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Abstract— We consider the problem of designing a controller
that is able to steer an aircraft to some target position,
while satisfying a set of constraints originating from physical
limitations and comfort requirements. The key idea is to use
feedback linearization, and then approximate the constraints in
the new state and control variables so as to make them convex.
This enables the on-line usage of the model predictive control
strategy to aircraft motion control.

I. INTRODUCTION

In this paper, we develop a novel Model Predictive Control
(MPC) scheme for aircraft motion control, where the aircraft
is steered from some origin position to a target destina-
tion while satisfying constraints related to aircraft physical
limitations and passengers comfort. The use of MPC ([18],
[16]) is motivated by its well known capability of handling
constraints. The main idea behind MPC is that of considering
at every time instant a finite-horizon optimal control problem,
where a cost function is optimized with respect to the choice
of the control input subject to the state/input constraints.
Then, only the control input for the current time instant is
applied and the same finite-horizon control problem is solved
over a 1-step shifted time window (receding horizon).

In the case of the considered aircraft motion problem, the
main difficulty in applying MPC rests on the fact that the
problem is intrinsically nonlinear, and an appropriate formu-
lation of the constrained optimization problem is required
so as to make it simple enough to be solved on-line with
the available computational resources. The strategy adopted
in this paper is as follows. We first explicitly compute a
feedback linearizing control law that holds globally. This has
the advantage of making the system dynamics linear with
respect to the new state and input variables, so that it can be
more easily dealt with in the MPC scheme.

The obtained linear model exactly matches the aircraft dy-
namics, but in the new coordinates frame the state and input
constraints become non-convex and very hard to handle. The
next step is the reformulation of these new constraints as
convex (possibly linear) constraints by introducing suitable
relaxations when necessary. Such relaxations are constructed
so as to guarantee that the original constraints are satisfied
at least for the initial time instant of the considered time
horizon. In this way, though the original constraints may be
violated in subsequent time instants by the solution of the
finite-horizon control problem, they are never violated in the
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receding horizon implementation of MPC. Note that in [10],
[15] and [13] aircraft motion control is addressed as well,
but the presence of constraints is only partially accounted
for.

The idea of using feedback linearization followed by a
convexification of the constraints to ease the application of
MPC for nonlinear systems is not new as it has been applied
in e.g. [19], [24], and [14], while [22] discusses the problem
from a general perspective. The contribution of this paper is
that of using this methodology in a new problem, to the
best of our knowledge never tackled in this way before.
We develop specific ad-hoc solutions, especially for what
concerns the convexification of the constraints, a problem
that still has no general solution.

This paper also prepares the ground for innovative
solutions in the Air Traffic Management (ATM) context.
Since air traffic is expected to increase rapidly over the
next decades, new ATM concepts are needed to exploit
more efficiently the airspace and to avoid route congestion
and delays. A possible solution that has been proposed
in the literature rests on the so-called Target Windows
(TWs), [4], which are viewed as key to enable new ATM
systems in both the SESAR, [1], and CATS, [2], projects.
Each TW is a constraint on the 4-D aircraft trajectory,
requiring that a space region, usually a rectangle placed on
the boundary between two airspace sectors, is hit within
a specified time interval. In perspective, each aircraft will
be assigned a sequence of TWs to meet, where the TWs
altogether are designed with the twofold objective of better
exploiting the airspace capacity and of avoiding conflicts.
Coping with TWs constraints in aircraft motion control
is not straightforward though, and the MPC scheme here
developed seems to be the ideal starting point for further
addressing this issue.

Paper structure
The rest of the paper is organized as follows. In Section II we
describe the model of the aircraft motion and the constraints
on the state and control variables as induced by physical
limitations and passengers comfort requirements. In Section
III we apply feedback linearization to obtain a linear model,
while in Section IV the problem of constraints convexifica-
tion is addressed. The final finite-horizon optimal control
problem is specified in Section V, where considerations
on its receding horizon implementation are also provided,
focusing on recursive feasibility and computational effort.
Some simulation results are reported in Section VI, whereas
concluding remarks are drawn in Section VII.



