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Chebyshev polynomials. A recursive approximation technique known as

Approximating Sequence of Riccati Equations is used to replace the non-

linear problem by a sequence of linear-quadratic and time-varying approx-

imating problems. The state variables are approximated and expanded in

Chebyshev polynomials. Then, the control variables are written as a func-

tion of state variables and their derivatives. The constrained nonlinear

optimal control problem is then converted to quadratic programming prob-

lem, and a constrained optimization problem is solved. Different final state

conditions (unspecified, partly specified, and fully specified) are handled,

and the effectiveness of the proposed method is demonstrated by solving

sample problems.

I. Introduction

Çimen and Banks [1, 2] introduced a method known as Approximating Sequence of Ric-

cati Equations (ASRE) which uses State Dependent Coefficient (SDC) factorization and

iterative Time-Varying Linear Quadratic Regulator (TV-LQR) approximations to solve Un-

constrained Nonlinear Optimal Control (UNOC) problem with unspecified final states. The

ASRE approach is applied to many applications like maneuvering of two-craft Coulomb

formations at Earth circular orbits and Earth-Moon collinear Libration points [3, 4]. Top-

puto and Bernelli [5, 6] solved UNOC problems with unspecified, partly specified, and fully

specified final states by using ASRE method differing in the way the time dependent linear

quadratic regulator problems are solved. Rather than integrating the Riccati equation in

[1,2], the approach represented in [5,6] integrates the Hamiltonian matrix equation to obtain

state transition sub-matrices which enables easy handling of boundary conditons.

Many numerical methods have been used to solve nonlinear optimal control problems in

the literature. These problems have been solved by using direct and indirect methods [7].

Indirect methods stem from the calculus of variations [8]; direct methods use a nonlinear

programming optimization [9]. One of the approaches for handling the direct methods is
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based on parameterization. For the parameterization method, three different approaches are

implemented in the literature: parameterization of the state variables [10], parameterization

of the control variables [11], and parameterization of both states and controls [12]. In the

current paper, the state variable parameterization approach is implemented to approximate

the states with Chebyshev polynomials.

The SDC approaches in [1, 2, 5, 6] involve unconstrained nonlinear optimal control prob-

lems. However, Constrained Nonlinear Optimal Control (CNOC) problems are more fit to

applications [13–15]. A solution to CNOC problems using Chebyshev polynomials which

uses quasilinearization is presented in [13]. Elnagar and Kazemi [14] proposed a method to

generate optimal trajectories with linear and nonlinear constrained dynamic systems. Their

approach is based on using the Chebyshev polynomials to parameterize the system and

transform the optimal control problem to a nonlinear programming problem. Also in [15], a

generic Bolza optimal control problem with state and control constraints is solved by using

a direct transcription method.

In the present paper, replacing the original dynamic system by TV-LQR problems us-

ing iterative ASRE method and parameterizing the states by finite-length Chebyshev poly-

nomials is proposed to convert the constrained nonlinear optimal control problem into a

constrained quadratic programming problem. Jaddu and Majdalawi [16] solved nonlinear

optimal control problems using SDC factorization and Chebyshev polynomials. Their ap-

proach is similar to that in the current paper with three differences. First, there are no

constraints on states and controls in their work, the resulting quadratic programming prob-

lem has linear equality constraints only, and is more easily solved. Second, further Chebyshev

techniques are used in that paper to form an analytical approximation to the performance

index, whereas in the current paper numerical integration is used. Third, there are no spec-

ified terminal states, while our approach deals with three different final state conditions:

hard constrained (final state fully specified), soft constrained (final state not specified), and

mixed constrained problems (final state partly specified).

The remainder of the paper is organized as follows. In Section II, the formulation of
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UNOC problem is given and two ASRE approaches are recalled that solve this class of

unconstrained problems. Although both approaches use SDC factorization form, the first

one uses approximating sequence of Riccati equations, and the second one utilizes state

transition matrix. In Section III, the proposed method employing SDC factorization and

Chebyshev polynomials is introduced; this is called SDC Direct method. The CNOC problem

is recalled and reformulated using SDC form. The CNOC problem is converted to quadratic

programming problem, and a constrained optimization problem is solved. Section IV presents

two case studies that show the effectiveness of the proposed method. Concluding remarks

are given in Section V.

II. Review of Optimal Solutions to Unconstrained Nonlinear

Optimal Control Problems

In this section, the nonautonomous problems which are nonlinear in the state and linear-

affine in the control are considered. The initial state condition is specified, and the final

state condition can be either specified or unknown. Both the state variables and controls

are unconstrained, and the time span is fixed.

II.A. Statement of Unconstrained Nonlinear Optimal Control Problem

Consider a set of n first-order differential equations

ẋ = f (x, t) +B (x, t)u (1)

with f : Rn+1 → R
n and B : Rn+1 → R

n×m. The goal is to find m control functions u(t)

within the initial and final time, t0, tf , such that the performance index

J = ϕ (x(tf ), tf ) +

∫ tf

t0

L (x(t),u(t), t) dt (2)
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is minimized; L : Rn+m+1 → R, and ϕ : Rn+1 → R. The initial condition is assumed given,

namely

x(t0) = x0, (3)

while three different forms are examined for the final state condition. These describe the soft

constrained problem (SCP), the hard constrained problem (HCP), and the mixed constrained

problem (MCP), with the final state not specified, fully specified, and partly specified, re-

spectively. Defined the Hamiltonian H(x,λ,u, t) = L(x,u, t) + λT [f (x, t) +B (x, t)u], the

solution of the problem may be found using the Euler-Lagrange equations,

ẋ = +
∂H

∂λ
, λ̇ = −

∂H

∂x
,

∂H

∂u
= 0 (4)

in which λ is the vector of costates. These Euler-Lagrange equations are the necessary

conditions, and their alternative solutions are represented in Eqs. (10)–(14) for the ASRE

approach 1 and Eqs. (18)–(19) for the ASRE approach 2.

