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Abstract

This paper presents an original approach to structural health monitoring of

helicopter rotors based on strain measurement on the blades. Three algorithms

are presented, one in the time domain and two in the frequency domain. They

are based on the analysis of the discrepancies between the strains on damaged

and undamaged blades. Two damage types are considered: a mass unbalance

at the tip, and a localized stiffness reduction. The performance of the proposed

methods is assessed by numerical simulation using a multibody dynamic solver

for comprehensive aeroelastic analysis of rotorcraft. The numerical investigation

has highlighted the capability of all the presented techniques to detect damages

in the blades, even of small entity, in both steady-flight and soft maneuvers.

The reduced prediction accuracy in aggressive maneuvered flight suggests the

use of these methods only in steady or quasi-steady flight conditions.

Keywords: Helicopter blades, strain gauges, in-flight health monitoring

1. Introduction

Helicopter rotor blades are subject to significant dynamic loads and deflec-

tions both in standard and critical operating conditions, owing to aerodynamics

and inertia. They are slender flexible structures, whose flapping deformation is

used both to direct rotor thrust (thus generating rolling and pitching moments)5

and to reduce aerodynamic asymmetry between the advancing and retreating
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rotor blades. Furthermore, their flexibility allows to reduce the strong vibratory

loads that would be transmitted to the airframe by rigid blades [1]. Damages

on main rotor can lead to reduced performance or even catastrophic incidents,

making it one of the most critical systems for the helicopter safety. In addi-10

tion to the fatigue caused by periodic stresses, additional major threats to the

integrity of modern composite blades include low-velocity impact, moist absorp-

tion, and progressive damage accumulation [2]. Currently, the rigid certification

process envisages statistical fatigue evaluation and threat assessment for dam-

age tolerance to exceptional events (e.g. CS 27.573 in [3]). In order to fulfill15

safety criteria, this approach requires high safety margins, both in terms of

design/fabrication and inspections/maintenance. Furthermore, for certification

purposes (e.g. CS 27.571 in [3]) in-flight rotor loads or stress measurements in

all critical conditions are required. Anyway, many types of damage may be

confused with unbalance, which is periodically cured by tracking. Low-velocity20

impacts may go unnoticed, especially if only minor external traces are present.

Structural integrity is checked by mechanical means (e.g. “tapping”) and, if

needed, by non-destructive analysis. However, such types of analysis are usu-

ally expensive and time-consuming, implying some significant downtime of the

helicopter. Except for detected low-velocity impacts, inspections occur accord-25

ing to specific schedules. The ability to determine the need of an inspection

based on on-line monitoring of the structural health of components could allow

longer intervals between scheduled inspections, or even revolutionize the con-

cept of on-condition maintenance, by making inspections virtually continuous,

without any downtime.30

Thus, structural health monitoring [4] is a desired feature of new-generation

helicopters to reduce the need of costly periodic inspections (which cause about

25% of operating costs [5]), to increase life of components, to reduce downtime

due to unscheduled maintenance [6] and to increase in-flight safety, since it has

been estimated that about 3% of helicopter accidents are caused by failure in35

the rotor system [7]. An early warning might be also crucial in slowing down

crack propagation with appropriate piloting actions (it has been estimated that
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a reduction of 20% of flight speed reduce up to 50% propagation velocity [8]).

Moreover, it can help in extending the life of aging helicopters [9].

Although the potential benefits of placing sensors on rotors are very clear, sev-40

eral issues regarding the optimal sensors positioning and powering remain still

open. The positioning is a crucial aspect in that it has to be a trade-off be-

tween the need of improving the devices performances and reducing the risks

of accidental breaks during manufacturing or operational life, and the need of

avoiding bonding delamination (see [10] for a complete review of technologi-45

cal issues in the case of wind turbines). The definition of the most efficient

way of powering and connecting the sensors is a critical aspect too, due to the

need of transmitting power between two frames in relative motion (i.e., be-

tween the rotating and the non rotating one) [11]; in the FLITE-WISE EU

research project (http://cordis.europa.eu/project/rcn/108855_en.html)50

this problem has been addressed with the use of inductive energy transfer from

the fixed to the rotating frame, obtaining power in the order of hundreds of mW.