II. MODELING FRAMEWORK

A. Aircraft dynamics

We consider a six-state, flat earth, trimmed, point mass
model for the aircraft dynamics. The state variables are
given by the position of the aircraft expressed in Cartesian
coordinates x, y, z with respect to a fixed frame, the True
Air Speed (TAS) of the aircraft V , the heading angle ψ , and
the mass m of the aircraft. The inputs of the system are the
path angle γ (which is the angle between the flat earth and
velocity of the aircraft), the bank angle φ (which roughly
corresponds to the roll angle), and the engine thrust T . The
system evolves according to the following equations

ẋ
ẏ
ż
V̇
ψ̇

ṁ

=



V cosψ cosγ

V sinψ cosγ

V sinγ

−CDρSV 2

2m −gsinγ + T
m

CLρSV
2m sinφ

−ηT

 , (1)

where CD and CL are the drag and lift coefficients, ρ is the
air density (which depends on the altitude z), S is the surface
of the wings, g is gravitational acceleration, η is a fuel
consumption coefficient. According to [3], the lift coefficient
is set equal to CL = 2mg

ρSV 2 cosφ
, so that the weight force is

always compensated by the lift force (trimmed condition),
while the drag coefficient is given by CD = CD0 +CD2C2

L,
where CD0 and CD2 are suitable coefficients. As a result,
the dynamics for the heading angle becomes ψ̇ = g

V tanφ .
Equations (1) are further simplified by neglecting the mass
dynamics equation that seems to be quite slow with respect
to other dynamics. Thus, the final model of the aircraft
becomes: 

ẋ
ẏ
ż
V̇
ψ̇

=


V cosψ cosγ

V sinψ cosγ

V sinγ

−KD
V 2

m −gsinγ + T
mg

V tanφ

 , (2)

where we let KD = CDρS
2 .

Admittedly, the present model is derived based on some
simplifying assumptions that make it just an approximation
of the actual dynamics of an aircraft. Nevertheless, it is worth
investigating for the following two reasons:

1) it is customary to use simplified models like (2) when
addressing ATM applications, see e.g. [17] and [3];

2) more complex and accurate models can be derived as
extensions of (2) so that the achievements of this paper
retain validity for enhanced models as well.

B. Constraints

In order to account for physical limitations of the aircraft
and comfort of passengers, several constraints both on the
state variables and on the input variables have to be consid-
ered as follows.
• Vertical Acceleration z̈

−aN ≤ z̈≤ aN , (3)

where aN = 5 ft/s2 = 5 ·0.3048 m/s2.
• True Air Speed V

Vmin ≤V ≤Vmax. (4)

Vmin is related to the stall velocity of the aircraft, [3].
• Longitudinal Acceleration

−aL ≤ V̇ ≤ aL, (5)

where aL = 2 ft/s2 = 2 ·0.3048 m/s2.
• Engine Thrust T

Tmin ≤ T ≤ Tmax. (6)

The limit values for the engine thrust can be computed
according to [3] and depend on atmospheric conditions.
• Bank Angle φ

−φmax ≤ φ ≤ φmax. (7)

According to [3] φmax can vary from 25◦ to 45◦ depending
on the type of aircraft.
• Path angle γ

γmin ≤ γ ≤ γmax. (8)

III. FEEDBACK LINEARIZATION

In this section, we perform the feedback linearization of
system (2) so as to obtain a linear model for the aircraft
with new input and state variables. The adopted procedure
is inspired by [23], where, however, a simpler model of an
aircraft in a 2-D airspace is considered. The obtained linear
system is then discretized so as to get a model that can be
easily used in the MPC framework.

First, we set

T = KDV 2 +mgsinγ +mτ, (9)
ϕ = tanφ , (10)

so obtaining V̇ = τ and ψ̇ = g
V ϕ , which are linear equations

in the new input variables τ and ϕ . Note that τ represents the
part of the acceleration provided by the engine thrust that is
still available once the drag and possibly part of the weight
force have been compensated.
If we define new state variables

x1 = x x2 = y x3 = z

x4 =V cosψ cosγ x5 =V sinψ cosγ x6 =V sinγ

then, the equations governing the system evolution become:
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

=


x4
x5
x6

τ cosψ cosγ−V cosγ sinψ
g
V ϕ−V cosψ sinγγ̇

τ sinψ cosγ +V cosγ cosψ
g
V ϕ−V sinψ sinγγ̇

V cosγγ̇ + τ sinγ

 .
Now, let

u1 = τ cosψ cosγ−V cosγ sinψ
g
V

ϕ−V cosψ sinγγ̇ (11)

u2 = τ sinψ cosγ +V cosγ cosψ
g
V

ϕ−V sinψ sinγγ̇ (12)

u3 =V cosγγ̇ + τ sinγ. (13)



