just one point.

Therefore, negative curves arise as a result of modification of complex
(possibly singular) surfaces. We state the next result for any W not
foliated in compact curves, which includes Grauert type surfaces and
modification of Stein spaces, thus presenting also an alternative proof
of part (2) of the previous Lemma.

Corollary 2.3. Let W , χ, d, C be as in Lemma 2.2 and suppose also
that C is irreducible. If W is not foliated in compact curves, then C is
negative.

Proof. Let {Uj} be an open convering of C such that for each j there
exists a function fj ∈ O(Uj) with C ∩ Uj = {fj = 0}. The functions
fi/fj, defined whenever Ui ∩ Uj 6= ∅, represent the cocycle of the line
bundle O(C); if such a bundle were trivial, the function fj would glue
into a global defining function for C, G : U → C, where U =

⋃
j Uj.

Hence, Cζ = {p ∈ U : G(p) = ζ} would be a compact curve, for
|ζ| small enough; at least one of such curves would be contained in a
regular level of χ, so, by Theorem 4.2 in [6], W would be foliated in
complex curves.

Therefore, O(C) is not trivial. Consider the holomorphic function
F : V → C given by Lemma 2.2-(1) and the collection of functions
{F/fj}j, each defined on V ∩ Uj; such collection defines a nonzero
holomorphic section σ of the line bundle O(−C) ∼= O(C)∗. As this line
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bundle is not trivial, σ has to vanish at some point of C. This implies
that C · C < 0, i.e. C is negative in the sense of Grauert. �

In particular, any compact curve in a Grauert type surface, apart
from the absolute minimum set of the real analytic plurisubharmonic
exhaustion function, were this of real dimension ≤ 2, is negative.

3. Level sets of pluriharmonic functions

Theorem 3.1. Let W be a 2-dimensional complex manifold and χ :
W → (a, b), −∞ ≤ a < b ≤ +∞, a proper pluriharmonic function.
Assume W is a Grauert type surface. Then every level of χ is con-
nected.

We need first some auxiliary facts about convergent sequences of
analytic sets. For a discussion of the various definitions of convergence,
see [1, Section 15.5] or [9]. It is convenient for us to reformulate these
definitions in the following manner.

Let Y be a locally compact Hausdorff space. Let {Fn} be a sequence
of non-empty closed subsets of Y . We say that lim supn→+∞ Fn ⊂ F ,
where F is a closed subset of Y , if for every compact subset K ⊂ Y \F
there is an index n0 such that for n > n0, Fn ∩ K = ∅. We say that
lim supn→+∞ Fn = F0, if

F0 =
⋂

lim supn→+∞ Fn⊂F

F closed

F.

Then, using [9, Lemma 1(1)] we can define that the sequence {Fn} is
convergent to F0 (limn→+∞ Fn = F0) if

i) lim supn→+∞ Fn = F0;
ii) for every y0 ∈ F0 there is a sequence {yn} such that yn ∈ Fn,

n = 1, 2, . . . and limn→+∞ yn = y0.

Observe that lim supn→+∞ Fn always exists limn→+∞ Fn not always.
Although we believe the following proposition to be well known, we

will give a sketch of proof.

Proposition 3.2. Let W be a complex manifold and {Fn} a sequence
of closed sets with local maximum property (for plurisubharmonic func-
tions). Then F := lim supn→+∞ Fn has the local maximum property
(for plurisubharmonic functions) as well.

Proof. (Sketch) Suppose, by contradiction, that F does not have the
local maximum property, then, by [8, Proposition 2.3], there are y ∈ F ,
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B = B(y, r) with r > 0, an ε > 0 and a strongly plurisubharmonic
function on B such that u(y) = 0 and

(1) u(z) < −ε|z − y|2 , z ∈ B ∩ F \ {y} .

By the very definition of limit superior of analytic sets we have

lim sup
n→∞

(Fn ∩ bB) ⊆ F ∩ bB ;

moreover, since u is continuous, we have that

(2) lim sup
n→∞

maxu|Fn∩bB ≤ maxu|F∩bB .