In other projects, alternative ways of devices powering have been explored, for

example exploiting vibrational energy harvesting (ARTIMA http://cordis.

europa.eu/project/rcn/72783_en.html, ADVICE http://cordis.europa.55

eu/project/rcn/79966_en.html and TRIADE http://cordis.europa.eu/

project/rcn/90081_en.html). These observations highlight the criticalities

in using a large number of sensors in rotor health monitoring, in that they re-

quire a significant amount of power in conjunction with the need of processing

a huge amount of data. Furthermore, the complex aeroelastic behavior of heli-60

copter rotors (due to the high flexibility of the blades, the complex aerodynamic

environment in which they operate, the strong aeroelastic couplings, and the un-

steady loads acting on them) make the use of techniques developed for rotating

machinery and in other field of engineering rather difficult [12]. Consequently,

most of the non-destructive damage detection techniques in use in the rotorcraft65

field are carried out in dedicated facilities, and rely upon visual or localized ex-

perimental methods such as acoustic or ultrasonic methods, radiography, X-ray

or thermal field methods, which require an approximate knowledge of the dam-
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age location as well as its accessibility [13]. On the other hand, considering

in-flight monitoring, although a wide range of health and usage monitoring sys-70

tems (HUMS) are currently available and installed on several helicopters [6],

structural health monitoring (SHM) systems aimed at real-time damage identi-

fication are still immature for their application in production helicopters. This

is mainly due to the difficulty in identifying reliable criteria for damage identi-

fication, avoiding false positives and negatives. Due to the real-time nature of75

SHM, this problem is much more a concern than for usage-based systems, for

which however it is also present [14, 15]. The approaches proposed during the

years for rotor health monitoring are based upon the comparison of the struc-

ture vibratory behavior (namely strain, deflections, natural frequencies, mode

shapes and modal damping with respect to their reference values), or upon the80

analysis of the loads transmitted to the fuselage, exploiting the fact that, in a

steady flight, a healthy rotor filters all the load harmonic content from blades

except that at frequencies multiple of the number of blades times the rotor an-

gular velocity [16] (i.e., for a four-bladed rotor, only the mean, 4Ω, 8Ω and so

on). The presence of other frequencies in the hub load spectrum (especially the85

larger Ω, commonly referred as 1/rev) highlights some type of unbalance be-

tween the blades, potentially due to a damage. The latter approach, that is the

most common, is often pursued through the use of track and balance sensors in

the hub frame [17, 18, 19], which make difficult the identification of the damage

type and its localization (also at a rather coarse level, such as simply identifying90

the damaged blade). On the other hand, blade natural frequency variation has

been proposed in [20] as the parameter identifying blade damage. Furthermore,

in [12, 21], several blade alteration types, including mass variation, misadjusted

pitch link and damaged trailing edge flaps have been simulated using the com-

prehensive aeromechanics analysis software CAMRAD [22]. The corresponding95

aeroelastic responses have been processed on the basis of different criteria (tip

displacements and hub loads variation), to assess the most suited approach for

each type of damage. These works evolved in a subsequent research aimed at

improving damage detection algorithms, both in terms of damage identification
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and localization, by exploiting neural networks and fuzzy logic [23, 24, 25, 2],100

whereas other works investigated the use of a Kalman filter with the aim of

removing the training phase, essential in neural-networks and fuzzy-logic based

methods[26].

Following the approach introduced in [27, 28, 29], in this work the authors

propose a technique for rotor damage detection based on the comparison of105

differential strain measurements from a limited number of sensors located on

different blades. The proposed health monitoring system, following the criteria

of multi-purpose sensors, can be also used for blade balancing and real-time

blade shape sensing (that can provide useful data to the automatic flight control

systems to improve performance and control authority) [30]. Keeping low the110

number of sensors reduces the complexity to power the system, as well as of data

processing and transmission (both requiring power as well). Furthermore, due

to both the low cost and reduced weight of the needed instrumentation, their

range of applicability can be extended also to lightweight helicopters, whose

overall safety level could be significantly improved.115

The proposed SHM algorithms are numerically tested on a BO105-inspired

main rotor, simulated through the multibody dynamics solver MBDyn[31] (http:

//www.mbdyn.org/, last accessed November 2017), to easily model blade faults.