II.B. Approximating Sequence of Riccati Equations Method

Suppose that f (x, t) in Eq. (1) is a continuously differentiable vector-valued function of x

and t in an open set Γ ∈ R
n+1, f (·) ∈ C1(Γ), and B (x, t) ∈ C0(Γ) is a continuous vector-

valued function. In addition, f (0, t) = 0, ∀t ∈ R. Under these conditions [17], the State

Dependent Coefficient (SDC) factorization of Eq. (1) may be written as

ẋ = A (x, t)x+B (x, t)u (5)

which is a stabilizable parameterization of the nonlinear system represented in Eq. (1) in a

region Γ if the pair {A (x, t) , B (x, t)} is point-wise stabilizable in the linear sense for all
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x ∈ Γ. Redefinition of the objective function (2) in the quadratic-like form is

J =
1

2
xT (tf )S (x(tf ), tf ) x(tf ) +

1

2

∫ tf

t0

(
xTQ (x, t) x+ uTR (x, t) u

)
dt (6)

where S (x(tf ), tf ) and Q (x, t) are positive semi-definite, and R (x, t) is positive definite

time-varying matrices.

II.B.1. Approach 1

The ASRE approach presented in [1, 2] considers the following sequences of Time Varying

Linear Quadratic Regulator (TVLQR) approximations

ẋ[1] = A(x0) x
[1](t) +B(x0) u

[1](t) (7)

ẋ[k+1] = A(x[k](t), t) x[k+1] +B(x[k](t), t) u[k+1] (8)

where the superscript denotes the iteration. The initial state is x[k+1](t0) = x0, and the

corresponding linear-quadratic cost functional is

J [k+1] =
1

2

(
x[k+1](tf )

)T
S(x[k](tf ), tf )

(
x[k+1](tf )

)
+

1

2

∫ tf

t0

(
x[k+1]TQ(x[k](t), t)x[k+1] + u[k+1]TR(x[k](t), t)u[k+1]

)
dt (9)

Since each approximation is time-varying and linear-quadratic, the optimal control sequence

is in the form1

u[k+1](t) = −R−1(x[k](t))BT (x[k](t))P[k+1](t)x[k+1](t) (10)
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where the real, symmetric and positive-definite matrix P[k+1](t) is the solution of

Ṗ[k+1](t) = −Q(x[k](t))−P[k+1](t)A(x[k](t))−AT (x[k](t))P[k+1](t)+P[k+1](t)E(x[k](t))P[k+1](t)

(11)

with

P[k+1](tf ) = S(x[k](tf )) (12)

E(x[k](t)) = B(x[k](t))R−1(x[k](t))BT (x[k](t)) (13)

Notice that the differential Riccati equation (11) has to be solved backward in time and the

optimal state trajectory is obtained by integrating the following differential equation forward

in time

ẋ[k+1](t) =
[
A(x[k](t))− E(x[k](t))P[k+1](t)

]
x[k+1](t) (14)

II.B.2. Approach 2

The sequence of TVLQR is solved by exploiting the structure of their Euler–Lagrange equa-

tions, so avoiding dealing with the matrix differential Riccati equation. This approach is

described in [5, 6]. Rather than integrating Eq. (11), the approach in [5, 6] integrates the

Hamiltonian matrix equation to obtain state transition sub-matrices that enable easy han-

dling of partially specified terminal states.

Consider the system dynamics and quadratic objective function in Eqs. (5)–(6). The

necessary conditions for this problem are obtained by applying Eq. (4), namely

ẋ = A (x, t) x+B (x, t) u, (15)

λ̇ =−Q (x, t) x−AT (x, t) λ, (16)

0 = R (x, t) u+BT (x, t) λ. (17)

7 of 39

Solving Constrained Nonlinear Optimal Control Problems Using State-Dependent Factorization and
Chebyshev Polynomials – M. M. G, F. T., F. B.-Z., O. T.

Page 7 of 39

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

From Eq. (17), one may get

u = −R−1 (x, t)BT (x, t) λ, (18)

which by substituting into Eqs. (15)–(16) it is possible to get

⎛
⎜⎝ ẋ

λ̇

⎞
⎟⎠ =

⎡
⎢⎣ A (x, t) −B (x, t)R−1 (x, t)BT (x, t)

−Q (x, t) −AT (x, t)

⎤
⎥⎦
⎛
⎜⎝ x

λ

⎞
⎟⎠ . (19)

The solution of Eq. (19) which is a system of linear differential equations is given by

x(t) = φxx(t0, t)x0 + φxλ(t0, t)λ0, (20)

λ(t) = φλx(t0, t)x0 + φλλ(t0, t)λ0, (21)

where x0 and λ0 are the initial state and costate, respectively. The components of the state

transition matrix φxx, φxλ, φλx, and φλλ are obtained by integrating the following dynamics

⎡
⎢⎣ φ̇xx φ̇xλ

φ̇λx φ̇λλ

⎤
⎥⎦ =

⎡
⎢⎣ A (x, t) −B (x, t)R−1 (x, t)BT (x, t)

−Q (x, t) −AT (x, t)

⎤
⎥⎦
⎡
⎢⎣ φxx φxλ

φλx φλλ

⎤
⎥⎦ , (22)

with the required initial conditions defined as

φxx(t0, t0) = φλλ(t0, t0) = In×n, φxλ(t0, t0) = φλx(t0, t0) = 0n×n. (23)

The issue here is computing λ0 as only x0 is given. This is given by (refer to [18] for detailed
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derivation)

λ0(x0,xf , t0, tf ) = φ−1
xλ (t0, tf ) [xf − φxx(t0, tf )x0] for HCP,

λ0(x0, t0, tf )=[φλλ(t0, tf )−S(tf )φxλ(t0, tf )]
−1 [S(tf )φxx(t0, tf )−φλx(t0, tf )]x0 for SCP,

λ0(x0,yf , t0, tf ) = (ξ0(x0,yf , t0, tf ),η0(x0,yf , t0, tf )), for MCP,

(24)

where ξ and η are the component of λ related to the elements of the final state that are

partially specified (their expressions are reported in [18]).

III. State-Dependent Coefficient Direct Method

The problems treated in this section are the same as in Section II except that both

the states and controls are constrained. The proposed SDC Direct method employs SDC

factorization and Chebyshev polynomials. Constrained nonlinear optimal control problem

formulation is recalled and reformulated to SDC form. The state variables are approximated

and expanded to the Chebyshev polynomials. Then, the state derivatives are derived from

the state variables. To this end, the control variables are obtained as a function of state

variables and their derivatives. The CNOC problem is converted to quadratic programming

problem, and a constrained optimization problem is solved.