Solving (11) and (12) for τ and ϕ gives

τ =
1

cosγ
(cosψu1 + sinψu2 +V sinγγ̇) (14)

ϕ =
1

gcosγ
(−sinψu1 + cosψu2). (15)

By reconstructing γ̇ from (13), we can rewrite (14) as

τ = cosγ cosψu1 + cosγ sinψu2 + sinγu3, (16)

which, together with (15),

T = KDV 2 +mgsinγ +mτ φ = arctan(ϕ),

and

γ = arcsin
(x6

V

)
= arcsin

(
u3,0 +

∫ t
0 u3,σ dσ

V

)
, (17)

gives the nonlinear feedback making the dynamics of x1, x2,
x3, x4, x5, x6 linear with respect to the new inputs u1, u2, u3:

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

=

[
03×3 I3
03×3 03×3

]


x1
x2
x3
x4
x5
x6

+
[

03×3
I3

]u1
u2
u3

 . (18)

Interestingly, the new state and input variables have a
precise physical meaning: the state is composed by the
position of the aircraft in Cartesian coordinates (x1, x2, x3)
and by the velocity along the Cartesian axes (x4, x5, x6),
while the inputs u1, u2, u3 are the accelerations along the
x, y, z axes respectively. Note that the original state variables
can be recovered from the new ones as follows

x = x1 y = x2 z = x3 (19)

V 2 = x2
4 + x2

5 + x2
6 (20)

ψ = arctan(
x5

x4
). (21)

If we discretize system (18) by applying a constant input in
the interval [t, t +Ts), where Ts is the sample time, we get:

xt+1 = Axt +But (22)
x1,t+1
x2,t+1
x3,t+1
x4,t+1
x5,t+1
x6,t+1

=

[
I3 TsI3

03×3 I3

]


x1,t
x2,t
x3,t
x4,t
x5,t
x6,t

+
[

T 2
s
2 I3
TsI3

]u1,t
u2,t
u3,t

 .

IV. REFORMULATION OF THE CONSTRAINTS IN THE NEW
VARIABLES

In this section, constraints introduced in Section II-B
are rewritten as constraints on the new state and input
variables introduced in Section III. These constraints are
then convexified introducing suitable approximations, paying
particular care to the satisfaction of the original constraints,
at least at the first time instant.

• Vertical Acceleration
The input u3 is equal to the vertical acceleration z̈; therefore
the constraint (3) can be straightforwardly written as:

−aN ≤ u3,t+i ≤ aN i = 0, . . . ,M−1. (23)

• True Air Speed
Since V 2 = x2

4 +x2
5 +x2

6, the constraints (4) on the TAS can
be rewritten as:

x2
4,t+i + x2

5,t+i + x2
6,t+i ≤V 2

max i = 1, . . . ,M (24)

x2
4,t+i + x2

5,t+i + x2
6,t+i ≥V 2

min i = 1, . . . ,M (25)

Constraints (24) are already convex, and their interpretation
is that the aircraft velocity1 lies inside a sphere of radius
Vmax. Constraints (25) are instead concave and require that
the aircraft velocity lies outside a sphere of radius Vmin. To
attain convexity, constraints (25) are enforced by requiring
that the aircraft velocity stays beyond a plane tangent to
sphere of radius Vmin and oriented according to the initial
heading angle ψt and path angle γt , which are available since
xt is known, see (17) and (19)-(21). The new constraints can
be expressed by means of the linear inequalities

[
−1 0 0

]
RyRz

x4,t+i
x5,t+i
x6,t+i

≤−Vmin i = 1, . . . ,M, (26)

where the rotation matrices Rz(ψt) and Ry(γt) are defined
as:

Rz =

 cosψt sinψt 0
−sinψt cosψt 0

0 0 1

 Ry =

 cosγt 0 sinγt
0 1 0

−sinγt 0 cosγt

 .
Note that (24) and (26) pose a stricter condition than (24)
and (25), so that the original constraints are always satisfied.
The drawback with (26) is that, having the plane tangent to
the sphere of radius Vmin fixed orientation, for values of
TAS close to Vmin, the aircraft is forced to accelerate in
order to turn in the finite horizon problem. However this
side-effect is negligible for higher values of the TAS, which
correspond to the usual flight conditions. Moreover, thanks
to the receding horizon strategy, the plane orientation is
recomputed at each time step according the actual values
of ψt and γt , and this drawback is further mitigated in the
actual trajectory of the aircraft.
• Longitudinal Acceleration
Since V̇ = τ and (16), the constraint (5) on the longitudinal
acceleration rewrites as:

−aL ≤ cosγt+i(cosψt+iu1,t+i + sinψt+iu2,t+i+

+ tanγt+iu3,t+i)≤ aL i = 0, . . . ,M−1.