This is a common approach for rotorcraft applications [12] in order to over-

come the lack of databases of damaged system responses, as a consequence of120

the impossibility to fly with damaged blades. Indeed, although it is possible to

test damaged blades on whirl tower at a relevant cost (both for infrastructure

and blade sets), these tests are unable to reproduce load conditions character-

istic of the whole flight envelope, in that it is only suited for structural and

aeromechanical analyses of hovering rotors [32].125

2. Structural Health Monitoring Algorithms

Despite the differences, in terms of measured quantities and data post-

processing techniques used to predict and locate a damage, different SHM al-

5

http://www.mbdyn.org/
http://www.mbdyn.org/
http://www.mbdyn.org/


gorithms present some common features [33, 34, 35, 36, 37]: i) a reference state

is necessary to compare the degraded performance with; ii) high frequency phe-130

nomena can pinpoint more accurately the location of the damage; iii) the need

of distinguishing between abnormal variation of structural behavior due to dam-

ages and natural variation due to external inputs. Thus, helicopter rotors are

a favorable field of application, due to the presence of multiple (ideally identi-

cal) blades experiencing similar (virtually the same in steady flight conditions)135

low- to high-frequency excitation with a very small phase shift between them.

Considering the classical classification of SHM algorithms in model-driven and

data-driven ones, in this work the authors propose a blended approach, which

moves from strain based measurements processed taking into account the afore-

mentioned peculiarities of the rotor dynamics.140

In this paper, three criteria for the blade damage detection based on the

comparison of signals from sensors located on different blades are proposed, and

investigated in terms of: i) sensitivity to structural modifications; ii) proneness

to false positives and negatives due to unsteady flight conditions.

2.1. Autocorrelation criterion145

The first criterion proposed is based on the autocorrelation of the signals

obtained as the difference between strain measurements from sensors in the

same position on 𝑖-th and 𝑗-th blades (∆-signals), namely [38]

𝑐𝑖𝑗(𝜏) =
1

𝑇

∫︁ 𝑇/2

−𝑇/2

∆𝑠𝑖𝑗(𝑡)∆𝑠𝑖𝑗(𝑡 + 𝜏)𝑑𝜏 (1)

Note that, in the absence of a blade damage/imbalance among the blades, the

steady-state aeroelastic responses do not differ, once the signals from the blades

are phased by their relative angles (2𝜋(𝑖 − 𝑗)/𝑁𝑏). Then, since the difference

between two undamaged blades (assumed identical) contains only noise and

transient response effects, it is expected that, considering a sufficiently long150

sampling period, the normalized autocorrelation will be very low, except for

zero time shift. On the contrary, when one ∆-signal involves a damaged blade,

it becomes strongly periodic and then the autocorrelation will be higher also
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for other values of the time shift, as it may be easily verified for two periodic

analytical signals.155

2.2. Mean and power spectral density criteria

The last two criteria proposed are based on the evaluation of mean and

Welch’s power spectral density [39] of ∆-signals. Indeed, the power spectral

density of each blade response is characterized by contributions at frequencies160

𝑛Ω (where Ω is the rotor angular velocity and 𝑛 ∈ N), due to steady-periodic

response, and 𝜔 ± 𝑛Ω (where 𝜔 is a generic blade eigenfrequency), due to tran-

sient response. Since the rotor natural frequencies are separated by design from

multiples of the rotor angular velocity in order to avoid resonance, monitoring

𝑛Ω peaks in the blade response is expected to be a suitable criterion for damage165

identification. In fact, the amplitudes of the PSD peaks of the signals obtained

as the difference between strain measurements from different blades (∆-signal),

at frequencies 𝑛Ω, are expected to be persistent in time in damaged systems, as

opposed to the peaks associated with the transient response of an undamaged

system (usually strongly dependent on lightly damped lag modes), which are170

expected to show a pronounced time dependence. This approach presents sev-

eral advantages with respect to other approaches in the frequency domain based

upon the monitoring of changes in natural frequencies. In particular, it is well

known [37] that natural frequencies are relatively insensitive to changes in struc-

tural properties, making a damage early detection rather difficult. Furthermore,175

frequency-domain approaches based on modal shape analysis [40, 41] require a

larger set of measurement points, increasing cost, complexity, and power supply

issues [37].

