

Image credit: Earth Observatory, NASA

CNICC

ILANO 1863

Superimposition of the atmosphere density for fast and accurate semi-analytical propagation

S. Frey & C. Colombo KePASSA, ESTEC 26 July 2017

Introduction

- Overall project
 - density based cloud propagation
 - of fragments originating from explosions or collisions
 - in all orbital regions
 - using semi-analytical methods
- Problems
 - most common atmosphere models are either
 - non-smooth or
 - expensive in terms of density evaluations
 - inaccurate results due to approximations especially for eccentric orbits

Overview

KePASSA

Non-Smooth Atmosphere Model

Definition: for each altitude bin

 $\rho_{C}(h) = \rho_{0,i} \exp(-\frac{h - h_{i}}{H_{i}})$ $h_{i} < h < h_{i+1}$ Problems

non-smooth transition at each bin limit

- $\ln \rho$
- forces the variable step size integrator to increase number of steps

h

Dynamical System

- Modified Lagrange's planetary equations in
- Ignoring all perturbations, apart from tangential drag force

$$f_T = \frac{1}{2}\rho v^2 \delta$$

In this case, the dynamics become

$$\dot{a} = -\frac{a^2 \rho \delta v^3}{\mu}$$
$$\dot{e} = -\frac{a \rho \delta v}{r} (1 - e^2) \cos E$$
$$\dot{E} = \frac{1}{r} \sqrt{\frac{\mu}{a}}$$

where

- *a* semi-major axis
- *e* eccentricity
- E eccentric anomaly
- μ gravitational parameter
- *r* radial distance
- v velocity
- δ^{-1} ballistic coefficient
- ho density

This system propagated numerically is the baseline

Dynamical System

Over full period, the dynamics become (assuming a and e to be fixed)

$$\Delta a = -a^2 \delta \int_0^{2\pi} \rho \frac{(1 + e \cos E)^{3/2}}{(1 - e \cos E)^{1/2}} dE$$
$$\Delta e = -a \delta \int_0^{2\pi} \rho \frac{(1 + e \cos E)^{1/2}}{(1 - e \cos E)^{1/2}} \cos E (1 - e^2) dE$$

- This system needs approximation, if full numerical integration is to be avoided
- Then the following semi-analytical propagation can be performed

$$\dot{x} = \frac{dx}{dt} \approx \frac{\Delta x}{\Delta t} = \frac{\Delta x}{P}$$
 $x \in \{a, e\}$ where *P* is the period

Approximation of Integral: King-Hele

- Analytical approximation of the integral, using series expansion, assuming H to be constant above perigee*
- Dis-/Advantages
 - constant *H* assumptions introduces large errors for eccentric orbits
 - discontinuity between transition of low/high eccentric approximation
 - + retain analytic formulation

*another approach is to linearly fit $H = H_0 +$ $\eta(h - h_0)$, but the slope parameter η depends on the orbit configuration

Approximation of Integral: Quadrature

- Numerical approximation of the integral using quadrature:
 - Evaluate the integrand at nodes *n* and sum them weighted with *w_i*
 - Here, Gauss-Legendre quadrature was chosen (with n = 33)

$$\int_{0}^{2\pi} f(E)dE \approx \pi \sum_{i=1}^{n} w_i f(E_i)$$

- Dis-/Advantages
 - + independent of atmosphere model
 - + no series expansion necessary; valid across all conditions (however care needs to be taken for low perigees)
 - not an analytical solution; cannot directly derive Jacobian or find closed form solution for lifetime

Extension

Smooth Exponential Atmosphere Model

 Atmosphere as sum of exponentials (idea is not new, older Jacchia models have one exponential per constituent)

$$\rho_S(h) = \sum_p \rho_{0,p} \exp(-\frac{h}{H_p})$$

Possible to fit to any of the atmosphere models, given H increases

Extension

Smooth Exponential Atmosphere Model

- Can be extended to contain time-dependencies (daily, annual, solarcycle), or latitude-dependency
- E.g. solar cycles 21-23