Substituting the expressions for γt+i and ψt+i as functions
of x4,t+i, x5,t+i, x6,t+i, it is easily seen that the constraints
are not convex. We decided then to approximate them by
fixing the values of the heading angle ψ and of the path

1Note that the aircraft velocity is a vector with modulus equal to V
and orientation given by the heading angle ψ and by the path angle γ .
Its Cartesian components are x4, x5, x6.



angle γ to their initial values ψt and γt , which are available
through xt . This approximation seems to be acceptable for
the heading angle cannot vary too much in the considered
finite time horizon and cosγt+i keep close to cosγt ≈ 1,
given the limitations on the path angle. This yields

−aL ≤ cosγt(cosψtu1,t+i + sinψtu2,t+i+ (27)
+ tanγtu3,t+i)≤ aL i = 0, . . . ,M−1,

which are linear constraints on ut+i, i= 0, . . .M−1. Notably,
for i = 0, the constraint on ut is exactly equivalent to the
original one, without any approximation. Thus, thanks to the
receding horizon strategy for which at each time step only
ut is indeed actuated, there is no violation of the original
constraint (16) in the actual operation of the aircraft.
• Engine Thrust T
Recalling (6) and (9), the constraint on the engine thrust
can be written as

Tmin

m
≤ τ +gsinγ +

KD

m
V 2 ≤ Tmax

m

Variable τ can be treated as in (27), while sinγ = x6
V , leading

to
Tmin

m
≤ cosγt(cosψtu1,t+i + sinψtu2,t+i + tanγtu3,t+i)+

+
g

Vt+i
x6,t+i +

KD

m
V 2

t+i ≤
Tmax

m
, i = 0, . . . ,M−1.

Unfortunately, the constraints are still non-convex because
of the presence of Vt+i =

√
x2

4,t+i + x2
5,t+i + x2

6,t+i.
A first approximation, based on the presumption that V does
not change too much in the finite time horizon, consists in
keeping V fixed to its initial value Vt for every i= 0, . . . ,M−
1:

Tmin

m
≤ cosγt(cosψtu1,t+i + sinψtu2,t+i + tanγtu3,t+i)+

+
g
Vt

x6,t+i +
KD

m
V 2

t ≤
Tmax

m
, i = 0, . . . ,M−1. (28)

A second approach, instead, consists in replacing Vt+i
with worst-case predictions along the considered horizon,
where worst-case predictions are computed by recalling that
Vt+1 = Vt +Tsτt and by taking into account the constraints
(5) and (4). Precisely, the maximal decrease of the TAS is

V wc−
t+i = max{Vt − iTsaL,Vmin} i = 0, . . . ,M, (29)

while the maximal increase is

V wc+
t+i = min{Vt + iTsaL,Vmax} i = 0, . . . ,M. (30)

In this case the approximate constraints on the engine thrust
would write:

Tmin−KD(V wc+
t+i )V wc−2

t+i

m
≤ (31)

cosγt(cosψtu1,t+i + sinψtu2,t+i + tanγtu3,t+i)+
g
Vt

x6,t+i

≤
Tmax−KD(V wc−

t+i )V wc+2
t+i

m
, i = 0, . . . ,M−1.