Notice that actual blades may differ as a result of the manufacturing process.

Dissimilarities are mitigated and maintained within acceptable tolerances by

tracking and balancing. Consequently, a non-zero ∆-signal may be present also

in undamaged systems, resulting in the rise of hub loads at low multiples of
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Figure 1: Sketch of ΔΔ-signals evaluation

Ω (especially 1/rev, which is considered unacceptable above 0.30 ips [12]). To

overcome the consequent risk of false positives, all the proposed criteria are

applied to the signal

∆∆𝑠𝑖𝑗(𝑡) = ∆𝑠𝑖𝑗(𝑡) − ∆𝑠ref
𝑖𝑗 (𝑡) (2)

namely, the variation of the ∆-signal with respect to the reference state, and180

referred to as the ∆∆-signal in the following (Figure 1 sketches the ∆∆-signals

evaluation procedure). In practice, the characterization of the reference state

requires a sort of calibration process aimed at recording the ∆-signals between

different blades, after the track and balance procedure, in different steady flight

conditions. Note that, since the blade response depends on several parameters185

(like flight level and weight) which cannot be considered all in the calibration

process, the ∆∆-signals may be not exactly zero also for healthy blades. How-

ever, if a blade suffers a damage, it is expected to notice a significant increase

of the ∆∆-signals related to that blade, which is expected to be easily rec-

ognizable from the previous situation. Anyway, a relatively large database of190

baseline flight conditions would be beneficial to improve the accuracy of the

health monitoring system.

Note that all the proposed criteria are related to the approaches based on
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the analysis of the loads transmitted to the fuselage [12], because the rise of

other harmonics with respect to the multiple of the blade passing frequency195

(BPF, equal to number of blade times rotor angular velocity) implies different

blades response. They are also somewhat related to the techniques based on

the detection of discrepancies on tip deflection measurement [12], since the lat-

ter are caused by a different distribution of deformation/strain. However, the

measurement of strain on the blades presents some advantages: i) with respect200

to hub loads measurements, it does not require complex three-dimensional load

cells. Moreover, it easily detects the damaged blade, whereas such identification

is impossible from hub loads data, without additional measurements; ii) with

respect to tip displacement measurements, it is a quite accurate and easier mea-

surement. Indeed, the blade of a mid-weight helicopter undergoing flap bending205

resulting in a linear strain distribution with maximum at blade root equal to

the typical sensitivity of a modern strain gauge (1 𝜇𝜀) will undergo a tip de-

flection of less than one third of millimeter. Furthermore, it is worth recalling

that direct tip deflection measurement is a complex task, owing to the need of

placing cameras in the fixed frame [9].210

Considering the three typical performance targets of a Health and Usage

Monitoring System (HUMS) [9], namely detection, diagnostic and prognostic,

it can be stated that a high sensitivity helps in identifying the insurgence of

a damage before it reaches an intolerable level (improving detection but also

prognostic if a proper model of damage progression is available) and measur-215

ing directly on the blade helps in damage localization (diagnostic), as discussed

earlier.

3. Results

The test case considered is a four-blade hingeless rotor inspired to the main220

rotor of the Bölkow (now Airbus Helicopters) BO105 helicopter, having a ra-

dius of 4.9 m, rotating at 44.4 rad/s, focusing on a forward-flight condition at
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Figure 2: Structural properties distribution.

an advance ratio (the ratio between the forward velocity, 𝑉∞, and the blade tip

velocity in hover, Ω𝑅) 𝜇 = 0.2. The blades present a realistic spanwise vari-

ability of the structural properties. Figure 2 illustrates the trend of the main225

structural properties along the blade.

Only one strain measurement, collocated in 𝑟* = 0.1𝑅 at the chordwise station

of each blade elastic axis and aligned with the blade axis itself is considered.

