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Abstract 27 

Parameter estimation in variable-density groundwater flow systems is 28 

confronted with challenges of strong nonlinearity and heavy computational burden. 29 

Relying on a variant of the Henry problem, we evaluate the performance of a domain 30 

localization scheme of the iterative ensemble Kalman filter in the framework of data 31 

assimilation settings for variable-density groundwater flows in a seawater intrusion 32 

scenario. The performance of the approach is compared against (a) the corresponding 33 

domain localization scheme of the ensemble Kalman filter in its standard formulation 34 

as well as (b) a covariance localization scheme of the latter. The equivalent 35 

freshwater head, , and salinity, , are set as the target state variables. The 36 

randomly heterogeneous field of equivalent freshwater hydraulic conductivity, , 37 

is considered as the system parameter field. Density-independent and density-driven 38 

flow settings are considered to evaluate the assimilation results using various 39 

methods and data. When only  data are assimilated, all tested approaches perform 40 

generally well and a localization scheme embedded in the iterative ensemble Kalman 41 

filter appears to consistently outperform the domain localized version of the standard 42 

ensemble Kalman filter in a density-driven scenario; Dirichlet boundary conditions 43 

tend to show a more pronounced negative effect on estimating  for density-44 

independent than for density-dependent flow conditions;  data are more 45 

informative in a density-dependent than in a density-independent setting. The sole use 46 

of aS  information does not yield satisfactory updates of fh  for the covariance 47 

localization scheme of the standard ensemble Kalman filter while the sole use of fh  48 

does. The domain localization scheme leads to difficulties in the attainment of global 49 

filter convergence when only  data are used. A covariance localization scheme 50 

fh aS
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fh

fK

fh

aS
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associated with a standard ensemble Kalman filter can significantly alleviate this 51 

issue. 52 

Keywords: variable density flow; value of data; iterative ensemble Kalman filter; 53 

ensemble Kalman filter 54 

  55 
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1. Introduction 56 

The process of seawater intrusion (SWI) is documented to be critically plaguing 57 

several coastal areas. This poses serious concerns, in light of competitive use of 58 

groundwater resources, the latter being subject to diverse anthropogenic stresses in 59 

the context of, e.g., human consumption for domestic use, irrigation and farming 60 

activities, industrial operations and processes, increased urbanization and tourism, or 61 

population dynamics in coastal regions. A variety of studies targeting optimization of 62 

water withdrawals for appropriate management of water resources in coastal zones 63 

have been conducted, comprehensive reviews being provided by Sreekanth and Datta 64 

(2015) and Datta and Kourakos (2015). A key assumption used in several 65 

management-oriented optimization studies is that model parameters can be 66 

deterministically characterized, which is rarely the case under field conditions. 67 

1.1 Challenges of parameter estimation in density-dependent flow 68 

One of the main complexities associated with variable density settings is that flow 69 

(and transport) dynamics are driven jointly by hydraulic and density gradients. Strong 70 

nonlinearities, heavy computational requirements and measurement difficulty are 71 

three key challenges for parameter estimation in density-dependent groundwater 72 

flows (Carrera et al., 2010; Hu et al., 2016; Colombani et al., 2016). The combination 73 

of a traditional (deterministic) inverse modeling approach with automatic model 74 

calibration procedures, such as those embedded in the widely used codes PEST 75 

(Doherty, 2002) and/or UCODE (Poeter et al., 2005), is prone to yield suboptimal 76 

parameter estimation results in density-dependent flow settings and is plagued by 77 

strong nonlinearity and remarkable computational costs (Carrera et al., 2010). The 78 
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latter aspect is a critical concern in realistic scenarios where system zonation through 79 

a small number of uniform sub-regions has been shown to provide inaccurate results 80 

(e.g., Sanford et al., 2009; Sanford and Pope, 2010). It is also worth pointing out that 81 

increasing the dimensionality of the model parameter space to attempt improving the 82 

quality of inverse modeling can induce suboptimal parameter estimates for a strongly 83 

nonlinear flow system. 84 

The difficulty to obtain a sufficient amount of reliable data to describe the states of 85 

a target subsurface system is an additional challenge for model parameter estimation 86 

and updating of system states. Typical data of state variables available across a 87 

coastal aquifer include hydraulic head and salinity. With reference to the former, head 88 

variations can be informative only when measurement depth and salinity variation 89 

along the borehole are precisely detected (Post et al., 2007). In addition, head 90 

fluctuations detected at a well in the mixing zone between fresh and salt water can be 91 

much higher than those taking place in the actual aquifer (Shalev et al., 2009). Direct 92 

salinity measurements can be complemented by geophysical campaigns (e.g., 93 

Beaujean et al., 2014; Pidlisecky et al., 2015; El-Kaliouby and Abdalla, 2015; 94 

Kourgialas et al., 2016). Salinity data associated with an Integrated Depth Sampling 95 

approach represent an integral value along a borehole screen and may not be suitable 96 

to fully constrain a SWI model. This is markedly evident in cases where water 97 

elevation (as opposed to pressure head) data are collected from a borehole, because 98 

the influence of density on head measurements somehow shadows the actual head 99 

value at the well. Multi-Level Sampling measurements could provide useful 100 

information, albeit the need to achieve this degree of detail should be carefully 101 

balanced against increased model complexity requirements (Colombani et al., 2016). 102 

It should also be noted that characterization of aquifer heterogeneity on the basis of 103 
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salinity data is complex and not always robust, because of the indirect relationship 104 

between salinity and permeability. A discussion of limitations and advantages of 105 

inverse modeling in coastal aquifers relying on these types of information can be 106 

found in Werner et al. (2013) and Carrera et al. (2010). 107 

In the broad context illustrated above, quantification of the actual effectiveness of 108 

data to constrain predictions of a SWI process is recognized as a challenging research 109 

issue, which is still not completely resolved. Shoemaker (2004) suggested that 110 

hydraulic head data are less informative than salinity data to characterize the 111 

hydraulic conductivity field in a simple model of Biscayne Bay (Florida, USA). Sanz 112 

and Voss (2006) found that pressure data are more useful than salinity to estimate 113 

permeability in the context of the Henry problem.  114 

1.2 Iterative ensemble Kalman filter 115 

Aquifers are generally heterogeneous, their hydraulic parameters, such as 116 

permeability, significantly varying in space. Our inability to obtain a deterministic 117 

characterization of the system at a scale of interest has led to the development of 118 

stochastic approaches to quantify uncertainty propagating from (often unknown) 119 

model parameters to system states of interest (e.g., Zhang, 2002). 120 

A stochastic approach such as the ensemble Kalman filter (EnKF) is widely used to 121 

estimate model parameters under uncertain conditions as well as to update system 122 

state variables as new data are available. As opposed to the extended Kalman filter 123 

(EKF), EnKF does not require linearization and is suitable for nonlinear systems. It 124 

has been widely used in groundwater flow and solute transport scenarios (e.g., 125 

amongst others, Chen and Zhang, 2006; Liu et al., 2008; Huang et al., 2009; Tong et 126 
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al., 2010, 2013; Gharamti et al., 2015; Shi et al., 2015; Crestani et al., 2015; Zovi et 127 

al., 2017). 128 

Nonlinearities in the data assimilation (DA) process are much more pronounced in 129 

density-dependent than in density-independent flow (or solute transport) scenarios. 130 

As such, several iterative forms of EnKF (e.g., Reynolds et al., 2006; Li and 131 

Reynolds, 2007; Gu and Oliver, 2007; Sakov et al., 2012) have been developed. 132 

Gu and Oliver (2007) proposed an iterative ensemble Kalman filter (IEnKF) 133 

scheme, termed ensemble randomized maximal likelihood filter (EnRML), to 134 

perform data assimilation in the context of a nonlinear problem, with special focus on 135 

multiphase flow in porous media. Wang et al. (2010) suggested that the EnRML may 136 

be prone to divergence in some highly nonlinear cases. Sakov et al. (2012) introduced 137 

another IEnKF scheme to eliminate suboptimal solutions by replacing the standard 138 

EnKF with the ensemble square root filter (ESRF) and rescaling ensemble anomalies 139 

with the ensemble transform matrix at each iteration. Employing a square root 140 

technique during the iterative process enables one to use ensemble anomalies to 141 

conduct state analysis without the need of perturbing observations (Whitaker and 142 

Hamill, 2002; Sakov et al., 2012; Gharamti et al., 2013; Gharamti and Hoteit, 2014). 143 

As such, the proposed scheme can alleviate suboptimality in the standard EnKF. In 144 

the IEnKF, the filtering probability density function (pdf) at the present state relies on 145 

the maximum of a smoothing pdf associated with the last ensemble state given 146 

present observations. Note that the IEnKF is still based on the filtering theory 147 

(Jazwinski, 1970). The current target pdf of the system state of interest (termed 148 

filtering pdf) is conditional on present and past observations. On these bases, Bocquet 149 

and Sakov (2014) extended the IEnKF through an iterative ensemble Kalman 150 
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smoother (IEnKS) that outperforms the standard Kalman filters and smoothers 151 

(Evensen, 2003; 2009), using an extended data assimilation window (DAW). In the 152 

IEnKS, the DAW with length LΔt (L ≥ 1), Δt representing the fixed time difference 153 

between two sequential times associated with available observations, is allowed to 154 

shift with fixed length V Δt (L ≥ V ≥ 1), as time unfolds. Note that when L = V = 1 155 