We do not use worst case predictions for the TAS in the
term g

V x6 because the sign of x6 is unknown, moreover
the constraints would result to be excessively conservative.
Remarkably, both (28) and (31) are linear constraints, and
are such that the first constraint corresponding to i = 0 is
exactly equivalent to the original constraint on the engine
thrust. Thus, again, thanks to the receding horizon strategy,
the actual operation of the aircraft satisfies (9).
The constraints (31) are closer to the original constraints
than (28), and using (31) it is more likely that the original
constraint on the engine thrust is satisfied over the whole
finite horizon. Yet, in many cases (31) are too conservative
and simulations reveal that the constraints (28) lead to better
performance.
• Bank Angle φ

The constraint (7) on the bank angle presents a structure
similar to that of the constraints on the longitudinal accel-
eration, that is, on τ . Indeed, by (10) and (15), (7) can be
rewritten as:

tanφmin ≤
1

gcosγt+i
(−sinψt+iu1,t+i + cosψt+iu2,t+i)≤

≤ tanφmax i = 0, . . . ,M−1.

Similarly to (27), the values of γ and ψ are fixed to their
initial value γt and ψt in order to recover linear constraints
with respect to the variables u. We have

tanφmin ≤
1

gcosγt
(−sinψtu1,t+i + cosψtu2,t+i)≤ (32)

≤ tanφmax i = 0, . . . ,M−1.

Note that the constraint on ut at i= 0 is exactly equivalent to
the original constraints on the bank angle, so that the actual
aircraft operation satisfies (7) thanks to receding horizon.
• Path Angle γ

Recalling that x6 =V sinγ the constraint (8) writes as

Vt+i sinγmin ≤ x6,t+i ≤Vt+i sinγmax i = 1, . . . ,M, (33)

which is however non-convex due to Vt+i =√
x2

4,t+i + x2
5,t+i + x2

6,t+i. Similarly to the case of the
engine thrust, (33) can be approximated by keeping V
fixed to its initial value Vt for all i = 1, . . . ,M, leading to

Vt sinγmin ≤ x6,t+i ≤Vt sinγmax i = 1, . . . ,M, (34)

or, otherwise, we can replace Vt+i with its worst-case pre-
diction computed in (29) and (30). Note that being sinγmin
negative and sinγmax positive the worst-case is achieved
when V decreases. In this case the constraints on the path
angle can be approximated as:

V wc−
t+i sinγmin ≤ x6,t+i ≤V wc−

t+i sinγmax i = 1, . . . ,M. (35)

Note that (34) does not guarantee the satisfaction of the
original constraint (8), not even for i = 1 because Vt is
considered in place of Vt+1. Instead, (35) is such that the
original constraint is satisfied along the whole finite horizon,
and hence the satisfaction of (8) is guaranteed in receding
horizon too. Although (35) poses stricter conditions than



(8), simulations reveal that (35) works pretty well and, in
view of the previous discussion, it has to be preferred.

V. COST FUNCTION AND OPTIMIZATION PROBLEM

The quadratic cost function to minimize at each time
instant t is chosen as follows

J =
M

∑
i=1

(xt+i−xre f )
T S(xt+i−xre f )+

M−1

∑
i=0

uT
t+iRut+i,

where xre f represent the target (e.g. a final position) that the
aircraft is required to reach. The weighting matrix R accounts
for fuel consumption and comfort and is chosen as

R = RT
rotR

T
norRdRnorRrot ,

Rrot =

 cosψt sinψt 0
−sinψt cosψt 0

0 0 1

 Rnor =


1

aL
0 0

0 1
g tanφmax

0
0 0 1

aN

 .
Most precisely, Rrot is a rotation matrix that transforms u1
and u2 (namely, the accelerations along the x and y axes)
into the longitudinal and lateral accelerations with respect
to the initial value of the heading angle ψt , whereas Rnor
is a normalization matrix, chosen accordingly to the limits
on accelerations. This way, the matrix Rd allows one to
weight the longitudinal and lateral accelerations, as well as
the vertical acceleration, which are directly related to fuel
consumption and comfort.
The matrix S is instead chosen so that the aircraft is properly
steered from the initial condition to the target. We use

S = ST
rotSdSrot ,

where Srot is a rotation matrix as Rrot , but for an angle
ξ = arctan( y−yre f

x−xre f
). This way, the matrix Sd weights the

position mismatch along the current track of the aircraft and
its orthogonal direction (cross-track error). When the aircraft
heads exactly in the opposite direction with respect to the
target position (so that the cross-track error is 0), a small
variation to the angle ξ is artificially added so as to foster
the aircraft steering toward the target.

Given the discrete-time model of Section III, the convex
constraints discussed in Section IV, and the cost function
just introduced, the optimization problem over the finite time
horizon is as follows:

min
ut+i i=0...M−1

J (36)

s.t.
{

dynamics (22)
constraint (23) (24) (26) (27) (28) (32) (35) .