Although a detailed investigation on the sensor optimal positioning and orien-

tation is envisaged in the future, here, they have been driven by simple consid-230

eration on signal to noise ratio, which is maximum near the root just outside

the stiffest region, and on the maximum sensitivity direction of the strain to

the blade damages, in that the blade elastic response is strongly dominated by

the flapping motion. The actual measurements on the rotor blades are com-

puted from dynamic and aeroelastic simulations performed by the free, general235
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purpose multibody dynamics solver MBDyn [31].

The rotor blades dynamics is modeled by using the so-called geometrically

exact nonlinear beam finite elements [42]. The aerodynamic loads are obtained

from the blade element/momentum theory [43], with a Glauert-like linearly dis-

tributed static inflow model [43]. The strains are evaluated from the beam

displacements using the nonlinear relations proposed in [44], which differ from

the classical linear expressions in that valid for moderate displacements, a fun-

damental requirement in blade structural dynamics analyses. Considering the

strain tensor 𝐸 associated with the stress state that characterizes the beam

model simulating the helicopter blade,

𝐸 =

⎡⎢⎢⎢⎣
𝜀𝜉𝜉 𝜀𝜉𝜂 𝜀𝜉𝜁

𝜀𝜉𝜂 −𝜈𝜀𝜉𝜉 0

𝜀𝜉𝜁 0 −𝜈𝜀𝜉𝜉

⎤⎥⎥⎥⎦ (3)

where the 𝜉 axis is tangent to the elastic axis, whereas the 𝜂 and 𝜁 axes are the

cross-section principal axes, the strain-displacement relation reads

𝜀𝜉𝜉 = 𝑢′ +
1

2
(𝑣′2 + 𝑤′2) − 𝜆𝜙′′

+ (𝜂2 + 𝜁2)

(︂
𝜗′𝜙′ +

𝜙′2

2

)︂
− 𝑣′′[𝜂 cos(𝜗 + 𝜙) − 𝜁 sin(𝜗 + 𝜙)]

− 𝑤′′[𝜂 sin(𝜗 + 𝜙) + 𝜁 cos(𝜗 + 𝜙)]

(4a)

𝜀𝜉𝜂 = − 1

2

(︂
𝜁 +

𝜕𝜆

𝜕𝜂

)︂
𝜙′ (4b)

𝜀𝜉𝜁 =
1

2

(︂
𝜂 − 𝜕𝜆

𝜕𝜁

)︂
𝜙′ (4c)

where 𝑢, 𝑣, and 𝑤 are the axial, lead-lag and flap displacements of the elastic

axis, ′ indicates the derivative with respect to the 𝜉 coordinate, 𝜗 is the built-

in twist angle, 𝜙 is the blade cross-section elastic torsion, and 𝜆 is the section

warping function.240

Two types of alteration on the blade are analyzed: (i) variation in mass;

(ii) variation in flapwise stiffness;
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The mass alteration consists in a lumped mass at the tip of blade #1. Rather

than introducing a very short beam element, the structural damage in a region

of length 𝐿𝑑 ≪ 𝑅 centered at 𝑟 producing a flapwise stiffness reduction is

simulated by dividing the blade into two beams connected in 𝑟 by a rotational

joint that allows relative flapwise rotation, restrained by a spring of stiffness

𝐾 that reproduces the yielding at the damage location. Considering the case

of flapwise bending stiffness variation (analogous considerations may be made

for lead-lag and torsion), the spring constant is evaluated by considering the

equivalence in terms of flapping bending angle along the entire degraded blade

trait, namely ∫︁ 𝑟+
𝐿𝑑
2

𝑟−𝐿𝑑
2

𝑀

𝑆𝑑
𝑑𝑥 =

∫︁ 𝑟−

𝑟−𝐿𝑑
2

𝑀

𝑆𝑢
𝑑𝑥 + ∆𝑤′ +

∫︁ 𝑟+
𝐿𝑑
2

𝑟+

𝑀

𝑆𝑢
𝑑𝑥 (5)

where, 𝑆𝑢 and 𝑆𝑑 are the undamaged and damaged blade stiffness, respectively.