(indicating lag-one IEnKS) there are no overlaps between diverse assimilation cycles, 156 

and the IEnKS reduces to an IEnKF form. Gharamti et al. (2015) proposed a new 157 

iterative framework of the one-step-ahead smoothing EnKF which can iteratively 158 

maximize the smoothing pdf without the need of ensemble propagation, with the 159 

assumption that parameter evolution during the iteration procedure weakly influences 160 

the innovation term (see equation (13) in Gharamti et al., 2015). 161 

Various ad hoc iterative applications of EnKF have been used to solve targeted 162 

subsurface and surface hydrology problems (e.g., Moradkhani et al., 2005; Wen and 163 

Chen, 2006; Krymskaya et al., 2009; Song et al., 2014; Ng et al., 2014; Gharamti et 164 

al., 2013, 2014). 165 

Spurious correlation is a key problem which needs to be properly tackled in the 166 

ensemble data assimilation technique. It is typically caused by the limited number of 167 

Monte Carlo realizations for the system parameters and state variables (Houtekamer 168 

and Mitchell, 1998). The ensuing rank-deficiency of the sample error covariance 169 

matrix could dramatically decrease the performance of a data assimilation approach 170 

(Houtekamer and Mitchell, 1998; Hamill et al., 2001). Inflation and multi-ensemble 171 

configuration (Houtekamer and Mitchell, 2001) could mitigate this issue to some 172 

extent. Localization techniques, including covariance and/or domain localization, 173 

could also be used to dampen long-range spurious correlations (e.g., Evensen, 2003; 174 
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Nan and Wu, 2011; Tong et al., 2012). Covariance localization is typically performed 175 

by the Schur product of a smoothing function with the regularized error covariance 176 

matrix (Nan and Wu, 2011). Domain localization is obtained by using solely 177 

measurements within a region near the location where system state variables and 178 

parameters need to be updated. The size of this region is usually selected empirically 179 

(Evensen, 2003). Some approaches can be used to alleviate (or even eliminate) 180 

spurious correlations. These include, e.g., efficient sampling schemes (Hendricks-181 

Franssen and Kinzelbach, 2008), finite-size ensemble Kalman filter (Bocquet, 2011), 182 

and moment-equations based ensemble Kalman filter (Panzeri et al., 2013, 2014, 183 

2015). 184 

Even as localization can be a useful technique to alleviate the rank-deficiency issue, 185 

its level of compatibility with the use of an iterative technique for highly nonlinear 186 

systems is not entirely clear. In this context, a domain localized scheme of the IEnKS 187 

was proposed by Bocquet (2016) to reduce such issues. While all of the above 188 

referenced studies have led to interesting results, none of these focuses on density-189 

dependent flow scenarios. Therefore, their performance in such scenarios is still 190 

unexplored. 191 

1.3 Motivation and objectives 192 

In this study, we primarily aim at assessing the use of a domain localization 193 

scheme embedded in IEnKF (i.e., the localized IEnKS with L = V =1 by Bocquet 194 

(2016)) to effectively update density-dependent flow system parameter and state 195 

variables while coping with strong nonlinearities and heavy computational 196 

requirements. Our work is motived by the observations that (i) the domain localized 197 

IEnKS (Bocquet, 2016) can tackle highly nonlinear systems with small ensemble size; 198 
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(ii) a detailed assessment of the ability of stochastic data assimilation methods to 199 

estimate hydraulic parameters and update model states are relevant and still scarcely 200 

explored for density-dependent groundwater flows in heterogeneous coastal aquifers 201 

(e.g., Sreekanth and Datta, 2015), and (iii) the relative value of diverse types of data 202 

for parameter estimation in density-dependent groundwater flows is still unclear. 203 

We consider a seawater intrusion scenario corresponding to a variant of the Henry 204 

problem, which includes the action of a pumping well operating in a heterogeneous 205 

domain. For comparison purposes, we also analyze the performance in the same 206 

setting of the ensemble Kalman filter in its standard formulation and by embedding in 207 

it a covariance localization scheme. Aspects associated with corresponding 208 

computational complexities are also analyzed. To establish a baseline for comparison, 209 

the data assimilation schemes are also compared in the absence of density effects. 210 

The performances of the approaches are assessed in terms of their potential to deal 211 

with effects of (a) various types of observations (with diverse spatial arrangements of 212 

sampling locations), (b) magnitude of measurement errors, (c) temporal frequency of 213 

data assimilation, (d) the number of realizations forming the collection (or ensemble) 214 

of random fields employed in the calculations, as well as (e) uncertainties associated 215 

with our prior knowledge of the correlation length of the underlying (randomly 216 

heterogeneous) hydraulic conductivity field. 217 

The study is structured as follows. The domain localized IEnKF scheme we 218 

employ is introduced in Section 2. The conceptual model setting and the 219 

mathematical description of the variable and constant density groundwater flow 220 

scenarios are presented in Section 3. Results are illustrated and discussed in Section 4. 221 

Conclusions are presented in Section 5. 222 
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2. Domain localized iterative ensemble Kalman filter 223 

Forecast and update are the two key elements associated with each data 224 

assimilation step. The (nonlinear) model which propagates the system states (here, 225 

specified as a collection of system state variables and model parameters) from time 226 

0t  to 1t  is denoted as 1 0← . We denote the model state vectors at 0t  and 1t  as 0x  and 227 

1x , respectively. An observation vector 1y  is assimilated at time 1t . 228 

Let us consider the ensemble matrix ( ) ( ){ }1 ,  , N= …E x x  whose entries are the N  229 

state vectors ( )ix  (subscript i = 1, 2, ..., N referring to the thi  ensemble member; 230 

where N is the number of the system state realizations collected in E), including state 231 

variables (i.e., equivalent freshwater head and salinity for density-driven flow, and 232 

only freshwater head for density-independent flow in this study) and the natural 233 

logarithm of equivalent freshwater hydraulic conductivity. Note that the size of vector 234 

( )ix  is 3 m×  or 2 m× , respectively for density- dependent or independent flow, m 235 

being the number of grid cells employed in the numerical model. 236 

The empirical mean vector ( x ) and covariance matrix ( P ) of these N  vectors are 237 

calculated as 238 

( ) ( )T

1

1 ,                  = 1
N

n
n

N
N =

= −∑x x P AA  (1) 239 

where the anomaly matrix A  is defined as ( ) ( ){ }1 ,  ...,  N= − −A x x x x . We also 240 

denote by ( )0
0x  the vector of initial (or prior) guesses, and by 0P  the covariance of 241 

forecast state errors at 0t , used in the data assimilation process. 242 



12 

 

Similar to Sakov et al. (2012), for each data assimilation cycle (from 0t  to 1t ) we 243 

compute the smoothing pdf ( )0 1|f x y  for state 0x  given 1y  and the analysis pdf 244 

( )1 1|f x y . According to Bayes’ rule, one can note that 245 

( ) ( ) ( )0 1 1 0 0|  |f f f∝x y y x x , where ( )1 0 |f y x  and ( )0f x  are the likelihood and 246 

prior pdf conditioned on the prior guessed mean state ( )0
0x , respectively. One can 247 

write the prior pdf according to a Gaussian model as ( ) ( )( )0 00
0

0| ,f = x xx P  and 248 

then obtain  249 

( ) ( )( ) ( )( )T0 01
0 0 0 0 0 0

1exp
2

f − ∝ − − − 
 

x x x P x x  (2) 250 

Here, superscript T denotes transpose. The likelihood is assumed to be Gaussian and 251 

can be written as 252 

( ) ( )( ) ( )( )T 1
1 0 1 1 1 0 0 1 1 1 1 0 0

1| exp
2

f −
← ←

    ∝ − − −     
y x y x R y x   (3) 253 

where 1  is a nonlinear observation operator (i.e., an operator which relates model 254 

parameters and states to available data); 1R  is the covariance matrix of observation 255 

errors, which are usually modeled according to a zero-mean Gaussian distribution. 256 

A cost function, 0( )x , can then be formulated as 257 

( ) ( )( ) ( )( )
( )( ) ( )( )

T 1
0 1 1 1 0 0 1 1 1 1 0 0

T0 01
0 0 0 0 0

1   
2
1 
2

−
← ←

−

   = − −   

+ − −

x y x R y x

x x P x x

   
 (4) 258 
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and its minimization (being equivalent to maximize the smoothing pdf ( )0 1|f x y ) 259 

yields an estimate of 0x . 260 

2.1 The cost function in an ensemble space 261 

The vector of true system states can be expressed as x = x + Aw , where w  is a 262 

coordinate vector in the ensemble space (Bocquet, 2011). A cost function ( )w  263 

defined in the ensemble space can then be written as (Hunt et al., 2007; Bocquet and 264 

Sakov, 2012) 265 

( ) ( )( )( ) ( )( )( )
( )

T
0 01

1 1 1 0 0 0 1 1 1 1 0 0 0

T

1      
2
1 1
2

N

−
← ←

   = − + − +      

+ −

w y x A w R y x A w

w w

   
 (5) 266 

where 0A  is the anomaly matrix associated with the collection of realizations 267 

forming the initial guess in the approach. 268 

2.2 Minimization of the cost function in the ensemble space 269 

Minimization of function (5) is performed via the Gauss-Newton algorithm as 270 

( ) ( )
( ) ( )