Now, it follows again from the definition of limit superior of analytic
sets that there is a subsequence Fnk

and a sequence of points (yk) such
that yk ∈ Fnk

and lim yk = y, therefore limu(yk) = u(y) = 0. Hence,
there exists k0 such that

u(yk0) > maxu|Fnk0
∩bB

by (1) and (2); so

maxu|Fnk0
∩B > maxu|Fnk0

∩bB ,

which contradicts the local maximum property of Fnk0
. �

Corollary 3.3. Let W be a complex manifold and {Fn} a sequence of
closed complex analytic subsets of W of pure dimension 1. Assume that
F0 := lim supn→+∞ Fn is contained in a complex analytic subset F of
W , F also of pure dimension 1. Then F0 is the union of some of the
irreducible components of F .

Proof. (Sketch) Let V be a connected component of Freg. V is a Rie-
mann surface. If F0 ∩ V 6= ∅, and F0 ∩ V 6= V , i.e. has a boundary
point x0 in V , then F0 fails to have local maximum property. Thus
F0 ∩ Freg is the union of a family of connected components Vα of Freg,
i.e. F0 = ∪αV α, where each V α is an irreducible variety. �

The following fact is a special case of a much more general result in
[9, Theorem 1].

Corollary 3.4. Let W be a complex manifold of dimension 2. Let Z1

and Z2 be (closed) complex analytic subsets of W , of pure dimension
1. Assume that Z1 ∩ Z2 6= ∅ is discrete. Now let {Fn} be a sequence
of complex analytic sets of pure dimension 1 converging to Z2. Then
Z1 ∩ Fn 6= ∅ for n large enough.



8 S. MONGODI, Z. SLODKOWSKI, AND G. TOMASSINI

Remark 3.1. The corresponding result in [9] is stated only in Cn

requiring Z1 ∩ Z2 to be finite, but since it is essentially local, it is true
for complex manifolds and with Z1∩Z2 discrete without need to change
the proof.

Theorem 3.5. Let W be a complex manifold of dimension 2 and {Fn}
a convergent sequence of closed irreducible complex analytic subsets of
W of pure dimension 1. Let Z be a connected complex analytic subset
of W with dimC Z = 1. Assume that

i) Fn ∩ Z = ∅, n = 1, 2, . . .
ii) limn→+∞ Fn ⊆ Z.

Then Z = limn→+∞ Fn.

Of course the whole point of this result is that it holds when Z is
reducible (otherwise it is a trivial consequence of Corollary 3.3).

Proof. Denote Z2 = limn→+∞ Fn. Suppose that Z2 6= Z. By Corollary
3.3, Z2 is the union of some family of irreducible components of Z.
Denote by Z1 the union of the remaining irreducible components of
Z. As it is well known, the family of all irreducible components being
locally finite, Z1, Z2 are closed, Z1 ∩Z2 discrete and closed. Since Z is
connected, Z1 ∩ Z2 is nonempty.

Applying Corollary 3.4, we deduce that Z1 ∩ Fn 6= ∅ for n large
enough, but this contradicts assumption ii), unless Z1 = ∅ and Z =
limn→∞ Fn. �

Remark 3.2. It is clear that the assumption of irreducibility or even
connectedness of Fn is not needed, and was actually not used in the
proof.

Lemma 3.6. Let W be a complex manifold of dimension 2 and D a
domain in W . Let f : D → C be a holomorphic function. Let C be a
(possibly reducible) connected compact complex curve in D, such that
f = 0 on C, and that the subset {x ∈ D : f(x) = 0} is connected and
different from C. Then C cannot separate any of its relative neighbor-
hoods in the level set {χ = 0} where χ = Ref .

Proof. Consider any connected neighborhood U of C in W , such that
U∩{χ = 0} is connected. By diminishing U (if needed), we can assume
also that the variety Z := {f = 0} is connected. It is crucial for the
proof that Z \ C is nonempty. Suppose that (U ∩ {χ = 0}) \ C is
disconnected, and that (Aj) is the family (finite or countable) of its
pairwise disjoint relatively open connected components, i.e. ∪∞j=1Aj =

(U ∩ {χ = 0}) \C. Observe that Aj ∩U ⊆ Aj ∪C and Aj ∩U ∩C 6= ∅
for every j.
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Consider now any set Aj. Denote λ = Imf . Observe that λ cannot
be constant on Aj, because then χ|Aj