III.A. Statement of Constrained Nonlinear Optimal Control Problem

The statement of the constrained problem is similar to that of the unconstrained case in

Section II.A, except that this time Eqs. (25)−(26) have to be considered.

xmin ≤ x(t) ≤ xmax (25)

umin ≤ u(t) ≤ umax (26)
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The necessary conditions for ẋ and λ̇ represented in Eq.(4) are kept here, while the third

condition, ∂H/∂u = 0, is replaced by the minimum principle

u = arg min
u

H(x,λ,u, t) (27)

This new form of the necessary condition (minimum principle) on the Hamiltonian prevent

the use of alternative solutions described in Eqs. (10)–(14) and Eqs. (18)–(19). Hence, the

SDC Direct method to solve the constrained problems in needed.

III.B. Converting Constrained Nonlinear Optimal Control Problems to Quadratic

Programming Problems Using Chebyshev Polynomials

From now, and without any loss of generality, we assume t0 = 0. In order to use Chebyshev

polynomials, the transformation time τ = 2t/tf − 1 is used; this is defined in [−1, 1]. By

using Chebyshev time transformation, TVLQR approximations in Eq. (8) are written as

dx[k+1]

dτ
(τ) =

tf

2
[A(x[k](τ), τ) x[k+1] +B(x[k](τ), τ) u[k+1]] (28)

The other equations are written as

J [k+1] =
1

2

(
x[k+1](1)

)T
S(x[k](1), 1)

(
x[k+1](1)

)
+

tf

4

∫ 1

−1

(
x[k+1]TQ(x[k](τ), τ) x[k+1] + u[k+1]TR(x[k](τ),u[k](τ), τ) u[k+1]

)
dτ (29)

x[k+1](−1) = x0 (30)

xmin ≤ x[k+1](τ) ≤ xmax (31)
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umin ≤ u[k+1](τ) ≤ umax (32)

For approximating the state variables, Chebyshev polynomials of first kind, Ti(τ), are used

such that

x
[k+1]
j (τ) =

N∑
i=0

′
a
(j)
i Ti(τ) (33)

where the dash
(∑ ′) denotes that the first term in the sum is to be halved, j = 1, 2, ..., n is

the number of states, N is the degree of the Chebyshev polynomial, and a
(j)
i are unknown

parameters. Eq. (33) may be rewritten in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1
1 (τ)

xk+1
2 (τ)

.

.

.

xk+1
n (τ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5a
(1)
0 a

(1)
1 ... a

(1)
N

0.5a
(2)
0 a

(2)
1 ... a

(2)
N

. . ... .

. . ... .

. . ... .

0.5a
(n)
0 a

(n)
1 ... a

(n)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0(τ)

T1(τ)

.

.

.

TN(τ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the Kronecker product yields a convenient notation

x[k+1](τ) =
(
In ⊗TT (τ)

)
a (34)

where TT (τ) = [T0(τ), T1(τ), ..., TN(τ)] is an (1× (N + 1)) row vector of Chebyshev polyno-

mials, and aT = [a
(1)
0 /2, a

(1)
1 , ..., a

(1)
N , a

(2)
0 /2, ..., a

(2)
N , ..., a

(n)
0 /2, ..., a

(n)
N ] is an (1×n(N +1)) row

vector of unknown parameters. Derivative of the state variables is governed by equation

ẋ
[k+1]
j (τ) =

N∑
i=0

′
a
(j)
i Ṫi(τ) (35)

11 of 39

Solving Constrained Nonlinear Optimal Control Problems Using State-Dependent Factorization and
Chebyshev Polynomials – M. M. G, F. T., F. B.-Z., O. T.

Page 11 of 39

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

which may be written in matrix form as

ẋ[k+1](τ) =
(
In ⊗TT (τ)DT

)
a (36)

where Ṫ = DT is used here, and D matrix has a dimension of (N + 1) × (N + 1) which is

defined as following. The derivative of Chebyshev polynomials is defined in [19] as

dTN(τ)

dτ
= 2N

N−1∑
i=0

N−i odd

′
Ti(τ) (37)

From Eq. (37) it can be concluded that the derivative of the Chebyshev polynomials of the

first kind may be written as

dT1(τ)

dτ
= T0(τ),

dT2(τ)

dτ
= 4 T1(τ),

dT3(τ)

dτ
= 3 T0(τ) + 6 T2(τ)

dT4(τ)

dτ
= 8 T1(τ) + 8 T3(τ)

dT5(τ)

dτ
= 5 T0(τ) + 10 T2(τ) + 10 T4(τ)

dT6(τ)

dτ
= 12 T1(τ) + 12 T3(τ) + 12 T5(τ)

.

.

.
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and from the definition of the Chebyshev polynomials of the first kind in [19], we have

dT0(τ)

dτ
= 0. So, it may be proved that

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 ... 0

1 0 0 0 0 0 0 0 ... 0

0 4 0 0 0 0 0 0 ... 0

3 0 6 0 0 0 0 0 ... 0

0 8 0 8 0 0 0 0 ... 0

5 0 10 0 10 0 0 0 ... 0

0 12 0 12 0 12 0 0 ... 0

7 0 14 0 14 0 14 0 ... 0

0 16 0 16 0 16 0 16 ... 0

. . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Also, for the technique represented in Section III.C, it is required to get the second derivative

of the state variables using the equation

ẍ
[k+1]
j (τ) =

N∑
i=0

′
a
(j)
i T̈i(τ) (38)

which in matrix form may be written as

ẍ[k+1](τ) =
(
In ⊗TT (τ)DTDT

)
a (39)

where T̈ = DDT is used here. The second derivative of Chebyshev polynomials is defined

in [19] as

d2TN(τ)

dτ 2
=

N−2∑
i=0

N−i even

′
(N − i)N(N + i)Ti(τ) (40)
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From Eq. (40) it can be concluded that the second derivative of the Chebyshev polynomials

of the first kind may be written as

d2T2(τ)

dτ 2
= 4T0(τ),

d2T3(τ)

dτ 2
= 24 T1(τ),

d2T4(τ)

dτ 2
= 32 T0(τ) + 48 T2(τ)

d2T5(τ)

dτ 2
= 120 T1(τ) + 80 T3(τ)

.

.