Extension

Superimposition of King-Hele Method

 Given the sum of exponentials with truly fixed H, King-Hele can be summed for each partial atmosphere

$$\Delta a = \sum_{p} \Delta a_{p} \qquad \Delta e = \sum_{p} \Delta e_{p}$$

- No error due to changing scale heights *H*
- Further adaptions made on method:
 - Change directly in e rather than x = ae
 - Up to fifth order retained to address large H, i.e. not so small z^{-1}
 - Bridge function introduced to mitigate discontinuity

Results

Non-smooth vs Smooth Atmosphere

Number of function evaluations N_f needed for the integration using MATALB's ode solvers:

Model	ode45	ode113
Non-smooth	1555	1240
Smooth	781	430
	-50%	-65%

 $\begin{array}{l} h_p = 750 \ \mathrm{km} \\ h_a = 2000 \ \mathrm{km} \end{array}$

Results

Classical vs Superimposed King-Hele

Results

Propagation with Different Approximations

Model	Δt	N _f
Classical King-Hele	124.1	571
Superimposed King-Hele	85.3	552
Gauss-Legendre	85.3	536
Full numerical	85.3	2607424

Conclusion

And future work

- The two major problem of the King-Hele + non-smooth atmospheric model have been addressed
- The smooth atmosphere cuts the number of function evaluations in half
- The superimposed King-Hele method is very exact and as fast as quadrature
- Semi-analytical propagation with air-drag shown to be as exact as numerical
- Future work
 - find analytical solution for lifetime
 - compare method to real observations

Questions?

Contact

Stefan Frey, PhD Candidate Aerospace Science and Technology Department Politecnico di Milano stefan.frey@polimi.it

mage credit: Earth Observatory, NASA

Modified King Hele Method

Circular

$$\Delta a = -2\pi \delta a^2 \rho(h)$$

 $\Delta e=0$

Low eccentric

$$\begin{aligned} k &= -2\pi\delta\rho(h_p)\exp^{(-z)}\\ \vec{e} &= \begin{pmatrix} 1 & e & e^2 & e^3 & e^4 & e^5 \end{pmatrix}\\ \vec{I} &= \begin{pmatrix} I_0 & I_1 & I_2 & I_3 & I_4 & I_5 & I_6 \end{pmatrix}^T\\ \Delta a &= ka^2[\vec{e}K_a\vec{I} + \mathcal{O}(e^6)]\\ \Delta e &= ka[\vec{e}K_e\vec{I} + \mathcal{O}(e^6)] \end{aligned}$$

High eccentric

$$\begin{split} k &= -2\delta(\frac{2\pi}{z})^{\frac{1}{2}}\rho(h_p) \\ l &= z(1-e^2) \\ \vec{e} &= \left(1 \quad e \quad e^2 \quad e^3 \quad e^4 \quad e^5 \quad e^6 \quad e^7 \quad e^8 \quad e^9 \quad e^{10}\right)^T \\ \vec{r} &= \left(\frac{1}{2} \quad \frac{1}{4}\frac{1}{4l} \quad \frac{3}{8}\frac{1}{32l^2} \quad \frac{15}{16}\frac{1}{128l^3} \quad \frac{105}{32}\frac{1}{2048l^4} \quad \frac{945}{64}\frac{1}{8192l^5}\right) \\ \Delta a &= ka^2\frac{(1+e)^{\frac{3}{2}}}{(1-e)^{\frac{1}{2}}}[\vec{e}K_a\vec{r} + \mathcal{O}\left(\frac{1}{z^6}\right)] \\ \Delta e &= ka\left(\frac{1+e}{1-e}\right)^{\frac{1}{2}}(1-e^2)[\vec{e}K_e\vec{r} + \mathcal{O}\left(\frac{1}{z^6}\right)] \end{split}$$

Boundary

$$e_b = \left(\frac{H}{a}\right)^{\frac{1}{2}}$$

Bridge function

- Only necessary for high H
- Bridge function: 3rd order polynomial
- Idea
 - keep all variables constant, except e
 - evaluate low eccentric approximation at $e_L = (1 + \Delta y_L) e_L$
 - evaluate high eccentric approximation at $e_H = (1 + \Delta y_H) e_H$
 - solve linear problem for 4 variables, 4 unknowns, with boundary functions to ensure continuous and smooth transition