= λ|Aj
= 0 and consequently

Aj ⊂ {f = 0} is not relatively open in {χ = 0}. Thus λ(Aj) is an
interval containing either (0, ε0) or (−δ0, 0), ε0, δ0 > 0. Let {tn} be a
sequence of values belonging to λ(Aj), such that limn→+∞ tn = 0. The
sets

{λ = tn} ∩ Aj = {f = itn} ∩ Aj
are nonempty for every n and closed in U . Denote by Fn any of the
(irreducible) connected components of this set. Since f is continuous,
lim supn→+∞ Fn ⊂ Z. By the properties of the topology of (locally
uniform convergence) of closed sets defined above, Fn has a conver-
gent subsequence, which we still denote by {Fn}. By Theorem 3.5
limn→+∞ Fn = Z and so Z ⊂ Aj ∩ U . Moreover, Aj ∩ U ⊆ Aj ∪ C.
It follows that ∅ 6= Z \ C ⊂ Aj, and so

⋂
j Aj is nonempty. This is a

contradiction. �

Lemma 3.7. Let W,B be normal, Hausdorff topological spaces and
f : W → B a continuous, proper, surjective map such that

(?)

for every b ∈ B, for every Y connected component of
f−1(b) there is U a neighbourhood of b such that if X0 is
the connected component of f−1(U) containing Y then
for every b′ ∈ U , f−1(b′) ∩ X0 is connected and non
empty.

If B is simply connected, and W is connected, then f−1(b) is connected
for every b ∈ B.

Proof. Define on W the following equivalence relation: given u,w ∈ W ,
we write u ∼ w if f(u) = f(w) and both lay in the same connected
component of f−1(f(u)). Let π : W → W/ ∼ be the quotient map. It
is easy to check that the map induced by f , namely f̄ : W/ ∼→ B, is
a covering map by (?), together with properness of f .

As B is simply connected, the covering spaces of B can be only
disjoint unions of copies of B, but if W is connected, so is W/ ∼.
Therefore f̄ is an homeomorphism, hence f−1(b) is connected for every
b ∈ B (and non empty by surjectivity). �

We note that a locally trivial fibration satisfies condition (?).

Theorem 3.8. Let X be a connected smooth manifold, f : X → R a
proper smooth surjective function such that

(1) the critical values of f are discrete
(2) every connected component of Crt(f) does not disconnect any

of its open neighbourhoods in X
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(3) for any t ∈ R and any connected component Y of f−1(t), Y \
Crt(f) is connected and non empty.

Then f−1(t) is connected and non empty for every t ∈ R.

Proof. We will prove that f enjoys property (?) from Lemma 3.7.
Consider t0 ∈ R and let Y be a connected component of f−1(t0).

There exists δ > 0 such that no critical values of f are contained in
(t0 − δ, t0) or (t0, t0 + δ). Let X0 be the connected component of

{x ∈ X : t0 − δ < f(x) < t0 + δ}

containing Y .

Up to taking δ small enough, If Y ∩Crt(f) = ∅, then X0∩Crt(f) = 0
and, by Ehresmann theorem (see Theorem 9.3 and Remark 9.4 in [10]),
all the level sets are diffeomorphic. In particular, Y being connected,
every level set of f |X0 is connected; moreover, as Y does not contain
critical points, it cannot be neither a maximum nor a minimum set for
f , hence there is δ′ > 0 such that f(X0) ⊇ (t0 − δ′, t0 + δ′).

If Y ∩ Crt(f) 6= ∅, consider Y ′ = Y \ Crt(f) as a (connected) sub-
manifold of X ′0 = X0 \ Crt(f), which is also connected. Take U to be
a tubular neighbourhood of Y ′ in X ′0 and set

U+ = U ∩ {f > t0} U− = U ∩ {f < t0} .

By definition, Y ′ is disjoint from Crt(f), so it cannot contain extremal
points for f , therefore U+ and U− are both non empty and disjoint;
moreover, U is diffeomorphic to the total space of a (real) line bundle
over Y ′, hence U \Y ′ = U+∪U− has at most 2 connected components,
so U+ and U− are connected.