.
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and from the definition of the Chebyshev polynomials of the first kind in [19], we have

d2T0(τ)

dτ 2
= 0, and

d2T1(τ)

dτ 2
= 0. So,

D2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 ... 0

0 0 0 0 0 0 0 0 ... 0

4 0 0 0 0 0 0 0 ... 0

0 24 0 0 0 0 0 0 ... 0

32 0 48 0 0 0 0 0 ... 0

0 120 0 80 0 0 0 0 ... 0

108 0 192 0 120 0 0 0 ... 0

0 336 0 280 0 168 0 0 ... 0

256 0 480 0 384 0 224 0 ... 0

. . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, it is assumed that the number of states, n, is equal to the number of inputs, m, and

the B(x[k]) matrix in Eq. (28) is square and invertible. Section III.C will handle the case

in which the number of states, n, is greater than the number of inputs, m, and B(x[k]) is

not square and invertible. Now rearranging Eq. (28) gives us the required formula for inputs

which is in the form

uk+1(τ) = B(x[k](τ))−1

⎡
⎢⎣ 2

tf

(
In ⊗TT (τ)DT

)
a−A(x[k](τ))

(
In ⊗TT (τ)

)
a

⎤
⎥⎦ (41)

Without loss of generality, we consider that the matrices Q, R, and S are constant for

convenience. Taking into account of all the approximations for states, state derivatives, and
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inputs and substituting them in Eq. (29) may give

Ĵ [k+1] =
1

2
aT (In ⊗ T (1))S

(
In ⊗ T T (1)

)
a+

tf

4

∫ 1

−1

[
aT (In ⊗T(τ))Q

(
In ⊗TT (τ)

)
a
]
dτ+

tf

4

∫ 1

−1

⎡
⎢⎣ 2

tf
aT (In ⊗DT(τ))− aT (In ⊗T(τ))A(x[k](τ))

T

⎤
⎥⎦×

F(τ)

⎡
⎢⎣ 2

tf

(
In ⊗TT (τ)DT

)
a−A(x[k](τ))

(
In ⊗TT (τ)

)
a

⎤
⎥⎦ dτ (42)

where F(τ) = (B(x[k](τ))−1)T RB(x[k](τ))−1, and Ĵ [k+1] is an approximate value of J [k+1].

Multiplication of the elements in Eq.(42) will give the formula for the approximated objective

function in the form

Ĵ [k+1] =
1

2
aTh0 a+

tf

4

∫ 1

−1

⎡
⎢⎣aTh1 a+

4

tf
2
aTh2 a+ aTh3 a−

2

tf
aTh4 a−

2

tf
aTh5 a

⎤
⎥⎦ dτ (43)

where

h0 = S⊗ T (1)T T (1)

h1 = Q⊗T(τ)TT (τ)

h2 = F(τ)⊗DT(τ)TT (τ)DT

h3 = (A(x[k](τ)))T F(τ)A(x[k](τ))⊗T(τ)TT (τ)

h4 = F(τ)A(x[k](τ))⊗DT(τ)TT (τ)

h5 = (A(x[k](τ)))T F(τ) ⊗T(τ)TT (τ)DT

The current paper computes the objective function numerically using the pointwise evalua-

tions of the states, their derived derivatives, and the derived controls. From Eq. (34) it can
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be concluded that the initial boundary condition in (30) may be written as

x[k+1](−1) =
(
In ⊗ T T (−1)

)
a = x0 (44)

In addition, by substituting the state and control approximations defined in Eqs. (34) and

(41) into Eqs. (31) and (32), one may obtain

xmin ≤ (
In ⊗TT (τ)

)
a ≤ xmax (45)

umin ≤ B(x[k](τ))−1

⎡
⎢⎣ 2

tf

(
In ⊗TT (τ)DT

)
a−A(x[k](τ))

(
In ⊗TT (τ)

)
a

⎤
⎥⎦ ≤ umax (46)

Now we are dealing with a special type of mathematical optimization problem known as

Quadratic Programming problem. The goal is minimization of a quadratic function, Ĵ [k+1],

of several variables, a, subject to linear constraints on these variables. Inequality constraints

result from the state and control constraints (bounds), and equality constraints result from

the state boundary conditions. The unknowns are no longer x(t), u(t), but rather the

coefficients a. The minimization problem is summarized as follows

min
a

Ĵ [k+1] =
1

2
aTH a

s.t. A a− b < 0

Aeq a− beq = 0

(47)
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where the quadratic function H will be described below for the different cases. The matrices

and vectors for inequality constraints are defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(x[k](τ))−1

⎡
⎢⎣ 2

tf

(
In ⊗TT (τ)DT

)−A(x[k](τ))
(
In ⊗TT (τ)

)
⎤
⎥⎦

−B(x[k](τ))−1

⎡
⎢⎣ 2

tf

(
In ⊗TT (τ)DT

)−A(x[k](τ))
(
In ⊗TT (τ)

)
⎤
⎥⎦

(
In ⊗TT (τ)

)
− (

In ⊗TT (τ)
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax

−umin

xmax

−xmin

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

and matrices and vectors for equality constraints are defined as

Aeq =

[(
In ⊗ T T (−1)

)]
(50)

beq =

[
x0

]
(51)

Consider that Eqs. (50) and (51) are valid for soft constrained problems in which the

final state conditions are not specified. The matrices and vectors for equality constraints

for hard constrained problems and mixed constrained problems are rewritten in Sections

III.B.2 and Section III.B.3, respectively. To summarize the proposed method, for the first

iteration, the states, the state matrix, and the control matrix are written as x[k] = x0,

A(x[k](τ), τ) = A(x0), and B(x[k](τ), τ) = B(x0), respectively. Furthemore, the TVLQR
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approximations represented in Eq. (28)

dx[k+1]

dτ
(τ) =

tf

2
[A(x[k](τ), τ) x[k+1] +B(x[k](τ), τ) u[k+1]]

followed by the herein equations in Section III.B, help to understand that for the sec-

ond, third, and the other iterations, the state variables x[k+1] are approximated by Cheby-

shev polynomials and the inputs u[k+1] will be obtained from the states and their deriva-

tives. Note that A(x[k](τ), τ) and B(x[k](τ), τ) matrices for each iteration are evaluated

by the states of the previous iteration. Next, the optimization problem in (47) with its

equality and inequality constrained has to be solved to get the parameters in the aT =

[a
(1)
0 /2, a

(1)
1 , ..., a

(1)
N , a

(2)
0 /2, ..., a

(2)
N , ..., a

(n)
0 /2, ..., a

(n)
N ] matrix. This optimization problem is a

type of quadratic programming problem which is the problem of finding a vector a that

minimizes a quadratic function 1/2 aTH a, subject to linear constraints. For implementa-

tions and numerical examples, the quadprog syntax of Matlab with the interior-point-convex

algorithm is used to solve the problems in the current paper. To this end, the states, the

state derivatives and the inputs are evaluated from Eqs. (34), (36), and (41), respectively.