( )( )1 1   k k k
kkH+ −= − ∇w w w   (6) 271 

Here, superscripts and/or subscripts in brackets represent iteration indices, the system 272 

state at iteration k  being expressed as ( ) ( ) ( )0
0 0 0
k k= +x x A w ; the Jacobian ( )

( )( )k
k∇ w  273 

and the approximated Hessian ( )kH  at iteration k  are given by (Bocquet and Sakov, 274 

2014) 275 
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( )
( )( ) ( )

( )( )( ) ( ) ( )
T

T 1
1 1 1 1 0 0    1k k k

k k N−
←

 ∇ = − − + −  
w Q R y x w    (7) 276 

and 277 

( ) ( ) ( ) ( )
T 1

11 Nk k kH N −= − +I Q R Q  (8) 278 

where NI  is the identity matrix in the ensemble space; and ( )kQ  is a tangent linear 279 

operator acting from the ensemble to the observation space. One can obtain ( )kQ  280 

through two algorithms, i.e., either using an ensemble transform matrix or a scaling 281 

factor (Sakov et al., 2012; Bocquet and Sakov, 2012). The use of the ensemble 282 

transform matrix can outperform resorting to a scaling factor in the presence of 283 

multiple minima for the cost function (Sakov et al., 2012). The scaling factor 284 

algorithm, also termed as bundle variant (Bocquet and Sakov, 2012), has provided 285 

good performances in the localization scheme of IEnKS (Bocquet, 2016). Otherwise, 286 

the ensemble transform matrix algorithm has not yet been applied in conjunction with 287 

a localization method. We do so in our study, relying on the form 288 

( )
( )( ) ( )

T
T 1

1 1 0 0 0  k
Nk kN

−
←

  ≈ + −    

11Q x 1 A I T   (9) 289 

where T  is the ensemble transform matrix, and 1[1,  ..., 1] N×=1  is the identity vector. 290 

The former can be obtained at iteration k  as 291 

( ) ( ) ( ) ( )( ) 1/2
T 1

11 11 Nk k kN
−

−
− −= − +T I Q R Q  (10) 292 

Note that ( )1 N=T I  at the first iteration. The maximization procedure to obtain the 293 

smoothing pdf ( )0 1|f x y  through iterative evaluation of equations (6)-(10) is set to 294 
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stop if a predefined maximum iteration number (i.e., 10 in our computational 295 

examples) is reached or ( ) ( )1k k e+ − ≤w w , e  being a threshold which is tuned to 296 

ensure high performance of data assimilation in terms of quality of results (see also 297 

Section 4). Denoting by the superscript * a given quantity estimated after 298 

optimization, we write 299 

* * T *
0 0 0τ= +E x 1 A T  (11) 300 

Here, *
0E  indicates the estimated ( )0 1|f x y , and corresponds to the ensemble of 301 

realizations after optimization; *
0x  is the vector of optimized mean states of the 302 

ensemble; τ  is an inflation factor which acts on the (ensemble) anomalies; *T  is the 303 

optimal ensemble transform matrix, which is obtained by relying on equation (10). 304 

The most computationally intensive part during the iteration is attributed to the 305 

iterative time integration of the state ensemble through the forward model 1 0← , at 306 

least one iteration (i.e., 1k ≥ ) being required for the computation of ( )0 1|f x y . 307 

2.3 Localization and spurious correlation 308 

The covariance localization in the IEnKF is not straightforward (Bocquet, 2016). A 309 

domain localization scheme might introduce discontinuities across the parameter 310 

space, because grid nodes are separately analyzed by confining the approach to the 311 

use of the observations within the predefined filter length (Lorenc, 2003). To alleviate 312 

these difficulties, we rely on the following function  313 
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( )
( )

exp         when or
  

exp 2 when and

x xz z

x z x z

x z

x z

d d
λ λ

u
d d
λ λ

d dα β β
λ λ

αβ β β

   
+ ≤ ≤   

   = 
 > >

d  (12) 314 

where [ ],x zd d=d  is a (spatial) lag separation vector between two points on the 315 

computational grid; xλ  and zλ  are correlation scales along the x and z directions, 316 

respectively; 0α >  and 0β >  are constants which need to be tuned. Taking the 317 

Schur product between function (12) and the observation error enables one to 318 

magnify somehow artificially the observation error and then impact on the 319 

measurement error covariance 1R  in equations (7), (8) and (10) as a function of the 320 

distance between a target location on the computational grid and points where 321 

measurements are available. This, in turn, can alleviate the emergence of spurious 322 

correlations in a way which is more effective than simply grounding the assimilation 323 

algorithm on the use of observations comprised within a predefined filter length (see 324 

also Nan and Wu (2011)). Therefore, the domain localization approach is used on 325 

both EnKF and IEnKF in this study. 326 

2.4 Ensemble analysis 327 

The analysis pdf ( )1 1|f x y  is estimated by 328 

( ) ( ) ( )
( )( ) ( )

1 1 1 0 1 0 1 0

1 1 0 0 0 1 0

| | , |

|

f f f d

f dδ ←

=

= −

∫
∫

x y x x y x y x

x x x y x 
 (13) 329 

where δ  indicates the Dirac distribution. According to equation (13), the optimized 330 

(or analysis) ensemble indicating the filtering distribution at time 1t  is obtained by 331 
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propagating each member of *
0E  through 1 0← , i.e., ( )* *

1 1 0 0  ←=E E , where *
1E  332 

(associated with (ensemble) mean *
1x ) is the best ensemble estimate based on the 333 

domain localized IEnKF algorithm. Note that *
1x  is then used in a new data 334 

assimilation cycle as a prior to estimate the smoothing and analysis pdfs. 335 

It is remarked that at least two ensemble propagations are needed in the domain 336 

localized IEnKF, i.e., one for estimating the smoothing pdf ( )0 1|f x y  and another 337 

one for estimating the analysis pdf ( )1 1|f x y . In case the predefined maximum 338 

iteration number is equal to one, the structure of the IEnKF resembles the one-step-339 

ahead smoothing EnKF (Gharamti et al., 2015). 340 

3. Numerical simulations 341 

3.1. Density-independent groundwater flow  342 

We start by considering a transient groundwater flow scenario without density 343 

effects, here termed as density-independent flow (DIF) and described by 344 

( ) hK h W S
t

∂
∇ ⋅ ∇ + =   ∂

 (14) 345 

where K  represents hydraulic conductivity 1LT−   , that is considered to be a 346 

random function of space; h  is hydraulic head [ ]L ; W  is a sink / source term 1T−   ; 347 

S  is specific storage 1L−   ; and t  represents time [ ]T . 348 
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3.2. Variable-density groundwater flow (VDF) 349 

For a variable-density flow (VDF), hydraulic head depends on fluid density, which 350 

is in turn a function of salt concentration (or salinity). Tackling a typical VDF 351 

problem entails jointly solving the flow and transport problems. In this context, one 352 

relies on the concept of equivalent freshwater head at a given point B, defined as 353 

B
B B  f

f
f f f

Ph Z h Z
g

ρ ρρ
ρ ρ ρ

−
= + = −  (15) 354 

where BP  1 2ML T− −    and BZ  [ ]L  respectively are pressure and elevation at B; ρ  355 

and fρ  3ML−    respectively are the salt- and fresh-groundwater density. Note that 356 

fh h=  for the density independent flow. 357 

Based on the concept of equivalent freshwater head, the governing equation for 358 

VDF is expressed as (Guo and Langevin, 2002) 359 
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 (16) 360 

where fK  is the freshwater hydraulic conductivity 1LT−   , that is considered to be a 361 

random function of space; k  is permeability 2L   ; fµ  and θ  respectively are the 362 

dynamic viscosity for freshwater 1 1ML T− −    and effective porosity [ ]− , that are 363 

considered as constants in this study; C  is salt concentration 3ML−   ; sq′  is a source / 364 
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sink 1T−    of fluid with density sρ  3ML−   . Note that fK K=  for the density-365 

independent flow. Hereinafter, we also refer to hydraulic head and conductivity in a 366 

density-independent flow as equivalent freshwater head and conductivity (i.e., fh  and 367 

fK ), respectively. 368 

Transport of salt is described by (e.g., Zheng and Bennett, 1995) 369 

( ) ( ) ( ) s s
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D C qC q C

t
θ

θ
∂
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∂

 (17) 370 

where q  1LT−    is groundwater flux calculated from equation (16); D is dispersion 371 

2 1M T−   , which is here taken as a constant; and sC  is salt concentration in the sink 372 

/source term 3ML−   . 373 

3.3. Problem setup 374 

We analyze the performances of the domain localized iterative ensemble Kalman 375 

filter (LIEnKF) and of the domain localized standard EnKF (LEnKF) on the VDF and 376 

DIF cases using a setting which is adapted from the Henry problem, as described in 377 

the following. 378 

3.3.1. Variable-density flow 379 

The modified Henry problem considered in this study is depicted in Figure 1a. The 380 

size of the rectangular domain is 100 m (in the vertical direction)  200×  m (in the 381 

horizontal direction). It is discretized into 25 50×  cells, each of these with a uniform 382 

size of 4 m. The upper and bottom boundaries are considered to be impermeable. The 383 

left and right boundaries are respectively defined as inland flow and sea boundaries. 384 
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A time-varying inland flow rate is prescribed at the left boundary, while a periodic 385 

tidal fluctuation is fixed along the right boundary. A partially penetrating well 386 