Obviously, U± ⊆ X±0 = X0 ∩{f ≷ t0}; let V be a connected compo-
nent of X+

0 .
As X ′0 is connected and V 6= X ′0, bV ∩ X ′0 is nonempty. Since V is

relatively closed in X ′0, bV ∩X ′0 ⊆ bX+
0 ∩X ′0 = Y ′. Thus U ∩ V is non

empty and so is U+∩V (because V ∩U+ = V ∩U∩X+
0 = V ∩U); as this

holds for every connected component of X+
0 and as U+ is connected,

we conclude that X+
0 is connected.

By Ehresmann theorem, f |X+
0

is a locally trivial fibration, hence

satisfies condition (?) and f(X0) is a connected subset of R, i.e. an
interval, which is simply connected. By Lemma 3.7, all the level sets
are connected.

The same holds for X−0 and hence for X0. Moreover, it is clear that
there exists δ′′ > 0 such that f(X0) ⊇ (t0 − δ′′, t0 + δ′′).
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Hence, f enjoys property (?). Applying again Lemma 3.7, we con-
clude that every level set of f is connected and, by surjectivity, non
empty. �

Proof of Theorem 3.1 Let C be any connected component of the
critical set of χ.

The critical set is locally defined by holomorphic equations ∂χ/∂z =
0, ∂χ/∂z = 0, where z, w are local coordinates. It follows that C is
a complex curve (possibly reducible). Moreover, since χ|C = c, c a
constant, and χ is proper, C is compact complex curve or a point.

Claim: C cannot separate any of its relative neighborhoods in the
level χ = c.

As X is of Grauert type, by Lemma 2.2-(2) there exist a neighbour-
hood U of C in X and a holomorphic function F : U → C such that
C ( {F = 0}. Our claim follows from Lemma 3.6.

In case C is just a point p, the proof is similar, just simpler. We can
take for U a simply-connected neighborhood of p and λ the conjugate
of χ|U , f = χ + iλ − c in U . Shrink U so that Z = {f = 0} ∩ U
is connected. Clearly, Z 6= C. Inspection of the proof of Lemma 3.6
shows that it holds for C- a single point- without any change. The
claim is proved.

As χ satisfies the hypotheses of Theorem 3.8, we conclude that the
level sets of χ are connected. �

The following Corollary is obvious.

Corollary 3.9. Grauert type surfaces have at most two ends.

4. A class of examples

The purpose of this section is to provide examples to show that
passing to a double cover in the case iii-b of the Main Theorem proved
in [6] is unavoidable. The result can summarized as follows.

Theorem 4.1. There exists a weakly complete complex surface X∗ such
that

(1) X∗ admits a real analytic plurisubharmonic exhaustion function
and is a Grauert type surface, hence it admits also a proper
pluriharmonic function.

(2) X∗ admits a (holomorphic) involution T without fixed points
(3) X = X∗/〈T 〉 is again a Grauert type surface with a real analytic

plurisubharmonic exhaustion function
(4) every proper pluriharmonic function on X is constant.
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The surface X∗ discussed in Theorem 4.1 will be obtained by modifi-
cation of [6, Example 2.3]. In rough outline, consider compact Riemann
surfaces M which admit a fixed-point free conformal involution S, and
X∗ the space of some, topologically trivial, line bundle on M without
the 0 section, where the line bundle transformed by S is equivalent to
the dual line bundle. There are more details to be taken care of, as
discussed next.

Remark 4.1. We will show, in fact, that there exist infinitely many
such surfaces.

Before starting with our construction, we recall a rather elementary
result.

Lemma 4.2. Let g > 0 be an odd integer. Then there exists a compact
Riemann surface Mg of genus g with a conformal involution S : Mg →
Mg without fixed points.

Proof. We have g = 2g′ − 1 for some positive integer g′. Let Σ be a
compact Riemann surface of genus g′ and let π : V → Σ be a (topo-
logical) double cover of Σ. Such a double cover exists because, for
example, the abelianization of π1(Σ), which is H1(Σ,Z) = Z2g′ , admits
a surjection on Z/2Z. Therefore the fundamental group of Σ has a
(normal) subgroup of index 2.