III.B.1. Soft Constrained Problem

The quadratic function required for minimization problem (47) is given by

H = h0 +
tf

2

∫ 1

−1

⎡
⎢⎣h1 +

4

tf
2
h2 + h3 −

2

tf
h4 −

2

tf
h5

⎤
⎥⎦ dτ (52)

Since the final state is not specified, the equality constraint’s matrices and vectors are as

stated in Eqs. (50) and (51).
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III.B.2. Hard Constrained Problem

The quadratic function required for minimization problem (47) is in the form of

H =
tf

2

∫ 1

−1

⎡
⎢⎣h1 +

4

tf
2
h2 + h3 −

2

tf
h4 −

2

tf
h5

⎤
⎥⎦ dτ (53)

where final state condition xf is specified in this case. For HCP, the matrices and vectors

for equality constraints of the optimization problem in (47) are expressed in the form of

Aeq =

⎡
⎢⎣
(
In ⊗ T T (−1)

)
(
In ⊗ T T (1)

)
⎤
⎥⎦ (54)

beq =

⎡
⎢⎣x0

xf

⎤
⎥⎦ (55)

III.B.3. Mixed Constrained Problem

The quadratic function required for minimization problem (47) is given by

H = h0 +
tf

2

∫ 1

−1

⎡
⎢⎣h1 +

4

tf
2
h2 + h3 −

2

tf
h4 −

2

tf
h5

⎤
⎥⎦ dτ (56)

The final state is not fully specified in this case. Let the state to be decomposed as x =

(y, z), where y = (x1, . . . , xr) are the the r known components at final time, whereas z =

(xr+1, . . . , xn) are the remaining n − r free components at final time. So, the equality

constraint conditions may be written as

Aeq =

⎡
⎢⎣
(
In ⊗ T T (−1)

)
(
Ir×n ⊗ T T (1)

)
⎤
⎥⎦ (57)
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beq =

⎡
⎢⎣x0

yf

⎤
⎥⎦ (58)

Also, it is important to notice that matrix S in Eq. (43) for h0 term, should be updated as

S =

⎡
⎢⎣ 0r×r 0r× (n−r)

0(n−r)× r S(n−r)×(n−r)

⎤
⎥⎦

where the terms 0’s in above matrix are zero matrices.

III.C. Number of Inputs Less than Number of States

Remember the approximated equation for u[k+1] represented in (41), Section III.B, which

shows that the inverse matrix of B(x[k]) is required. For the case with n = m, the matrix

B(x[k]) is square and the necessary condition for that is to be invertible. However, for the

case in which, n > m, the matrix B(x[k]) is not square, so not invertible and the following

technique briefly explained in [16] may be used. Consider the dynamic system represented

in Eq. (5), for the case n > m, to be written as

ẋ1(t) = A11x1(t) + A12x2(t) + · · ·+ A1nxn(t)

...

ẋq−1(t) = A(q−1)1x1(t) + A(q−1)2x2(t) + · · ·+ A(q−1)nxn(t)

ẋq(t) = Aq1x1(t) + Aq2x2(t) + · · ·+ Aqnxn(t) + Bq1u1(t) + Bq2u2(t) + · · ·+Bqmum(t)

...

ẋn(t) = An1x1(t) + An2x2(t) + · · ·+ Annxn(t) + Bn1u1(t) + Bn2u2(t) + · · ·+Bnmum(t)

(59)

where the subscript q is defined as q = n − m + 1, and the A and B terms may be state

dependent, and these terms are evaluated with the previous iteration’s values at the current
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iteration. Converting the equations to Chebyshev time domain results in

ẋ1(τ) =
tf
2
(A11x1(τ) + A12x2(τ) + · · ·+ A1nxn(τ))

...

ẋq−1(τ) =
tf
2

(
A(q−1)1x1(τ) + A(q−1)2x2(τ) + · · ·+ A(q−1)nxn(τ)

)
ẋq(τ) =

tf
2
(Aq1x1(τ) + Aq2x2(τ) + · · ·+ Aqnxn(τ) + Bq1u1(τ) + Bq2u2(τ) + · · ·+Bqmum(τ))

...

ẋn(τ) =
tf
2
(An1x1(τ) + An2x2(τ) + · · ·+ Annxn(τ) +Bn1u1(τ) + Bn2u2(τ) + · · ·+Bnmum(τ))

(60)

Now, approximate the states x1(τ), x2(τ), . . . , xq−1(τ) by Chebyshev polynomials as repre-

sented in Eq. (35), and then obtain the first and second derivatives of them by using Eqs.

(36) and (39). Rearrange the first q − 1 terms in (59) as following to obtain the states

xq(τ), xq+1(τ), . . . , xn(τ).

2
tf
ẋ1(τ)− A11x1(τ)− · · · − A1(q−1)xq−1(τ) = A1qxq(τ) + · · ·+ A1nxn(τ)

...

2
tf
ẋq−1(τ)− A(q−1)1x1(τ)− · · · − A(q−1)(q−1)xq−1(τ) = Aqqxq(τ) + · · ·+ Aqnxn(τ)

(61)

By taking the derivative from both sides of Eq. (61), the terms ẋq(τ), ẋq+1(τ), . . . , ẋn(τ) will

be obtained. So,

2
tf
ẍ1(τ)− A11ẋ1(τ)− · · · − A1(q−1)ẋq−1(τ) = A1qẋq(τ) + · · ·+ A1nẋn(τ)

...

2
tf
ẍq−1(τ)− A(q−1)1ẋ1(τ)− · · · − A(q−1)(q−1)ẋq−1(τ) = Aqqẋq(τ) + · · ·+ Aqnẋn(τ)

(62)

22 of 39

Solving Constrained Nonlinear Optimal Control Problems Using State-Dependent Factorization and
Chebyshev Polynomials – M. M. G, F. T., F. B.-Z., O. T.

