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 Overall project
• density based cloud propagation
• of fragments originating from explosions or collisions
• in all orbital regions
• using semi-analytical methods

 Problems 
• most common atmosphere models are either

‒ non-smooth or
‒ expensive in terms of density evaluations

• inaccurate results due to approximations especially for eccentric 
orbits
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Introduction
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Overview
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 Definition: for each altitude bin 

 Problems
• non-smooth transition at each bin limit
• forces the variable step size integrator to increase number of steps
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Background
Non-Smooth Atmosphere Model

𝜌𝜌𝐶𝐶(ℎ) = 𝜌𝜌0,𝑖𝑖exp(−
ℎ − ℎ𝑖𝑖
𝐻𝐻𝑖𝑖

)

ℎ𝑖𝑖 < ℎ < ℎ𝑖𝑖+1

ln𝜌𝜌

ℎ



 Modified Lagrange’s planetary equations in
 Ignoring all perturbations, apart from tangential drag force

 In this case, the dynamics become

 This system propagated numerically is the baseline
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Background
Dynamical System
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where
𝑎𝑎 semi-major axis
𝑒𝑒 eccentricity
E eccentric anomaly
𝜇𝜇 gravitational parameter
𝑟𝑟 radial distance
𝑣𝑣 velocity 
𝛿𝛿−1 ballistic coefficient 
𝜌𝜌 density 



 Over full period, the dynamics become (assuming a and e to be fixed)

 This system needs approximation, if full numerical integration is to be 
avoided
 Then the following semi-analytical propagation can be performed
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Background
Dynamical System
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 Analytical approximation of the integral, using series expansion, assuming 
𝐻𝐻 to be constant above perigee*
 Dis-/Advantages

- constant 𝐻𝐻 assumptions introduces large errors for eccentric orbits
- discontinuity between transition of low/high eccentric approximation
+ retain analytic formulation 
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Background
Approximation of Integral: King-Hele

*another approach is to 
linearly fit 𝐻𝐻 = 𝐻𝐻0 +
𝜂𝜂(ℎ − ℎ0), but the slope 
parameter 𝜂𝜂 depends on 
the orbit configuration



 Numerical approximation of the integral using quadrature:
• Evaluate the integrand at nodes 𝑛𝑛 and sum them weighted with 𝑤𝑤𝑖𝑖
• Here, Gauss-Legendre quadrature was chosen (with 𝑛𝑛 = 33)

 Dis-/Advantages
+ independent of atmosphere model
+ no series expansion necessary; valid across all conditions (however 

care needs to be taken for low perigees)
- not an analytical solution; cannot directly derive Jacobian or find 

closed form solution for lifetime
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Background
Approximation of Integral: Quadrature
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 Atmosphere as sum of exponentials (idea is not new, older Jacchia
models have one exponential per constituent)

 Possible to fit to any of the atmosphere models, given 𝐻𝐻 increases
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Extension
Smooth Exponential Atmosphere Model

𝜌𝜌𝑆𝑆(ℎ) = �
𝑝𝑝

𝜌𝜌0,𝑝𝑝exp(−
ℎ
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)



 Can be extended to contain time-dependencies (daily, annual, solar-
cycle), or latitude-dependency
 E.g. solar cycles 21-23
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Extension
Smooth Exponential Atmosphere Model



 Given the sum of exponentials with truly fixed 𝐻𝐻, King-Hele can be 
summed for each partial atmosphere

 No error due to changing scale heights 𝐻𝐻
 Further adaptions made on method:

• Change directly in 𝑒𝑒 rather than 𝑥𝑥 = 𝑎𝑎𝑎𝑎
• Up to fifth order retained to address large 𝐻𝐻, i.e. not so small 𝑧𝑧−1
• Bridge function introduced to mitigate discontinuity
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Extension
Superimposition of King-Hele Method

∆𝑎𝑎 = �
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Results
Non-smooth vs Smooth Atmosphere

Model ode45 ode113

Non-smooth 1555 1240

Smooth 781 430

-50% -65%

Number of function 
evaluations 𝑁𝑁𝑓𝑓 needed for 
the integration using 
MATALB’s ode solvers:

ℎ𝑝𝑝 = 750 km
ℎ𝑎𝑎 = 2000 km
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Results
Classical vs Superimposed King-Hele

𝛿𝛿𝑎𝑎 =
∆𝑎𝑎𝐾𝐾𝐾𝐾 − ∆𝑎𝑎𝑛𝑛

∆𝑎𝑎𝑛𝑛

𝛿𝛿𝑒𝑒 =
∆𝑒𝑒𝐾𝐾𝐾𝐾 − ∆𝑒𝑒𝑛𝑛

∆𝑒𝑒𝑛𝑛
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Results
Propagation with Different Approximations

Model ∆𝒕𝒕 𝑵𝑵𝒇𝒇

Classical King-Hele 124.1 571

Superimposed King-Hele 85.3 552

Gauss-Legendre 85.3 536

Full numerical 85.3 2607424

ℎ𝑝𝑝 = 750 km 
ℎ𝑎𝑎 = 2000 km
Smooth atmosphere



 The two major problem of the King-Hele + non-smooth atmospheric 
model have been addressed
 The smooth atmosphere cuts the number of function evaluations in half
 The superimposed King-Hele method is very exact and as fast as 

quadrature
 Semi-analytical propagation with air-drag shown to be as exact as 

numerical

 Future work
• find analytical solution for lifetime
• compare method to real observations
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Conclusion
And future work
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 Questions?

Image credit: Earth Observatory, NASA

Contact
Stefan Frey, PhD Candidate
Aerospace Science and Technology Department
Politecnico di Milano
stefan.frey@polimi.it



 Circular

 Low eccentric
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Modified King Hele Method

 High eccentric

 Boundary



 Only necessary for high 𝐻𝐻
 Bridge function: 3rd order polynomial
 Idea

• keep all variables constant, except 𝑒𝑒
• evaluate low eccentric approximation at 𝑒𝑒𝐿𝐿 = (1 + ∆𝑦𝑦𝐿𝐿) 𝑒𝑒𝐿𝐿
• evaluate high eccentric approximation at 𝑒𝑒𝐻𝐻 = (1 + ∆𝑦𝑦𝐻𝐻) 𝑒𝑒𝐻𝐻
• solve linear problem for 4 variables, 4 unknowns, with boundary 

functions to ensure continuous and smooth transition
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Bridge function
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