Now, we can pull back the complex structure from Σ to V , giving
it the structure of a Riemann surface, so that π becomes a holomor-
phic map; by the Riemann-Hurwitz formula for an unramified cover of
degree 2, χ(V ) = 2χ(Σ) and, remembering that χ(Mg) = 2 − 2g, we
immediately obtain that the genus of V is 2g′ − 1.

Then V is our Mg and we have that there exists S ∈ Aut(Mg) such
that Σ = Mg/{I, S}. Hence S is the involution we were looking for. �

4.1. S-antisymmetric bundles and cocycles. We recall now some
basic definitions and notation.

If S is an automorphism of a Riemann surface M and ξ a complex
line bundle with cocycle {ξij}i,j∈A, ξij : Ui ∩ Uj → C, where {Ui}i∈A
is an open covering of M , we denote by S(ξ) the S-image (i.e. the
pushforward by S) of ξ, by which we understand the line bundle with
the defining cocycle {kij}i,j∈A, where kij : S−1(Ui) ∩ S−1(Uj) → C is
kij := ξij ◦ S, corresponds to the covering {S−1(Ui)}i∈A.

From now on we assume S is an involution without fixed points, i.e.
S ◦ S = Id and S(m) 6= m for all m ∈M .

Crucial to our construction are S − antisymmetric line bundles i.e,
such that S∗(ξ) = ξ−1 ( “=” means line bundle equivalence; more
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precise requirements will be indicated in terms of cocycles). Since
S-image preserves Chern numbers, while ξ 7→ ξ−1 reverses them, S-
antisymmetric bundles have Chern number 0, and so are topologically
trivial. As well known, they can be represented by flat unimodular
cocycles {ξi,j}, i.e. ξi,j = {const} in Ui ∩ Uj, |ξi,j| = 1 (and, of course,
ξijξjk = ξik).

Our surface X∗ will be the space of an S-antisymmetric line bundle
η over M minus its 0 section, where S is fixed-points free but in order
to define on X∗ a biholomorphic involution (determined by S), we need
to use an S-antisymmetric cocycle defined next.

Definition 4.3. With M and S as above consider a complex line bun-
dle cocycle {ηij}i,j∈A associated with an open covering {Vi}i∈A of M ,
where ηij : Vi ∩ Vj → C. We say that {ηij}i,j∈A is an S-antisymmetric
cocycle if there is an involutive permutation σ of the index set A, i.e.
σ : A→ A, σ ◦ σ = IdA, such that

a) S−1(Vi) = Vσ(i), i ∈ A
b) ησ(i)σ(j) = 1/ηij ◦ S−1 in Vσ(i) ∩ Vσ(j) = S−1(Vi ∩ Vj).

Another useful concept will be that of S-stable covering.

Definition 4.4. A covering {Uj}j=1,...,2n of M is called S-stable if
S(Uj) = Uj+n for j = 1, . . . , 2n, where the indexes are taken mod 2n.

We notice that, given any covering {Wj}j∈A of M , we can produce
an S-stable covering subordinated to that: for every p ∈ M , let Up be
a neighbourhood of p such that

• Up ∩ S(Up) = ∅
• ∃h, k ∈ A such that Up ⊆ Wk, S(Up) ⊆ Wh.

Now, take p1, . . . , pn such that {Upj}j ∪ {S(Upj)}j is a covering of M
and re-index such covering so that S(Uj) = Uj+n for j = 1, . . . , n.

Lemma 4.5. Let ξ be an S-antisymmetric bundle. Then ξ⊗2 admits
an S-antisymmetric unimodular representing cocycle with respect to an
S-stable covering.

Proof. First of all, we note that also ξ⊗2 is an S-antisymmetric bundle.
We have that S(ξ) = ξ−1, so there exists a covering {Wj}j∈A with

respect to which the cocycles of S(ξ) and ξ−1 are equivalent.

We can refine the covering to an S-stable one {W̃j}j=1,...,n, so that, if
{ηij}i,j=1,...,2n is the cocycle representing ξ−1, then {η−1i+n,j+n◦S}i,j=1,...,2n

is the cocycle representing S(ξ).