Page 22 of 39

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

To this end, from last m equations of (60) the required inputs will be found. These inputs

u1, u2, . . . , um are obtained from

2
tf
ẋq(τ)− Aq1x1(τ)− · · · − Aqnxn(τ) = Bq1u1(τ) + Bq2u2(τ) + · · ·+Bqmum(τ)

...

2
tf
ẋn(τ)− An1x1(τ)− · · · − Annxn(τ) = Bn1u1(τ) +Bq2u2(τ) + · · ·+Bnmum(τ)

(63)

Then, following the same approach represented in Section III.B gives the updated versions

of the Eqs. (43), (46), and (48).

IV. Numerical Simulations

Comparison of different optimal control methods for different SDC factorized nonlinear

optimal control problems is summarized in Table 1. Two sample problems with nonlinear

dynamics are considered to apply and verify the proposed SDC Direct method. In all the

cases, the optimization problem represented in (47) is solved in Matlab using quadprog

syntax with interior-point-convex algorithm with Intel Core i5 CPU 2.30 GHz.

Table 1. Comparison of different suboptimal methods for different nonlinear optimal control problems.

Method SCP HCP MCP Constrained

ASRE [1,2] Y N N N

ASRE [5,6] Y Y Y N

SDC Direct method Y Y Y Y

In the present implementations, the convergence is reached when

ε = ‖x[k+1] − x[k]‖∞ = max
t∈[t0, tf ]

{|x[k+1]
j (t)− x

[k]
j (t)|, j = 1, . . . , n} ≤ tol (64)

where ε is error and ‘tol’ is a prescribed tolerance.
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IV.A. Problem 1: Van der Pol Oscillator

This problem is taken from [13,16]. Van der Pol oscillator is a second order dynamical system

ẋ1 = x2

ẋ2 = −(x2
1 − 1)x2 − x1 + u

Initial states are x1(0) = 1, and x2(0) = 0, and the final time is defined as tf = 5. The

weighting matrices are Q = I2 and R = 1, and the corresponding objective function is

J =
1

2

∫ 5

0

(
x2
1 + x2

2 + u2
)
dt

For SDC factorization the state and input matrices are chosen in the form of

A =

⎡
⎢⎣ 0 1

− (1 + x1 x2) 1

⎤
⎥⎦ , B =

⎡
⎢⎣0
1

⎤
⎥⎦

In this example, the whole procedure of the proposed method will be shown step by step.

Since n > m, the technique represented in Section III.C has to be considered. In order

to use Chebyshev polynomials, the time interval [0, 5] is transformed to [−1, 1] using the

transformation time τ = 2t/tf − 1. The TVLQR approximations are written as

ẋ
[1]
1 (t) = x

[1]
2 (t)

ẋ
[1]
2 (t) = − (1 + x10x20) x

[1]
1 (t) + x

[1]
2 (t) + u[1](t)

(65)

ẋ
[k+1]
1 (t) = x

[k+1]
2 (t)

ẋ
[k+1]
2 (t) = − (

1 + x1
[k](t)x2

[k](t)
)
x
[k+1]
1 (t) + x

[k+1]
2 (t) + u[k+1](t)

(66)

Transforming the Eqs. (65) and (66) to Chebyshev time domain, the equations are written
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as

ẋ
[1]
1 (τ) =

tf

2
[x

[1]
2 (τ)]

ẋ
[1]
2 (τ) =

tf

2
[− (1 + x10x20) x

[1]
1 (τ) + x

[1]
2 (τ) + u[1](τ)]

(67)

ẋ
[k+1]
1 (τ) =

tf

2
[x

[k+1]
2 (τ)]

ẋ
[k+1]
2 (τ) =

tf

2
[− (

1 + x1
[k](τ)x2

[k](τ)
)
x
[k+1]
1 (τ) + x

[k+1]
2 (τ) + u[k+1](τ)]

(68)

For the first iteration, the Eq. (67) is used, and the Eq. (68) is implemented for the next

iterations. First, the state x1 is approximated by Chebyshev polynomials. Second, the state

x2 will be obtained from the derivative of x1. Third, by double differentiation of x1, the ẋ2

will be obtained as shown in the following

ẍ
[1]
1 (τ) =

tf

2
[ẋ

[1]
2 (τ)] (69)

ẍ
[k+1]
1 (τ) =

tf

2
[ẋ

[k+1]
2 (τ)] (70)

To this end, the input u is evaluated from the second equation of Eqs. (67) and (68). Two

different subproblems are considered.

IV.A.1. Soft Constrained Problem

This is a SCP in which the final states are not specified, xf = free. Three different cases are

solved and discussed. For case 1, both states and control are unconstrained and a solution

for this case is available in [16]. Then, the input is constrained in case 2 and states are still

unconstrained. Lastly, in case 3 both states and controls are constrained.

Case 1. In this case, it is assumed that there would be no constraints on the states and

inputs. Table 2 represents the results for two different degrees of Chebyshev polynomials,

N = 8 and N = 12. The number of iterations, the value of errors, and the objective function
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values are given. For both Chebyshev degree values, the optimization problem is terminated

after 5 iterations and the value of the objective function is in agreement with that given in

[16] which is 1.4493959719 for N = 15. Looking at the results in Table 2, it seems that for

the unconstrained case, increasing the Chebyshev polynomial degree does not improve the

objective value. Figure 1 shows the approximate trajectory and control solutions.

Table 2. SDC-Direct method iterations for Problem1-SCP-Case1

N = 8 (CPU time 5.09 s) N = 12 (CPU time 8.98 s)

Iteration Error J Iteration Error J

1 1.079319e+00 1.685824e+00 1 1.079237e+00 1.685822e+00

2 4.782503e-02 1.427952e+00 2 4.862783e-02 1.427863e+00

3 2.664431e-03 1.435632e+00 3 3.662316e-03 1.435654e+00

4 1.504402e-04 1.435544e+00 4 2.548840e-04 1.435615e+00

5 1.176594e-05 1.435522e+00 5 4.028370e-05 1.435570e+00

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

x 1, x
2, u

x1
x2
u

Figure 1. Problem1-SCP-Case1 (N = 12): Approximate trajectory and control solutions.

Case 2. Here we consider that the states are unconstrained and there is constraint on

input which is defined as

0 ≤ u ≤ 0.75

The iterations, errors, and values of objective functions are given in Table 3. For N = 8, the
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solution is obtained after 10 iterations and for the case when N = 12, after 7 iterations the

problem is solved. So, it may be concluded that for the case with constraints on inputs, the

performance of the algorithm is improved by increasing the degree of Chebyshev polynomials.