(located as depicted in Figure 1) is operated under a transient regime, as detailed in 387 

the following. The (natural) logarithm of equivalent freshwater hydraulic 388 

conductivity (Y  = ln fK ) is considered as a heterogeneous field (see Figure 1a). A 389 

random realization of the field is generated according to the procedure illustrated in 390 

the following and is used as the reference field in this study. 391 

The spatial distribution of Y  is assumed to be statistically stationary and 392 

characterized by the covariance function 393 

( )
1/22 2

2
2 2exp x z

x z

C d dσ
λ λ

  
 = − +    

d   (18) 394 

where 2σ  is the variance of Y. Generation of a reference conductivity field is 395 

performed via the well-known GSLIB software (Deutsch and Journel, 1998) by 396 

setting unit variance and 40xλ =  m, and 24zλ =  m. The (arithmetic) mean value µ  397 

for the reference ln fK  field is set as 6.76, which is equivalent to a hydraulic 398 

conductivity of 864 [m/day], a value typically employed for the Henry problem. 399 

The temporal dynamics of the well pumping rate are modeled as a set of 400 

uncorrelated and randomly selected values sampled from a Gaussian distribution with 401 

mean of 570.20 [m3/day] and standard deviation equal to 20% of the mean. We 402 

consider a temporally varying inland flow rate, uniformly distributed along the inlet. 403 

Values for these flow rate values are sampled from a Gaussian distribution with mean 404 

of 500 [m3/day] and standard deviation equal to 20% of the mean. Tide elevations are 405 

described by a sine function with an amplitude of 4 m and a period of 30 days. Values 406 
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for pumping rate and boundary conditions are generated with a daily frequency, the 407 

realization selected as input to our computations being depicted in Figure 2. As a 408 

consequence, the variant of the Henry problem we consider is characterized by a 409 

temporal alternation of confined and unconfined conditions. In the latter case, we do 410 

not account for the effects of unsaturated flow above the water table, for simplicity. 411 

A constant salt concentration of 35 [g/L] is assigned along the sea boundary, a 412 

freshwater boundary condition being imposed along the inland boundary. The total 413 

simulation time is 50 days. Table 1 lists the model parameters that are considered as 414 

uniform in our simulations. The initial flow field and concentration distribution are 415 

depicted in Figure 1b for the variable-density groundwater flow. These initial 416 

conditions have been obtained in the absence of pumping and by setting a uniform 417 

tidal level of 100 m at the seaside boundary and a constant inland flow rate 418 

coinciding with the mean value of 570.2 [m3/day], which is then uniformly 419 

distributed along the domain inlet (see Table 1). 420 

3.3.2. Density-independent flow 421 

The setting for the density-independent case is similar to the one illustrated in 422 

Section 3.3.1, the only differences being the actual values for the initial conditions 423 

considered for the flow problem. The initial distribution of pressure heads and fluxes 424 

are obtained by the same method used for the VDF case and are depicted in Figure 1c. 425 

3.3.3. Simulation scenarios for data assimilation 426 

The spatial distribution of the 30 points where we sample pressure heads in the 427 

reference field is depicted in Figure 1b. Pressure heads sampled at these locations are 428 

transformed into equivalent freshwater heads by equation (15) and employed for both 429 
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VDF and DIF simulations. The 50 and 10 locations at which pressure head (and 430 

salinity, for the VDF scenario) and reference hydraulic conductivity values are 431 

respectively measured in our simulations are depicted in Figure 1c. Observations of 432 

equivalent freshwater head, fh , (natural) logarithm of equivalent freshwater 433 

hydraulic conductivity, Y, and/or salinity, aS , employed in the data assimilation 434 

procedure are obtained by perturbing the corresponding reference values of the (DIF 435 

and/or VDF) scenarios considered by a zero-mean Gaussian error with a given 436 

standard deviation. The values of the latter (i.e., 0.001 m, 0.01 m, and 0.1 m for fh  437 

measurements and 0.001 g/L for aS ) considered in our simulations enable us to 438 

assess the importance of data error on assimilation results (see also our results 439 

illustrated in Section 4). These values are partially consistent with measurement 440 

accuracies associated with some typical devices deployed in the field (e.g., water 441 

level loggers whose measurement accuracies for pressure heads can range between ~ 442 

± 0.005 m and ~ ± 0.05 m). 443 

To ease the interpretation of the results stemming from our analysis of the worth of 444 

diverse data types (i.e., fh  or aS ), we intentionally used a constant (in both time and 445 

space) standard deviation to characterize the error fluctuation of both fh  and aS . 446 

Model parameters and boundary conditions which are assumed to be deterministically 447 

known are also listed in Table 1. 448 

To explore the potential of the approaches analyzed, we consider several 449 

showcases, each highlighting key features of interest. We group our exemplary 450 

settings according to the following configurations: (a) Groups A (see Table 2) allows 451 

exploring the effects of a range of measurement errors, number of data, and temporal 452 
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frequencies to be included in the assimilation procedure; (b) Group C (see Table 2) 453 

includes diverse observation types; and (c) Group D (Table 2) considers uncertainties 454 

linked to our incomplete knowledge of the correlation scales of the randomly 455 

heterogeneous Y field. Test Cases TCs 1-6 (each of them structured into two sub-456 

components, e.g., TC1 articulated into TC1c and TC1v, see Table 2) are designed to 457 

establish a baseline for both density-independent flow (hereafter termed DIF) and 458 

variable-density flow cases with differing numbers of fh  data assimilated in the 459 

model during the simulation period (i.e., 30 or 50 fh  data are assimilated with a daily 460 

frequency, respectively in TCs 1-3 and TCs 4-6) and considering the effect of diverse 461 

values of the standard deviation of measurement errors. 462 

Test Case 7 (structured through the three components collected in Group B in 463 

Table 2, i.e., TC7i, TC7ii and TC7iii) is designed to study the limitations of domain 464 

localization in the VDF case. Test Cases 8-12 (corresponding to Group C in Table 2) 465 

are designed to investigate the effects associated with the use of diverse data sets. 466 

Due to the limitations of domain localization schemes, TCs 8-12 are assessed through 467 

the covariance localization scheme of the standard ensemble Kalman filter (LEnKFcov) 468 

(see Appendix A). With reference to these cases, note that 50 hf and/or 50 Sa data 469 

(associated with sample standard deviations 0.001 m and/or 0.001 g/L, respectively) 470 

are assimilated with a daily frequency. Hydraulic conductivities in TCs 10-11 471 

(associated with a sample standard deviation of Y = ln fK  equal to 0.001 (for fK  472 

given in (m/day)) are available at the 10 points shown in Figure 1c and are 473 

assimilated only after the first day of simulation. 474 

With the exception of TC7iii, TCs 1-6, TC7i, TC7ii and TCs 8-12 are designed by 475 

generating the initial realizations of the conductivity fields considering ln fY K=  to 476 
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be normally distributed with (ensemble) mean and variance of 6.0 and 1.69, 477 

respectively, these values being different from their counterparts (i.e., 6.76 and 1.0) 478 

employed in the generation of the reference Y field. In TC7iii, the guessed mean and 479 

variance of Y coincide with those employed in the reference field. For simplicity, the 480 

random conductivity fields employed in TCs 1-12 are generated according to the 481 

covariance function (18) with values of scale lengths equal to those used in the 482 

generation of the reference field (i.e., xλ  = 40 and zλ  = 24). 483 

Test Cases 13-16 (Group D in Table 2) are designed to investigate the effects of 484 

uncertainties on the employed values for horizontal correlation scales of Y and are 485 

constructed by generating the initial realizations of the conductivity fields considering 486 

Y to be normally distributed with (ensemble) mean and variance equal to the values 487 

characterizing the reference conductivity field. In these cases, 50 hf data associated 488 

with a sample standard deviation 0.001 m are assimilated with a daily frequency. The 489 

random conductivity fields employed in TC13 are generated according to the 490 

covariance function (18) with xλ  equal to the value associated with the reference 491 

field. Values of the horizonal correlation scales for TCs 14-16 are 80 m, 160 m and 492 

20 m, respectively. Vertical correlation scales are assumed to be perfectly known for 493 

TCs 13-16.  494 

The variants (with different data assimilation frequencies) corresponding to TC6c 495 

and TC6v (Group A in Table 2) are analyzed to assess the effect of the temporal 496 

frequency of assimilation of fh  data, respectively for both the DIF and VDF cases. 497 

All of the above test cases are performed by relying on a collection of 100N =  498 

Monte Carlo (MC) replicates. The effect of the number of MC realizations on the 499 

assimilation results is explored (a) by performing the variants (with various N  500 
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employed) corresponding to TC6c and TC6v, respectively for the DIF and VDF cases, 501 

as well as (b) by performing the variants (with various N  employed) of TC8 when 502 

solely fh  measurements are assimilated, or (c) by conducting the variants (with 503 

various N  employed) of TC9 when only aS  data are assimilated.  504 

The value of the localization parameter α  (see function (12)) is selected by 505 

minimizing the root-mean-square error of the estimated N fields of Y based on TCs 4-506 

6, where 50 equivalent freshwater head data are collected and used at each 507 

assimilation step. Note that one should avoid values for e which are too low, mainly 508 

due to its feedback with localization (Bocquet, 2016). Here, we use e = 0.2 for both 509 

DIF and VDF cases. No inflation is used, i.e., 1τ =  in equation (11). The root-mean-510 

square error 511 

( )2t a
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1RMSE S S
m

l l
lm =

= −∑  (19) 512 

is used to evaluate performances of the two data assimilation methods (Chen and 513 