We suppose that W̃j and W̃i∩W̃j are simply connected for every i, j.
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Therefore, there exists a 0-cochain {φj}, φj ∈ O∗(W̃j), such that

(3) φiηijφ
−1
j = η−1i+n,j+n ◦ S

on W̃i ∩ W̃j. Note that we also have

(φi+n ◦ S)(ηi+n,j+n ◦ S)(φ−1j+n ◦ S) = η−1ij .

Dividing the last two equations sideways and canceling the η-terms, we
obtain

φi
φi+n ◦ S

=
φj

φj+n ◦ S
in W̃i ∩ W̃j .

Thus, these ratios define a non-vanishing holomorphic function on M .
Hence, there is a nonzero complex number c ∈ C∗ such that

(4) φi = c(φi+n ◦ S)

for every i = 1, . . . , 2n.

Let now νij = φiη
2
ijφ
−1
j ; this is a cocycle representing ξ⊗2. Moreover:

ν−1i+n,j+n ◦ S = (φi+n ◦ S)−1(ηi+n,j+n ◦ S)−2(φj+n ◦ S) by definition
= (φi+n ◦ S)−1(φiηijφ

−1
j )2(φj+n ◦ S) by (3)

= (c−1φi)
−1φ2

i η
2
ijφ
−2
j (c−1φj) by (4)

= φiη
2
ijφ
−1
j

= νij

Therefore, we have an S-antisymmetric cocycle {νij}i,j=1...2n with

respect to the covering {W̃j}j=1,...,2n. It is easy to see that, if ηij was
taken to be unimodular, so is ξij. �

Remark 4.2. We note that, if we apply twice (4), we obtain that c2 =
1, i.e. c = ±1. Moreover, this number depends only on the cohomology
class of ξ; if c = 1, we could already produce an S-antisymmetric
representing cocycle for ξ.

Proposition 4.6. If M is a compact Riemann surface of genus g > 1,
with a fixed-point free conformal involution S, then there exists an S-
antisymmetric complex holomorphic line bundle η which is not unipo-
tent, i.e. η⊗k is not holomorphically trivial for any k ∈ Z \ {0}.

Proof. The proof uses some basic facts about Picard variety, P(M),
of the Riemann surface, for which we refer to Gunning [3, §8]. P(M)
has several descriptions; in the one crucial for us it is the group of
(holomorphic equivalence classes of) complex line bundles of Chern
class 0 (i.e. topologically trivial) on M . With the operation of tensor
product P(M) becomes a group. For a positive genus g of M , P(M)
can be given a complex structure with which it becomes a complex
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Lie group, specifically a complex torus of complex dimension g, [3, §8,
p.146].

Consider the map Ψ : P(M) → P(M) defined by Ψ(ξ) := ξS(ξ),
ξ ∈ P(M). It is clear that Ψ is a homomorphism of complex Lie
groups. The image of Ψ is contained in the subgroup of line bundles η
such that η = S(η); these line bundles are pullbacks of line bundles on
M/{I, S}, so their subgroup is a complex torus of dimension (g+1)/2.

Consider K = ker Ψ; this is a Lie subgroup of P(M), and it cannot be
countable (or finite) as P(M)/K = Ψ(P(M)) is contained in a complex
torus of dimension (g + 1)/2 < g, as g > 1.

Recall now that, as a real Lie group, P(M) is isomorphic to the real

torus
(
R/Z

)2g
. The unipotent line bundles correspond to the points of

real torus with all coordinates rational, and so form a countable set.
Since K cannot be countable, it must contain a non-unipotent bundle
η which proves the proposition. �

Remark 4.3. The assumption g > 1 is necessary. If M is a torus, K is
a discrete subgroup of P(M), which is compact, so K is finite and all its
elements have finite order, i.e. are unipotent line bundles. Moreover,
given the rather easy structure of the automorphisms of a torus and
the isomorphism between a torus and its Jacobian, one can explicitly
compute the S-antisymmetric line bundles for any given involution S.

4.2. Proof of Theorem 4.1. Following Lemma 4.2, let M be a com-
pact Riemann surface of odd genus g > 1, with a conformal involution
S : M →M without fixed points.