Then, assuming the bending moment 𝑀 to be constant along the damaged zone

and equal to that exerted by the spring, Equation (5) is solved to obtain the

equivalent spring constant

𝐾 =

1

𝐿𝑑

1

𝑆𝑑
−

1

𝑆𝑢

(6)

One can easily show that under the same assumption on bending moment 𝑀 ,

and neglecting shear strain (i.e., using Kirchhoff’s kinematic model), the trans-

verse displacement is preserved when the equivalent lumped spring is considered.245

3.1. Time-domain analysis

The first results presented show the autocorrelation of the ∆∆-signal over

100 revolutions. Note that, although the undamaged blades are nominally iden-

tical, the numerical solution of the aeroelastic simulation introduces systematic

discrepancies in the blade response. Thus, even here the use of the ∆∆-signal in-250

stead of the ∆-signal is beneficial. Notice that modern strain gauges have very

high strain resolution (up to the nano-epsilon range) and thus the numerical

12
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Figure 4: Autocorrelation of ΔΔ-signal from altered (+4 g @tip) and nominal blades.

errors are representative of a real-life application, where noise and systematic

errors are always present. Figures 3 and 4, which show the autocorrelation

of the ∆∆-signal, clearly show the effect of adding a mass of 2 and 4 grams,255

respectively, at the tip of one blade. The almost triangular shape of damaged-

undamaged curves anticipates the preeminence of mean value on ∆∆-signals, as

it will be made clearer from the following analyses.

Figure 5 shows what happens if the autocorrelation is performed over the

∆-signal instead of the ∆∆-signal. When the ∆-signal is used, the damaged260

blade is no longer recognizable in the case of 2 grams tip mass alteration, in

that the autocorrelation of undamaged blades presents a triangular behavior, as

well. Figure 5 shows four groups of curves resulting from the ∆-signals among

all blades. The same curves, although related to ∆∆-signals, are also shown

in Figures 3 and 4; however, thanks to the fact that the ∆∆-signals hide the265

inevitable small differences among the blades when undamaged, in those cases

the undamaged-undamaged curves are indistinguishable, as well as the damaged-

undamaged ones.
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Although the systematic discrepancy between undamaged blades is a purely

numerical problem, it is expected that an analogous situation will be present in270

real-life cases, making the use of the ∆∆-signal an interesting means to make

the analysis more robust. Complementary information may be drawn from the

analysis of the mean value of ∆∆-signals, shown in Figures 6 and 7 for 2 and 4

grams tip mass, respectively. The presence of blade damage clearly appears in

all the bars involving blade 1 (the damaged one), with an almost identical effect.275

On the contrary, the mean value of ∆∆-signals between undamaged blades are

more than two orders of magnitude smaller. Figure 8 shows an example of mean

value analysis considering ∆-signals instead of ∆∆-signals. As noted before,

also in this case the damaged blade is not clearly recognizable. Note that the

considered mass alteration produces a ∆∆-signal which is slightly smaller than280

commercial FBG strain sensors resolution (which is about 1 µ𝜀)

Figures 9 to 12 show autocorrelation and mean value of ∆∆-signals in pres-

ence of damage which respectively causes a 5% or 10% flapwise stiffness re-

duction on a 1 cm long portion of blade positioned at 𝑟 = 0.33𝑅, leading to

considerations analogous to those made for the additional mass.285

14



0

1

2

3

4

x1
07

M
ea

n 
st

ra
in

(1−2) − (1−2)B
(1−3) − (1−3)B
(1−4) − (1−4)B
(2−3) − (2−3)B
(2−4) − (2−4)B
(3−4) − (3−4)B

Figure 7: Mean value of ΔΔ-signal from altered (+4 g @tip) and nominal blades.
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Figure 8: Mean value of Δ-signal from altered (+2 g @tip) and nominal blades.
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Figure 9: Autocorrelation of ΔΔ-signal from altered (5% flapping stiffness reduction on 1 cm

@𝑟 = 1.53 m) and nominal blades.
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Figure 10: Autocorrelation of ΔΔ-signal from altered (10% flapping stiffness reduction on 1

cm @𝑟 = 1.53 m) and nominal blades.
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Figure 11: Mean value of ΔΔ-signal from altered (5% flapping stiffness reduction on 1 cm

@𝑟 = 1.53 m) and nominal blades.
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Figure 12: Mean value of ΔΔ-signal from altered (10% flapping stiffness reduction on 1 cm

@𝑟 = 1.53 m) and nominal blades.
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Figure 13: PSD of ΔΔ-signal from altered (+2 g @tip) and nominal blades.
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Figure 14: PSD of ΔΔ-signal from altered (+4 g @tip) and nominal blades.
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Figure 15: PSD of ΔΔ-signal from altered (5% flapping stiffness reduction on 1 cm @𝑟 = 1.53

m) and nominal blades.
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Figure 16: PSD of ΔΔ-signal from altered (10% flapping stiffness reduction on 1 cm @𝑟 = 1.53

m) and nominal blades.