Zhang 2006). Here, tSl  is the thl  true system state (i.e., equivalent freshwater head, 514 

salinity, or Y); aSl  represents the estimated (ensemble mean) value for the thl  state. 515 

The sample (ensemble) variance at the thi  grid cell and spread for ln fK  on the 516 

entire grid are respectively defined as 517 
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where lY  represents the thl  realization of Y on the thi  grid cell, 
a
iY  corresponding to 520 

the associated estimated value. Filter inbreeding arises when the ensemble variance 521 

tends to artificially decrease as data assimilation proceeds in time. This effect might 522 

be related to a variety of reasons, including, e.g., the reliance on a limited number of 523 

realizations explored. The observation that the RMSE (19) is less than the spread 524 

(20b) is considered as an indicator of filter inbreeding, a large difference between 525 

these two quantities suggesting the occurrence of serious filter inbreeding. 526 

3.4. Computational burden 527 

We break down the evaluation of computational complexities associated with data 528 

assimilation procedures (respectively through LEnKF, LIEnKF and LEnKFcov) at a 529 

given assimilation cycle into two components, i.e., the forecast- and the update-step. 530 

With the assumption that the number of observations obsN  is much smaller than the 531 

size of the state vector x , these computational complexities are analyzed and shown 532 

in Table 3. It can be noted that the use of LIEnKF is computationally equivalent to 533 

the LIEnKF in Sakov et al. (2012), and is more intensive than the use of LEnKF and 534 

LEnKFcov. However, it is worth noting that the required CPU times for ensemble 535 

propagations can be efficiently decreased by performing parallel computations. With 536 

12 processors, CPU times required to perform TC6v (corresponding to the variable-537 

density flow scenario) are 29344 s (about 8 hours) and 63578 s (about 18 hours), 538 

respectively by relying on LEnKF and LIEnKF. It is worth noting that resorting to 539 

model reduction techniques (Li et al., 2013) can contribute to decreasing the required 540 

the CPU time for propagating ensemble, at the expenses of accuracy loss. 541 
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4. Results and discussion 542 

Table 4 lists the results of the process of tuning the value of α  based on TCs 4-6 543 

for the diverse values of the magnitude of data error considered. We can note that the 544 

values of α  obtained for the VDF cases are higher than their counterparts for the DIF 545 

cases, thus implying that a higher level of localization is required in the VDF than in 546 

the DIF settings. These results suggest that strong nonlinearity and large 547 

dimensionality of the state vector x can aggravate the occurrence of spurious 548 

correlations (see also Houtekamer and Mitchell, 1998). The final calculated RMSE 549 

and spread values for Y in various test cases are depicted in Figure 3, with exceptions 550 

of TC7. We illustrate and discuss our results in details in the following Sections. 551 

4.1. Effect of data quantity and measurement error on simulation (TCs 1-6) 552 

As expected, one can note that RMSE values in Figures 3a, b for TCs 1-6 (Group 553 

A in Table 2) are generally lowest in the presence of reduced measurement error for 554 

both assimilation methods used, regardless the amount of data assimilated at each 555 

time step. Values of spread are general consistent with (and mostly slightly higher 556 

than) those of RMSE. When the standard deviation of head observation error is 0.001 557 

m, the optimal value of α  is set as 4 to reduce spurious correlation. One can note 558 

(see Table 4) that such a large value for α  can be directly tied to the high accuracy of 559 

the data (as reflected by a low measurement error) which can in turn aggravate the 560 

emergence of spurious correlations. At the same time, a large value of α  can 561 

contribute to dampen the effect of some otherwise informative data, while reducing 562 

the effect of spurious correlations. The lower RMSE value observed for LIEnKF in 563 

TC6v, as opposed to TC5v, can be a consequence of such contrasting effects. 564 
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Houtekamer and Mitchell (1998) pointed out that a strong nonlinearity of the setting 565 

and a large dimension of the state vector can aggravate the occurrence of spurious 566 

correlations. Nan and Wu (2011) used various filter lengths on different types of data 567 

to reduce such spurious correlations. Here, we document that the effect of spurious 568 

correlation on assimilation results can change with observation accuracy. 569 

One can note that LIEnKF generally outperforms LEnKF in terms of RMSE values 570 

in all of the TCs analyzed here. It is worth noting that RMSE values for the VDF TCs 571 

are generally lower than their counterparts related to the DIF TCs, even as the VDF 572 

setting is associated with a higher nonlinearity than the DIF case. We observe that the 573 

data assimilation performance is also affected by the quality and amount of available 574 

observations. Based on equation (15), it is clear that fh  data in the VDF settings are 575 

associated with an information value that is higher than in the DIF case, because they 576 

also embed salinity information. 577 

Figure 4 depicts the initial ensemble-averaged (i.e., as a result of averaging across 578 

the generated 100 Monte Carlo realizations) Y field (Figure 4a), the reference Y field 579 

(Figure 4b), and the ensemble-averaged Y fields obtained at the end of the data 580 

assimilation process for TC6c (Figures 4c, d) and TC6v (Figures 4e, f). The estimated 581 

spatial patterns of the average Y fields for TC6c and TC6v are similar and close to the 582 

reference one, consistent with the RMSE results depicted in Figures 3a, b. These 583 

results suggest that LIEnKF leads to consistent estimates of the Y field for both DIF 584 

and VDF settings. Even as the RMSE associated with LEnKF is somewhat higher 585 

than its counterpart resulting from LIEnKF, it is noted that LEnKF can lead to a 586 

reasonably good estimate of Y field.  587 
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Figures 5a, b depict the spatial patterns of the variance of Y in TC6c at the end of 588 

the assimilation period, respectively for LEnKF and LIEnKF. Corresponding results 589 

for TC6v are depicted in Figures 5c, d. These results show that the values of Y 590 

variance for density-independent groundwater flow (TC6c) are clearly influenced by 591 

the given head boundary conditions, a finding which is consistent with the results of 592 

Tong et al. (2010). The spatial pattern obtained for TC6v is significantly different 593 

from that for TC6c. The results in Figures 5c, d indicate that the highest values of Y 594 

variance lie within regions that are clearly related to the intruding salt-water wedge. 595 

This result is associated with the influence of the tidal and inflow conditions acting 596 

along the seaside boundary. The reduced values of variance observed within the 597 

remaining portion of the domain suggest that the value of information associated with 598 

head data is higher in the VDF than that in the corresponding DIF case. These results 599 

are consistent with the findings by Shoemaker (2004) and Sanz and Voss (2006). 600 

Shoemaker (2004) pointed out that flux observations in the submarine zone are useful 601 

for the estimation of model parameters, including hydraulic conductivity. In this 602 

context, one can note that the spatial distributions of the Y variance obtained in our 603 

settings are consistent with the pattern of scaled sensitivity of pressure to 604 

permeability depicted in Figure 2 of Sanz and Voss (2006). The lowest variances are 605 

associated with locations around the pumping well for the DIF TCs. Otherwise, the 606 

lowest variances are found in the proximity of the pumping well as well as of the 607 

transition zone in the VDF TCs. These results further support the conclusions that (a) 608 

fh  data in a VDF scenario contain not only information about hydraulic head, but 609 

also about salinity condition, and (b) a reasonably realistic spatial distribution of Y 610 

can be estimated even in the presence of the high nonlinearity associated with the 611 

VDF setting.  612 
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4.2. Impact of data type on assimilation result for variable-density flow (TCs 7-613 

12) 614 

The values of α  and β  in TC7i (see Group B in Table 2) coincide with those used 615 

in TC6v, while their counterparts in TC7ii are set as 30 and 0.2 to avoid effects of 616 

spurious correlation. Figure 6 depicts the spatial distribution of the ensemble mean of 617 

Y obtained after the first assimilation step (or the first filter iteration) in TC7i and 618 

TC7ii (note that the values of lnKf in Figure 6 are higher than those in Figure 4). 619 

These results reveal that some of the updated ensemble mean Y values obtained after 620 

the first assimilation step in TC7i and TC7ii markedly differ from their counterparts in 621 

the reference field (and/or initial guessed field, see Figures 4a, b) for both approaches. 622 

Note that we report only values after the first step because some of the updated Y 623 

values markedly differ from values at their neighbor cells. Such a strong contrast 624 

across the Y fields can cause severe numerical issues in the simulation of density-625 

dependent flow systems. 626 

One can note that the largest deviations between reference and estimated Y values 627 

in Figure 6 are confined to a region where salinity information is lacking (but flow 628 

dynamic are strong due to the action of the pumping well) during the first day of 629 

assimilation (see also Figure 1b). The RMSE values for Y in TC7i after the first 630 

assimilation step for LEnKF and LIEnKF are 1.89 and 1.37, respectively, which are 631 

very different from the initially guessed one. The reason for this behavior is that the 632 

domain localization scheme corresponds to a collection of minimized local cost 633 

functions that might have not converged to the global cost function. Therefore, the 634 

local scheme may not guarantee convergence of results. 635 
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We then consider TC7iii where the values of α  and β  correspond to those of TC7i 636 

and the initial mean and variance of Y are respectively set as 6.76 and 1.0, 637 

corresponding to the values associated with the reference field. The calculated Y 638 

RMSE values after the final assimilation time are 0.39 and 0.28 for LEnKF and 639 