By Proposition 4.6, we have a non-unipotent S-antisymmetric line
bundle η on M , whose square ν = ξ⊗2, by Lemma 4.5, can be repre-
sented with a unimodular S-antisymmetric cocycle {νij}i,j=1,...,2n, with
respect to an S-stable covering {Uj}j=1,...,2n.

Let X∗ be the total space of ν minus the zero section M . Using local
trivializations on the S-stable covering {Uj}j=1,...,2n, we will construct
a holomorphic involution T : X∗ → X∗ and a proper pluriharmonic
function χ∗ : X∗ → R.

Let p : X∗ →M be the restriction to X∗ of the projection map of the
bundle ν; p−1(Uj) ∼= Uj × C∗, so that X∗ can be given as the union of
charts {Uj ×C∗}j=1,...,2n, glued together with the following equivalence
relation: if Ui ∩ Uj 6= ∅, (p, w1) ∈ Ui × C∗, (q, w2) ∈ Uj × C∗ then

(p, w1) ∼ (q, w2) ⇔ p ≡ q and w1 = νijw2

Define on each chart a pluriharmonic function χi : Ui × C∗ → R by
χi(p, w) = log |w|. Since |νij| = 1 in Ui ∩ Uj, χi|Ui∩Uj

= χj |Ui∩Uj
and so
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they define a single-valued pluriharmonic function χ∗ : X∗ → R; it is
easy to verify that χ∗ is proper.

To define a biholomorphic involution T of X∗, define first maps of
charts

Ti : Ui × C∗ → Ui+n × C∗

by
Ti(p, w) = (S(p), 1/w).

Since S(Ui) = Ui+n it is clear that Ti is well defined (here and in what
follows, the indexes are to be understood mod 2n), and that

Ti(Ui × C∗) = Ui+n × C∗;
Ti+n ◦ Ti = IdUi

i = 1, . . . , 2n.

It remains to check that whenever charts Ui×C∗ and Uj ×C∗ overlap,
Ti and Tj are equal on

(
Ui ∩ Uj

)
× C∗.

Let (p, w1) ∈ Ui × C∗, (q, w2) ∈ Uj × C∗ and (p, w1) ∼ (q, w2) i.e.
p ≡ q and w1 = νij(p)w2. Then also (S(p), 1/w1) ∼ (S(q), 1/w2);
indeed, S(p) ≡ S(q), because p ≡ q, and ν−1ij = νi+n,j+n ◦ S, so

1

w1

=
1

w2

ν−1ij (p) =
1

w2

νi+n,j+n(S(p)) .

Therefore Ti(p, w1) ∼ Tj(q, w2). It follows that the family {Ti} defines
one biholomorphic involution T : X∗ → X∗.

It is clear from the definition that T does not have fixed points if S
does not.

We verify now that χ∗ ◦ T = −χ∗.
If (p, w) ∈ Ui × C∗, T (p, w) = (S(p), 1/w) and

χ∗ ◦ T (p, w) = χ∗(S(p), 1/w) =

− log |w| = −χ∗(p, w).

We define α∗(x) = |χ∗(x)|2. This function is clearly plurisubhar-
monic and exhaustive, being proper and bounded from below.

As we know from [6, Example 2.2], if ν is not unipotent, X∗ is a
Grauert type surface (in particular each complex leaf is dense in the
level set of χ∗ which contain it).

So far, we have proved points (1) and (2). The group 〈T 〉 = {I, T}
acting freely and properly discontinuously onX∗, we define the quotient

π : X∗ → X = X∗/〈T 〉
which is a holomorphic covering map between complex surfaces. The
function α∗ descends as a real analytic plurisubharmonic exhaustion
function α on X; the levels of α are still Levi flat hypersurfaces with
dense leaves, hence X is a Grauert type surface, showing (3).
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Now, consider χ : X → R a pluriharmonic function; we can lift it to
χ ◦ π : X∗ → R, again pluriharmonic, so that χ ◦ π = aχ∗ + b for some
constants a, b ∈ R by [6, Lemma 5.4 (iii)]. Since π ◦ T = π, we have
that

aχ∗ + b = χ ◦ π = χ ◦ π ◦ T = aχ∗ ◦ T + b = −aχ∗ + b

so a = 0 and χ is constant. This proves (4). �
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