Moreover, by increasing the Chebyshev polynomial degree, the value of the objective function

is decreased. The optimal trajectory and control solutions are shown in Figure 2 for case 1

Table 3. SDC-Direct method iterations for Problem1-SCP-Case2

N = 8 (CPU time 10.86 s) N = 12 (CPU time 12.7 s)

Iteration Error J Iteration Error J

1 1.668749e+00 3.211873e+00 1 1.451901e+00 3.088773e+00

2 1.444115e+00 1.588960e+00 2 1.269662e+00 1.559349e+00

3 5.368128e-02 1.606897e+00 3 4.048383e-02 1.584761e+00

4 1.837529e-02 1.641353e+00 4 1.046905e-02 1.603692e+00

5 3.591689e-03 1.644906e+00 5 2.010635e-03 1.605551e+00

6 2.828636e-03 1.643633e+00 6 4.903323e-04 1.605002e+00

7 1.530721e-04 1.643527e+00 7 9.863860e-05 1.604865e+00

8 1.570586e-04 1.643605e+00

9 1.167622e-04 1.643596e+00

10 9.830951e-06 1.643612e+00

and case 2 together.

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

x 1, x
2, u

x1
x2
u

constrained

new
new

Figure 2. Problem1-SCP-Cases 1 and 2 (N = 12): Approximate trajectory and control solutions.
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Case 3. In this case, it is considered to have constraints on both the states and the input.

These constraints are defined as

0 ≤ u ≤ 0.75

0 ≤ x1 ≤ 1

−0.38 ≤ x2

The state constraints added to the problem result in more iterations and bigger objective

function value for case 3. By considering the results in Table 4, it may be again concluded

that the results are improved by increasing the Chebyshev polynomial degree for constrained

case. Plots of the cases 1 and 3 are showed in Figure 3. It shows that the constraints on

Table 4. SDC-Direct method iterations for Problem1-SCP-Case3

N = 8 (CPU time 15.03 s) N = 12 (CPU time 16.81 s)

Iteration Error J Iteration Error J

1 1.762806e+00 5.741236e+00 1 5.878951e+00 9.450530e+01

2 1.303140e+00 2.206247e+00 2 3.879162e+00 9.934352e+00

3 4.327738e-01 1.836886e+00 3 1.987615e+00 1.756250e+00

4 7.568154e-02 1.862552e+00 4 2.819701e-02 1.786414e+00

5 8.307684e-03 1.882555e+00 5 8.817573e-03 1.801913e+00

6 2.916821e-03 1.891366e+00 6 2.809343e-03 1.808637e+00

7 6.889621e-04 1.892950e+00 7 1.023038e-03 1.810733e+00

8 1.223139e-03 1.892241e+00 8 7.394046e-04 1.811066e+00

9 6.099517e-04 1.891546e+00 9 9.837200e-05 1.811003e+00

10 5.788571e-04 1.891260e+00

11 5.118347e-04 1.891195e+00

12 1.621073e-04 1.891218e+00

13 1.334805e-05 1.891245e+00

the states and control are satisfied and the optimal solutions are changed after applying the

constraints.

IV.A.2. Hard Constrained Problem

This is a HCP in which the final states are fully specified; x1(5) = −1, and x2(5) = 0.

For this problem, the case with constraints on input is analyzed. Consider the constraint is
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Figure 3. Problem1-SCP-Cases 1 and 3 (N =12): Approximate trajectory and control solutions.

defined as

−0.75 ≤ u ≤ 0.75

Figure 4 shows the approximate trajectory and control for unconstrained and constrained

cases. It is shown that the initial and final state conditions are satisfied. Moreover, Figure

4 displays that the bounds on control are met, and the new state trajectories are showed

after considering the input constraint. A comparison of iteration numbers and the objective

function values is represented in Table 5 for different values of Chebyshev polynomial degrees.

Again, it may be concluded that the results are improved by increasing the Chebyshev

polynomial degree. For the constrained case, a solution exists in [13] and the objective

functions of the current paper are in agreement with that given in [13] which is 2.1389 for

N = 12.
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Table 5. SDC-Direct method iterations for Problem1-HCP

N = 8 (CPU time 9.04 s) N = 12 (CPU time 16.58 s)

Iteration Error J Iteration Error J

1 1.000000e+00 3.130124e+00 1 1.002810e+00 3.249518e+00

2 3.895121e-01 2.144377e+00 2 4.464654e-01 2.116291e+00

3 5.353388e-02 2.146860e+00 3 7.396758e-02 2.126974e+00

4 1.596711e-02 2.173787e+00 4 1.329232e-02 2.147969e+00

5 4.461313e-03 2.179621e+00 5 3.651116e-03 2.151620e+00

6 4.701491e-04 2.179486e+00 6 5.547349e-04 2.151385e+00

7 1.388092e-04 2.179309e+00 7 1.700663e-04 2.151145e+00

8 1.524415e-05 2.179304e+00 8 1.336576e-04 2.151128e+00

9 7.448995e-06 2.151141e+00

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

time (s)

x 1, x
2, u

x1
x2
u

constrained
new

new

Figure 4. Problem1-HCP (N = 12): Approximate trajectory and control solutions.

IV.B. Problem 2: Low-Thrust Rendezvous

This problem [6,20], considers the planar, relative motion of two particles in a central gravity

field expressed in a rotating frame with normalized units: the length unit is equal to the

orbital radius, the time unit is such that the orbital period is 2π, and the gravitational

parameter is equal to 1. In these dynamics, the state is x = (x1 x2 x3 x4); x1 represents

the radial displacement, x2 represents the tangential displacement, x3 represents the radial

velocity deviations, and x4 represents the tangential velocity deviations. The control u =
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(u1 u2), is made of by the radial and tangential accelerations, respectively. The first order

system dynamics are written in the form

ẋ1 = x3

ẋ2 = x4

ẋ3 = 2x4 +

⎛
⎜⎝1−

1

r3

⎞
⎟⎠ (1 + x1) + u1

ẋ4 = −2x3 +

⎛
⎜⎝1−

1

r3

⎞
⎟⎠x2 + u2

(71)

with r =
√
(x1 + 1)2 + x2

2. The initial condition is x0 = (0.2, 0.2, 0.1, 0.1), and t0 = 0,

tf = 1. Since n > m, the technique introduced in Section III.C is implemented. For the

SDC factorization form, the A and B matrices are chosen as

A = A(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1⎛
⎜⎝1−

1

r3

⎞
⎟⎠

⎛
⎜⎝ 1

x1

+ 1

⎞
⎟⎠ 0 0 2

0

⎛
⎜⎝1−

1

r3

⎞
⎟⎠ −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(72)

The objective function is defined as

J =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

t0

uT u dt. (73)

while weighting matrices are Q = 04 and R = I2. Based on the specification of final states,

two different subproblems are considered.
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IV.B.1. Soft Constrained Problem

Here the final states are free (SCP), and the weighting matrix for final state conditions is

defined as S = diag (25, 15, 10, 10). Three different cases are implemented and the results

are given and discussed.