LIEnKF, respectively. One can then conclude that both of these methods provide 640 

viable solutions in the presence of low nonlinearities (i.e., perfect initial guesses for 641 

the mean and variance of Y). 642 

We note that some of the results obtained in the previous TCs could be influenced 643 

by considering that domain localization schemes might lack a guaranteed 644 

convergence (see also Bocquet, 2016). A covariance localized EnKF ( covLEnKF , see 645 

Appendix A) is then developed and applied in TCs 8-12 (Group C in Table 2) to 646 

investigate this issue for various data types (i.e., fh , aS  and Y) considered in the 647 

assimilation process. 648 

Test Cases 8 and 9 are analyzed through covLEnKF  and are respectively based on 649 

assimilating solely fh  or aS  data. The values of RMSE obtained for the (ensemble) 650 

average Y field at the end of the assimilation period are 0.60 and 0.73, respectively 651 

for TC8 and TC9. The spatial distributions of the (ensemble) average and variance of 652 

Y are depicted in Figure 7. One can note that these results differ from those of TC6v 653 

(see Figures 4c, d), even as these two cases are characterized by very similar values 654 

of RMSE. One can also observe the occurrence of high values of variance embedded 655 

within a generally low variance field (see Figure 7b) and mainly related to 656 

localization. The high variance regions clearly visible in Figure 7d (i.e., the upper left 657 
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and lower right corners in the figure) are in the areas within which salinity variation 658 

is small (i.e., salinity values are about 0 or 35 g/L). 659 

Spatial distributions of (ensemble) averaged fh  and aS  in TC8 and TC9 are 660 

respectively depicted in Figures 8 and 9 for early, intermediate and late assimilation 661 

time periods. These results suggest that the updated fh  and aS  distributions obtained 662 

by assimilating fh  agree well with their reference counterparts. Otherwise, when 663 

only aS  data are assimilated, the updated aS  distributions agree well with their 664 

reference counterpart (Figures 9d, e and f), but fh  distributions do not (Figures 8d, e 665 

and f). The results are similar to what we observed in Section 4.1, because fh  is 666 

informative to hydraulic / flow conditions as well as to salinity distributions. This 667 

supports the conclusion that fh  data are more informative as compared with aS  data. 668 

Based on the results for TCs 7-9, we conclude that both LEnKF and LIEnKF suffer 669 

from local convergence problems, so that global convergence in the whole domain is 670 

not guaranteed. 671 

Figure 10 depicts the temporal variations of the RMSE and spread associated with 672 

Y for TCs 8-12. These results suggest that assimilation of fh  data (TC8) would lead 673 

to optimal results in terms of RMSE values. Otherwise, jointly assimilating fh  and 674 

aS  (TC12) information would not improve the assimilation results, but can 675 

potentially deteriorate the performance of covLEnKF  (see the values of spread for Y in 676 

Figure 10b). There are two main reasons for this latter result. The first one is that 677 

there is some data redundancy between fh  and aS . Thus, jointly assimilating both 678 

fh  and aS  data does not necessarily imply that information content is increased. One 679 
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should note that jointly assimilating fh  and aS  data could lead to more severe 680 

underestimation of the covariance (A2), leading to a more severe filter inbreeding 681 

possibility in TC12 than in TCs 8-11. This effect can then cause RMSE for TC12 to 682 

decrease first and then continuously increase with time. We remark that jointly 683 

assimilating fh  and Y (TC10), or aS and Y (TC11) measurements would also yield 684 

more severe filter inbreeding issues than those observed in TC8 and TC9. These 685 

findings are consistent with those obtained by Hendricks-Franssen and Kinzelbach 686 

(2008), who pointed out that jointly assimilating hydraulic head and conductivity data 687 

in a classical groundwater flow model would render the system prone to filter 688 

inbreeding. 689 

4.3. Effect of temporal frequency of data assimilation 690 

Here, we consider TC6 and its variants, constructed by relying on differing data 691 

assimilation frequencies. Figure 11 depicts the temporal evolution of RMSE 692 

associated with Y and fh  for LEnKF and LIEnKF in TC6c and its variants 693 

constructed by considering data assimilation frequencies corresponding to 5 and 10 694 

days (in the DIF setting). Figure 12 depicts corresponding results for TC6v and its 695 

variants constructed by considering the same data assimilation frequencies in the 696 

VDF setting, i.e., the temporal evolutions of RMSE related to Y (Figures 12a, b), fh  697 

(Figures 12c, d) and aS  (Figures 12e, f) for LEnKF and LIEnKF. Note that only 698 

RMSE results with assimilation frequencies of 1 day and 5 days are depicted for the 699 

complete temporal window of assimilation because the TC6v variant (with 700 

assimilation frequency corresponding to 10 days) displayed a filter convergence issue 701 

at the first assimilation step (which corresponds to day 10). Both assimilation 702 
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techniques are linked to large RMSE values for Y, aS  and fh  at the initial 703 

assimilation steps, a feature which is mainly due to the initial (head and salinity) 704 

conditions that are markedly different from the reference (head and salinity) fields 705 

(see the high RMSE values for head and salinity in Figures 12a, b). One can see that 706 

daily assimilation yields the best performance, in terms of RMSEs, for both schemes 707 

and for both (DIF and VDF) cases. 708 

Comparing Figures 12c, d against Figures 11b, d reveals that RMSE values for fh  709 

are much higher in the VDF than in the DIF case. With identical DA frequency and 710 

Gaussian priors, VDF scenarios are not only subject to the increased nonlinearity of 711 

the model, in comparison with DIF cases, but are also associated with uncertainty 712 

stemming from both fh  and aS . When the data assimilation frequency is decreased 713 

to incorporate observations at a 10 days interval, the quality of the simulation results 714 

tends to deteriorate drastically with time. This behavior would in turn increase 715 

uncertainty, as an effect of nonlinear system behavior, thus reflecting on system states 716 

(i.e., fh  and aS ), so that neither LIEnKF nor LEnKF are effective. This result 717 

suggests that a high observation frequency would be critically beneficial to VDF 718 

settings, especially in the presence of uncertain initial conditions. 719 

4.4. Effect of the ensemble size 720 

Here, we consider TCs 8 and 9 and their variants, constructed by relying on 721 

differing size of the collection of realizations. Figure 13 shows the effect of the 722 

ensemble size on assimilating fh  (TC8 with N = 100, and its variants with N = 300, 723 

and 1000) and aS  data individually (TC9 with N = 100, its variants with N = 300, and 724 

1000). The final values of RMSE obtained for Y in TC8 and its two variants are 0.60, 725 
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0.58 and 0.57, and for TC9 and its two variants are 0.73, 0.64 and 0.59, respectively. 726 

It should be pointed out that the ensemble size has a more pronounced effect in the 727 

cases where solely aS  measurements are assimilated. This finding suggests that 728 

assimilating only aS  data would yield a more severe filter inbreeding problem than 729 

assimilating solely fh  data. When 1000 Monte Carlo realizations are employed, final 730 

RMSE values for Y are 0.57 and 0.59 for the TC8 and TC9 variants, respectively. 731 

This result suggests that fh  or aS  data provide a similar information content when 732 

their assimilation is targeted to estimate hydraulic conductivity. Otherwise, when 733 

solely assimilating aS  data, increasing the ensemble size yields no visible 734 

improvement for the estimation of equivalent freshwater head. 735 

4.5. Effect of uncertain correlation scale of Y (TCs 13-16) 736 

Figure 14 depicts the temporal variation of RMSE and spread for TCs 13-16 737 

(Group D in Table 2). It is interesting to note that filter inbreeding becomes 738 

increasingly serious for settings corresponding to imposed values of xλ  which are 739 

larger than those characterizing the reference Y field) (TCs 14-15), a finding which is 740 

consistent with the results of Camporese et al. (2011). The reason for this is related to 741 

the observation that a constant correlation scale is used in function (12) during the 742 

data assimilation process, while the spatial correlation across the estimated ensemble 743 

might change as time elapses. One can also note that when we rely on a value of xλ  744 

which is smaller than the one corresponding to the reference Y field (TC16), filter 745 

inbreeding might be small, the final RMSE being larger than the one observed in 746 

TC13, where the true value of xλ  is assumed (see Group D in Table 2 and Figure 3d). 747 

We remark that even as relying on a small value for xλ  can somehow alleviate filter 748 
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inbreeding, it can also shadow the importance of useful information that can assist in 749 

improving the data assimilation performance. In this context, the use of algorithms 750 

that can either temporally adjust estimates of correlation scales (see, e.g., Anderson 751 

and Lei, 2013; Ménétrier et al., 2015), or determine the adequate inflation level to be 752 

enforced on the state covariance (e.g., Wang and Bishop, 2003; Zovi et al., 2017) can 753 

be beneficial when dealing with uncertain correlation scales.  754 

 755 

5. Summary and Conclusion  756 

In this study, a variant Henry problem is used to investigate the performances of 757 

domain localization schemes of iterative ensemble Kalman filter (LIEnKF) and 758 

ensemble Kalman filter (LEnKF), as well as the covariance-localized scheme of the 759 

ensemble Kalman filter (LEnKFcov) in a variable density groundwater flow (VDF) 760 

scenario. As a baseline setting, the performances of both LEnKF and LIEnKF are 761 

assessed in the absence of density effects (here termed as DIF scenario). Results are 762 

compared and analyzed by considering diverse values for the magnitude of 763 

measurement errors, data quantity and type, assimilation frequency, size of the 764 

collection of Monte Carlo realizations employed and considering incomplete 765 

knowledge of the correlation length of the (randomly) heterogeneous conductivity 766 

field of the porous medium. Our numerical study leads to the following major 767 

conclusions. 768 

1) Even as VDF is characterized by a higher nonlinearity and dimension of system 769 

state vector than DIF, the use of either LEnKF or LIEnKF yields lower RMSE 770 
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values (which indicates a good data assimilation performance) in VDF than in 771 