According to the receding horizon strategy, only the first
computed control action is applied each time and the op-
timization is repeated at each time step. In this respect,
two comments are in order, the first regarding recursive
feasibility, the second regarding computational effort.

a) Recursive feasibility: as long as γmin and γmax are suitably
chosen close enough to 0, as it happens in standard settings,
the introduced constraints are always satisfied by the solution

ut+i = 0 i = 0, . . . ,M − 1, which corresponds to keeping
the aircraft flying with its current TAS, heading and path
angle. This guarantees the feasibility of the finite horizon
optimization problem to be solved at each time instant t.

b) Computational effort: the optimization problem (36) to
be solved at each time instant t is convex with a quadratic
cost function and few constraints, most of which are linear.
The number of optimization variables is 3M, which for
standard sampling times Ts between 1 and 5 seconds with
a look-ahead time horizon between 20 and 60 seconds is
usually not bigger than 60. On a laptop with an Intel Core
i7-3630QM CPU and 8Gb of RAM, equipped with an IBM
ILOG CPLEX solver, the solution of (36) with M = 12 and
Ts = 5 seconds required about 0.6 seconds, a performance
which is compatible with an on-line implementation.

VI. NUMERICAL RESULTS

In this section, we report some numerical results obtained
from a simulation, whose purpose was to evaluate the impact
of the introduced approximation in the constraints.
In the simulation, the aircraft initial state was x0 =
[30 30 3 600 400 0]T (positions are in km, velocities in
km/h), and we set xre f = [0 0 0 0 0 0]T , Rd = 03×3, and

Sd =

[
I3 03×3

03×3 03×3

]
.

This means that the aircraft was required to fly from x0
to the origin of the reference frame, while there was no
penalization of the input. We also set the horizon M = 12 and
Ts = 5s. The aim of the simulation was to evaluate whether by
means of the constraints in Section IV the aircraft is actually
driven along a physically feasible trajectory, while achieving
at the same time a good performance in approaching the
target. Note that at the beginning the aircraft has the wrong
heading with respect to the target. Thus, we expect that the
controller makes the aircraft steer. Moreover, the aircraft
should descend from the initial altitude to the 0 level on
the z axis. Once the target is reached, we expect the aircraft
to fly around it, since the TAS cannot drop below Vmin.

The results achieved by implementing the MPC approach
of this paper to the present problem are reported in Figure
1, where both 2-D and 3-D views of the actual trajectory of
the aircraft, along with the finite horizon solutions computed
at each step, is depicted. In the simulations of the controlled
system we added wind disturbance to test its robustness.
Following [11], [15], the wind is modeled by adding a
stochastic disturbance (wx, wy, wz) to the aircraft velocity
along the x, y, z axes respectively. As it appears, the path
followed by the aircraft is quite what we expected, and,
moreover, the original constraints are all satisfied along the
whole aircraft trajectory. Though the approximation intro-
duced to attain convexity hampers the finite horizon solution
to make rapid turns, it seems that this approximation does
not adversely affect the actual behavior of the aircraft, thanks
to the beneficial effect of the receding horizon.
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Fig. 1: In blue stars the actual receding horizon trajectory of the
aircraft, in colored squares the finite horizon solutions computed at
each time step.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an MPC controller of the
motion of an aircraft that explicitly accounts for constraints
arising from physical limitations and comfort requirements.
Much effort has been devoted to guarantee the convexity
of the constrained optimization problem that has to be
repeatedly solved according to the receding horizon strategy.
The resulting control algorithm has limited computational
cost and is amenable of on-line implementation.

Further developments that are currently under study con-
cern the extension of the proposed framework to 4-D tra-
jectory management operations, where 4-D constraints have
to be imposed to the aircraft trajectory e.g. through Target
Windows, [4], and to the case when the aircraft motion is
affected by uncertainty due to the presence of wind, [21],
[5], [6], [12], [8]. The concurrence of stochastic disturbances
and constraints on the aircraft trajectory compels to consider
probabilistic constraints, lifting the complexity of problem
(36). To the purpose of keeping the overall approach com-
putationally feasible, we envisage the use of the so-called
scenario approach, [7], [20], [9], a recently developed ran-
domized method to approximately solve chance-constrained
optimization problems.
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