Case 1. This case considers the results of the unconstrained case. Approximate trajectory

and control for SDC Direct method are displayed in Figure 5 (dashed lines). The initial state

conditions are satisfied and the optimal trajectories and controls are showed. The iterations

and objective function values are given in Table 6 for two different degrees of Chebyshev

polynomials. The objective function value is the same for both values of N , and these results

are in agreement with the solution given in [6] which has the objective function of 0.5660

after 6 iterations.

Case 2. Now for the input constrained case, the bounds on the controls are considered as

Table 6. SDC-Direct method iterations for Problem2-SCP-Case1

N = 8 (CPU time 8.22 s) N = 12 (CPU time 14.05 s)

Iteration Error J Iteration Error J

1 3.426168e-01 5.693359e-01 1 3.426165e-01 5.693359e-01

2 1.426767e-03 5.659849e-01 2 1.425440e-03 5.659849e-01

3 1.286568e-05 5.659615e-01 3 1.284486e-05 5.659615e-01

−1 ≤ u1 ≤ 0,−1 ≤ u2 ≤ 0

Figure 5 displays the optimal state trajectories and controls with the solid lines. It shows

that the input constraints are satisfied and the new plots are the results of these constraints.

Table 7 gives the error and objective function values showing an improvement by increasing

the Chebyshev polynomial degree.
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(a) Approximate trajectory.
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Figure 5. Problem2-SCP-Cases 1 and 2 (N = 12): Approximate trajectory and control solutions.

Case 3. For this case, the states x3 and x4 and the controls are constrained as

−1 ≤ u1 ≤ 0,−1 ≤ u2 ≤ 0
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Table 7. SDC-Direct method iterations for Problem2-SCP-Case2

N = 8 (CPU time 9.23 s) N = 12 (CPU time 15.09 s)

Iteration Error J Iteration Error J

1 3.003979e-01 6.233571e-01 1 3.057933e-01 6.211742e-01

2 1.911900e-03 6.208723e-01 2 1.876686e-03 6.186383e-01

3 6.134384e-05 6.208419e-01 3 1.782679e-04 6.185371e-01

4 4.832861e-05 6.185349e-01

−0.1 ≤ x3 ≤ 0.1

−0.1 ≤ x4 ≤ 0.1

Again, for two different Chebyshev degrees, the objective function values are given in Table

8. Also, for this case it may be understood that the performance of the solution can be better

by increasing Chebyshev degree. The state and control trajectories are shown in Figure 6 for

unconstrained and constrained cases, which demonstrates that the initial state conditions

and state constraints are satisfied, and the control trajectories display the justification of the

constrained controls.

Table 8. SDC-Direct method iterations for Problem2-SCP-Case3

N = 8 (CPU time 9.83 s) N = 12 (CPU time 16.55 s)

Iteration Error J Iteration Error J

1 1.999999e-01 7.224606e-01 1 2.000000e-01 7.166547e-01

2 1.701514e-03 7.197011e-01 2 1.708269e-03 7.143159e-01

3 1.045409e-04 7.196854e-01 3 3.645138e-04 7.145929e-01

4 1.630952e-06 7.196859e-01 4 1.107111e-05 7.145841e-01

IV.B.2. Hard Constrained Problem

The final states are specified for this type of problem (HCP), and those are given as

xf = (0, 0, 0, 0). The weighting matrix for final state conditions is considered as S = 0.

The unconstrained and constrained results are discussed as following.

Case 1. Unconstrained case is implemented here, and the results are given in Table 9
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Figure 6. Problem2-SCP-Cases 1 and 3 (N = 12): Approximate trajectory and control solutions with SDC
Direct method.

and are showed with dashed lines in Figure 7. The objective function value is in agreement

with that given in [6] which is 0.9586 for 5 iterations.
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Table 9. SDC-Direct method iterations for Problem2-HCP-Case1

N = 8 (CPU time 8.72 s) N = 12 (CPU time 13.35 s)

Iteration Error J Iteration Error J

1 4.731670e-01 9.629775e-01 1 4.731672e-01 9.629775e-01

2 9.376290e-04 9.584905e-01 2 9.395097e-04 9.584905e-01

3 2.924892e-06 9.584936e-01 3 2.971336e-06 9.584936e-01

Case 2. For this case, just the inputs are constrained as

−1 ≤ u1 ≤ 2,−2 ≤ u2 ≤ 0

Table 10 represents the number of iterations, errors, and objective function values, and the

optimal trajectories are displayed in Figure 7. Notice that for N = 8 no optimal solution

satisfying the constraints was found.

Table 10. SDC-Direct method iterations for Problem2-HCP-Case2

N = 12 (CPU time 37.68 s)

Iteration Error J

1 5.546035e-01 1.072986e+00

2 3.402995e-03 1.069829e+00

3 2.085145e-04 1.069635e+00

4 7.464199e-05 1.069662e+00

V. Conclusions

In the present paper, constrained nonlinear optimal control problems are handled by

the proposed approach named as State Dependent Coefficient Direct (SDC-Direct) method

which uses SDC factorization and Chebyshev polynomials. It has been shown that two

different problems with different final state conditions are solved by the proposed technique.

The effectiveness of the method is demonstrated through numerical implementations and

using different values for Chebyshev polynomials. Its ability to solve constrained nonlinear

optimal control problems is shown.
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Figure 7. Problem2-HCP-Cases 1 and 2 (N = 12): Approximate trajectory and control solutions with SDC
Direct method.
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