DIF settings (see Section 4.1).  772 

2) Our results suggest that equivalent freshwater head, fh , contains more information 773 

in VDF than in DIF. This is related to the observation that fh  also contains 774 

information about fluid density. Optimal locations for fh  observations in the DIF 775 

settings examined in this study should correspond to regions (a) far away from 776 

the given head boundary and (b) in the proximity of the pumping well. Placing of 777 

observation points for fh  which are effective to data assimilation purposes in the 778 

VDF scenario are seen to be set around the pumping well as well as in the 779 

proximity of the transition zone. 780 

3) We note that when the data assimilation frequency is equal to the lowest one here 781 

tested (i.e., corresponding to an assimilation every 10 days) the quality of the 782 

simulation results tends to deteriorate drastically with time. This corresponds to 783 

increased uncertainty as a result of system nonlinearity, so that neither LIEnKF 784 

nor LEnKF are effective. Our results suggest that a high temporal observation 785 

frequency would be critically beneficial to VDF settings, especially in the 786 

presence of uncertain initial conditions. 787 

4) Overestimating the horizonal correlation length of the heterogeneous log-788 

conductivity field can lead to filter inbreeding issues. Relying on underestimated 789 

correlation scale values can alleviate filter inbreeding, while negatively affecting 790 

the overall performance of the data assimilation process. 791 

5) We have implemented a covariance-localized ensemble Kalman filter ( covLEnKF ) 792 

to investigate the value of data collected in the density-driven groundwater flow 793 
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scenario. Our results (see TC8 and TC9) suggest that fh  data are associated with 794 

an information content that is superior to that of aS  for an accurate estimation of 795 

fh , aS , and fK . In this sense, it is seen that these latter quantities could be 796 

updated with good accuracy using only fh  observations. Otherwise, equivalent 797 

freshwater head distributions are not properly estimated when using only aS  data. 798 

Additionally, we note that increasing the ensemble size shows virtually no 799 

improvement in the accuracy of the updated fh  when only aS  data are 800 

assimilated. 801 

6) The domain localization schemes of the ensemble Kalman filter (LEnKF) and 802 

iterative ensemble Kalman filter (LIEnKF) we analyze suffer from convergence 803 

issues associated with the global optimization when only aS  data are used (see 804 

our results for TCs 7-9). This issue is not seen when (a) only fh  data are used, or 805 

(b) solely aS  data are used in the presence of an initial collection of Y fields 806 

characterized by the (ensemble) statistics closely corresponding to those of the 807 

reference Y realization (see, i.e., TC7iii). The performance of the domain 808 

localization scheme can be evaluated by considering that it can be deconstructed 809 

into the following two steps: (1) first, one needs to complete all local 810 

optimizations, i.e., by minimizing the localized cost function at each node of the 811 

computational grid; (2) then, global optimization can be assessed by collecting all 812 

locally optimal results. Note that this is related to the observation that the domain 813 

localization scheme is not characterized by a guaranteed convergence of the 814 

global optimization. This issue is mainly attributed to the fact that the collected 815 

local optimization results do not necessarily converge to the results which would 816 
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be obtained by minimizing the global cost function. Employing a covariance 817 

localization scheme to minimize the localized global cost function enables us to 818 

significantly alleviate the problem. 819 
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Appendix A 831 

We perform covariance localization of the ensemble Kalman filter using the 832 

following local function (Furrer and Bengtsson, 2007) for the Schur product with the 833 

covariance (A2) 834 
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exp 3

9 8 5 / 4; ,

x z

x z

i i

d dL

N i x z

γ γ

γ δ

   
= − +       

 = + − =

 (A1) 835 

mailto:c.a.xia@cugb.edu.cn


40 

 

where xγ  and zγ  are the set filter length along the x- and z- direction for covariance 836 

or cross-covariance 837 

f f a f

a f a a

f a

h h S h

S h S S
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 
 
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 (A2) 838 

where 
fhC , 

aSC and YC  are covariance matrices for equivalent freshwater head fh , 839 

salinity aS , and (natural) logarithm of hydraulic conductivity Y; 
f YhC  is the cross-840 

covariance between fh  and Y; 
aYSC  is the cross-covariance between aS  and Y; and 841 

f ah SC  is the cross-covariance between fh  and aS . Here, similar to Nan and Wu 842 

(2011), we consider 843 

( ), / 2i f f ih hδ λ= ;  ( ), / 2i a a iS Sδ λ= ;   ( ) ( )1ln , ln = ,
4i f f i f fK K h hδ δ  (A3a) 844 

( ) ( ) ( ), , ,i f a i f f i a ah S h h S Sδ δ δ=  (A3b) 845 

( ) ( ) ( ), ln , ln , lni f f i f f i f fh K h h K Kδ δ δ=  (A3c) 846 

( ) ( ) ( ), ln , ln , lni a f i a a i f fS K S S K Kδ δ δ=  (A3d) 847 
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Figure 1. Schematic representation of the modified Henry problem considered in this 1047 

study: (a) type of boundary conditions, location of the partially penetrating 1048 

pumping well (the well screen being denoted as a black block), reference Y = ln 1049 

Kf field; (b) initial flow field and concentration distribution (contour lines 1050 

corresponding to initial salinity of 10%, 50% and 90% are respectively depicted 1051 

as cyan, blue and red curves) for the variable-density flow (VDF) scenario. Initial 1052 

spatial distribution of flux vectors (color scale ranges from blue to red, 1053 

respectively denoting low to high flux norm) for VDF scenario; (c) initial spatial 1054 

distribution of flux vectors for density-independent flow (DIF) scenario. Location 1055 

of the 30 observation points for pressure head are shown in (b), location of the 50 1056 

observation points for head (and salinity for VDF) being included in (c), black 1057 

blocks along the boreholes corresponding to measurement locations. Red squares 1058 

in (c) represent the 10 locations where Y data are collected. 1059 

 1060 

Figure 2. Values for pumping rate and boundary conditions selected as input to our 1061 

computations: (a) pumping rates (blue curve) and inland boundary flow rates (here 1062 

given in (m3/day)); (b) tidal elevations (given in (m)). 1063 

 1064 

Figure 3. RMSE and spread values collected according to the showcase groups of 1065 

Table 2 (excluding Group B): ((a) and (b) for density-independent (DIF) and 1066 

density-dependent flow scenarios (VDF), respectively) Group A; (c) Group C; and 1067 

(d) Group D. 1068 

 1069 

Figure 4. Initial (a) ensemble-averaged and (b) reference Y field; reference and 1070 

ensemble-averaged Y fields obtained at the end of the data assimilation process for 1071 
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TC6c ((c) and (d) corresponding to LEnKF and LIEnKF, respectively) and TC6v 1072 

((e) and (f) corresponding to LEnKF and LIEnKF, respectively).  1073 

 1074 

Figure 5. Spatial patterns of the variance of Y ( VarY ) in TC6c at the end of the 1075 

assimilation period for (a) LEnKF and (b) LIEnKF. Corresponding results for 1076 

TC6v are depicted in (c) and (d). 1077 

 1078 

Figure 6. Spatial distribution of the ensemble mean Y values obtained after the first 1079 

assimilation step in (a, b) TC7i and (c, d) TC7ii. The black circle represents the 1080 

location of the filter of the pumping well. 1081 

 1082 

Figure 7. Spatial distributions of the (ensemble) (a, c) average and (b, d) variance of Y 1083 

for (a, b) TC8 and (c, d) TC9 obtained through covariance localization ensemble 1084 

Kalman filter by solely assimilating (a, b) fh  or (c, d) aS . 1085 

 1086 

Figure 8. Spatial distributions of reference and (ensemble) averaged equivalent 1087 

freshwater head values for (a, b, c) TC8 and (d, e, f) TC9. Reference contour lines 1088 

corresponding to some selected head values are respectively depicted by the fine, 1089 

medium heavy and heavy red curves, respectively; corresponding simulation 1090 

results are depicted by green, cyan and blue curves. Results are depicted for early 1091 

(5 days), intermediate (25 days) and late (50 days) assimilation times. 1092 

 1093 

Figure 9. Spatial distributions of reference and (ensemble) averaged salinity values 1094 

for (a, b, c) TC8 and (d, e, f) TC9. Results are depicted for early (5 days), 1095 

intermediate (25 days) and late (50 days) assimilation times. Reference contour 1096 
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lines corresponding to 10%, 50% and 90% of the employed seawater salinity are 1097 

respectively depicted by the fine, medium heavy and heavy red curves, 1098 

respectively; corresponding simulation results are depicted by green, cyan and blue 1099 

curves. 1100 

 1101 

Figure 10. Temporal variations of RMSE (a) and spread (b) associated with Y for TCs 1102 

8-12. 1103 

 1104 

Figure 11. Temporal evolution of RMSE associated with (a, c) Y and (b, d) fh  for (a, 1105 

b) LEnKF and (c, d) LIEnKF in TC6c with assimilation frequency corresponding to 1106 

1, 5, and 10 days (associated with the DIF setting). 1107 

 1108 

Figure 12. Temporal evolution of RMSE associated with (a, b) Y, (c, d) fh , and (e, f) 1109 

aS  for (a, c, e) LEnKF and (b, d, f) LIEnKF in TC6v, with assimilation frequency 1110 

corresponding to 1, 5, and 10 days (associated with the VDF setting). 1111 

 1112 

Figure 13. Temporal variation of the RMSE for Y for TCs 8 and 9 with differing 1113 

ensemble size, N. 1114 

 1115 

Figure 14. Temporal variation of RMSE (circle-dot curves) and spread (solid curves) 1116 

for Y in TCs 13-16 (corresponding to values of horizontal correlation scale xλ  = 40 1117 

m, 80 m, 160 m, and 24 m, respectively). 1118 

 1119 
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Tables 1 

 2 

Table 1. Model parameters considered as uniform in the simulations. 3 

Csea salinity of seawater (g/L) 35 

Cin inflow concentration (g/L) 0 

ρsea density of seawater (kg/m3) 1025 

ρf density of fresh water (kg/m3) 1000 

D dispersion (m2/day) 0.57024 

θ effective porosity 0.35 

S specific yield 0.35 

 4 
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Table 2. Test cases considered for the analysis of the effects of: (i) data quantity, data assimilation frequency and measurement error (Group A); 5 

(ii) limitations of domain localization methods (i.e., Group B, comprising the collection of TC7i, TC7ii, and TC7iii); (iii) diverse observation 6 

types (Group C); and (iv) uncertainties linked to incomplete knowledge of the correlation scales of the randomly heterogeneous Y field (Group 7 

D). Symbols corresponds to: equivalent freshwater head ( fh , in units of m); salinity ( aS , in units of g/L); (natural) logarithm of equivalent 8 

freshwater hydraulic conductivity (Y = lnKf, in units of ln(m/day)); standard deviation of measurement error ( eσ , expressed in m); number of 9 

observations ( obsN ); localization parameters α  and β  in equation (12); initial guesses of ensemble mean ( µ ) and variance ( 2σ ) of Y; 10 

guessed correlation scale of Y in the x-direction ( xλ , in units of m); subscripts c and v correspond to density-independent and density-dependent 11 

flow conditions, respectively. 12 

  13 
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 14 

Group A Group B Group C Group D 

Test case eσ  obsN  Test case  Observation  (α , β ) (µ , 2σ ) Test case  Observation  Test case  xλ  (m) 

TC1c /TC1v 0.1 30 TC7i aS  4.0, 1.5 6.0, 1.69 TC8 fh  TC13 40 

TC2c /TC2v 0.01 30 TC7ii aS  32, 0.2 6.0, 1.69 TC9 aS  TC14 80 

TC3c /TC3v 0.001 30 TC7iii aS  4.0, 1.5 6.76, 1.0 TC10 fh  and Y  TC15 160 

TC4c /TC4v 0.1 50     TC11 aS  and Y  TC16 24 

TC5c /TC5v 0.01 50     TC12 fh  and aS    

TC6c /TC6v 0.001 50         

15 
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Table 3. Approximated computational complexities associated with LEnKF, LIEnKF 16 

and LEnKFcov at a given assimilation cycle using a daily data assimilation frequency. 17 

Notations are as follows: HC  (independent from filter iteration), observation 18 

operator cost; 12CP  (independent from filter iteration and the grid cells analyzed), 19 

cost for computing function (12) for each numerical grid cell; A1CP , cost for 20 

computing localization function (A1) in Appendix A; fCP , cost of performing the 21 

forward model once with time interval equal to one day under transient state; iterN  22 

( iterN  ≥  1), required iteration number for LIEnKF; Nobs, number of observations; 23 

u
sm , size of state vector x  ( u

sm  = 2m or 3m for DIF or VDF scenarios, 24 

respectively). 25 

 Forecast step Analysis step 

LEnKF N fCP  2
12( )u u

s H obs sN m C m N m CP+ + +  

LIEnKF ( 1)iter fN N CP+  3
12[ ( )]iter HN C m N CP+ +   

LEnKFcov N fCP  2 2
A1( )u u

s H sN m C m CP+ + +  

  26 
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Table 4. Results of the tuning process for parameters α  and β  in (12) based on TCs 27 

4-6 (including TCs 4c-6c and TCs 4v-6v) for the diverse values of the standard 28 

derivation of measurement error ( eσ ) considered. 29 

( )α β，  
Standard deviation of measurement error, eσ  

0.1 m (TC6) 0.01 m (TC5) 0.001 m (TC4) 

DIF 0.7, 1.5 1.2, 1.5 2, 1.5 

VDF 1, 1.5 2, 1.5 4, 1.5 

 30 



 1 

Figure 1. Schematic representation of the modified Henry problem considered in this 2 

study: (a) type of boundary conditions, location of the partially penetrating pumping 3 

well (the well screen being denoted as a black block), reference Y = ln Kf field; (b) 4 

initial flow field and concentration distribution (contour lines corresponding to 5 

initial salinity of 10%, 50% and 90% are respectively depicted as cyan, blue and 6 

red curves) for the variable-density flow (VDF) scenario. Initial spatial distribution 7 

of flux vectors (color scale ranges from blue to red, respectively denoting low to 8 



high flux norm) for VDF scenario; (c) initial spatial distribution of flux vectors for 9 

density-independent flow (DIF) scenario. Location of the 30 observation points for 10 

pressure head are shown in (b), location of the 50 observation points for head (and 11 

salinity for VDF) being included in (c), black blocks along the boreholes 12 

corresponding to measurement locations. Red squares in (c) represent the 10 13 

locations where Y data are collected. 14 

 15 

 16 

Figure 2. Values for pumping rate and boundary conditions selected as input to our 17 

computations: (a) pumping rates (blue curve) and inland boundary flow rates (here 18 

given in (m3/day)); (b) tidal elevations (given in (m)).  19 



 20 

Figure 3. RMSE and spread values collected according to the showcase groups of Table 21 

2 (excluding Group B): ((a) and (b) for density-independent (DIF) and density-22 

dependent flow scenarios (VDF), respectively) Group A; (c) Group C; and (d) Group 23 

D. 24 

  25 



 26 

 27 

Figure 4. Initial (a) ensemble-averaged and (b) reference Y field; reference and 28 

ensemble-averaged Y fields obtained at the end of the data assimilation process for 29 

TC6c ((c) and (d) corresponding to LEnKF and LIEnKF, respectively) and TC6v ((e) 30 

and (f) corresponding to LEnKF and LIEnKF, respectively).   31 



 32 

Figure 5. Spatial patterns of the variance of Y ( VarY ) in TC6c at the end of the 33 

assimilation period for (a) LEnKF and (b) LIEnKF. Corresponding results for TC6v 34 

are depicted in (c) and (d).  35 



 36 

Figure 6. Spatial distribution of the ensemble mean Y values obtained after the first 37 

assimilation step in (a, b) TC7i and (c, d) TC7ii. The black circle represents the 38 

location of the filter of the pumping well.  39 



 40 

Figure 7. Spatial distributions of the (ensemble) (a, c) average and (b, d) variance of Y 41 

for (a, b) TC8 and (c, d) TC9 obtained through covariance localization ensemble 42 

Kalman filter by solely assimilating (a, b) fh  or (c, d) aS .  43 



 44 

Figure 8. Spatial distributions of reference and (ensemble) averaged equivalent 45 

freshwater head values for (a, b, c) TC8 and (d, e, f) TC9. Reference contour lines 46 

corresponding to some selected head values are respectively depicted by the fine, 47 

medium heavy and heavy red curves, respectively; corresponding simulation results 48 

are depicted by green, cyan and blue curves. Results are depicted for early (5 days), 49 

intermediate (25 days) and late (50 days) assimilation times.  50 



 51 

Figure 9. Spatial distributions of reference and (ensemble) averaged salinity values for 52 

(a, b, c) TC8 and (d, e, f) TC9. Results are depicted for early (5 days), intermediate 53 

(25 days) and late (50 days) assimilation times. Reference contour lines 54 

corresponding to 10%, 50% and 90% of the employed seawater salinity are 55 

respectively depicted by the fine, medium heavy and heavy red curves, respectively; 56 

corresponding simulation results are depicted by green, cyan and blue curves.  57 



 58 

Figure 10. Temporal variations of RMSE (a) and spread (b) associated with Y for TCs 59 

8-12.  60 



 61 

Figure 11. Temporal evolution of RMSE associated with (a, c) Y and (b, d) fh  for (a, 62 

b) LEnKF and (c, d) LIEnKF in TC6c with assimilation frequency corresponding to 63 

1, 5, and 10 days (associated with the DIF setting).  64 



 65 

Figure 12. Temporal evolution of RMSE associated with (a, b) Y, (c, d) fh , and (e, f) 66 

aS  for (a, c, e) LEnKF and (b, d, f) LIEnKF in TC6v, with assimilation frequency 67 

corresponding to 1, 5, and 10 days (associated with the VDF setting).68 



 69 

Figure 13. Temporal variation of the RMSE for Y for TCs 8 and 9 with differing 70 

ensemble size, N.  71 



 72 

Figure 14. Temporal variation of RMSE (circle-dot curves) and spread (solid curves) 73 

for Y in TCs 13-16 (corresponding to values of horizontal correlation scale xλ  = 40 74 

m, 80 m, 160 m, and 24 m, respectively). 75 
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