3.2. Frequency-domain analysis

The same damaged configurations are investigated also using the frequency

domain approaches presented in Section “Structural Health Monitoring Algo-

rithms”. Figures 13 and 14 show the PSD of the ∆∆-signal in presence of 2

grams and 4 grams of additional mass at the tip of blade #1, respectively. The290

PSDs have been obtained through Welch’s algorithm using a 100-revolutions

long signal, divided in 10 Blackman-Harris windowed chunks with 50% overlap.

As expected, a great discrepancy can be observed at zero frequency between

the PSDs of ∆∆-signals involving the damaged blade and those not involving

it. Moreover, the PSDs also highlight other discrepancies of the forced (peri-295

odic) response at frequency Ω, 2Ω, . . . , 𝑁Ω.Peaks at 𝑛Ω are clearly visible in

Figure 14, whereas in Figure 13 the type and entity of the damage hide this

behavior.

When considering the flapwise stiffness reduction (see Figures 15 and 16),

the 𝑛Ω peaks are present also for a small damage, along with the peak at zero300
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Figure 17: Δ-PSD of Δ-signal from altered (10% flapping stiffness reduction on 1 cm @𝑟 = 1.53

m) and nominal blades.

frequency. This is probably due to the fact that this kind of alteration affects

modes having frequency higher than those affected by the addition of a tip mass.

In order to reduce the requirements in terms of data storage, in practical

applications, a slightly modified algorithm can be used. Specifically, it is based

upon the evaluation of the difference of the PSD of the ∆-signals (∆ PSD(∆-305

signals)) instead of the evaluation of the PSD of the ∆∆-signals. This procedure

allows to store only the PSD of baseline signals up to the frequency of interest,

without the need of storing long signal time histories too. Figure 17 shows that

this second criterion, although not completely equivalent to the previous one

owing to the nonlinearity of the PSD, for the same case of Figure 16 yields310

results that are more noisy but of similar quality.

3.3. Algorithms performance in maneuvered flight

To assess the effect of maneuvered flight on damage detectability, two simple

excitations have been imposed to the rotor in steady flight. They consist of two

1 − cos collective doublets, separated by 4 s (about 28 rotor revolutions) and315

characterized by 𝜋/2 and 𝜋/4 rad s−1 frequency and 0.5∘ and 0.6∘ amplitude,

respectively. These perturbations produce thrust variation of about ±20% with

respect to the leveled flight value. In this case, owing to the periodicity of rotor

dynamics in forward flight, the aeroelastic responses differ also between un-

damaged blades. Considering the 10%-damage case analyzed before, Figure 18320

clearly shows the effect of the excitation on ∆-signals in terms of forced and free

response, the latter mainly driven by the low-frequency lead-lag and flap modes.
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Figure 18: Δ-signals in response to collective excitation.

Note that, the first lead-lag mode is very lightly damped, causing the long halv-

ing time. Figure 19 shows the autocorrelation of ∆∆-signals for the same case.

The beats appearing at about ±35 rev and ±5 rev time shifts are associated325

with the periodic signals caused by the response to the collective excitation.

Although the autocorrelations from undamaged blades also exhibit some beats,

two significant considerations may be drawn: i) the amplitude of the beats is

significantly larger in relation with damaged blades; ii) the autocorrelation of

signals between undamaged blades show an almost flat mean trend, whereas the330

signals involving the damaged blade present the characteristic triangular shape

(although partially hidden by the figure scale) mentioned before.

The differences are more evident in Figure 20, where the two sets of signals (those

involving the damaged blade and those not involving it) have been summed to-

gether (Σ∆∆-signals). It is worth noticing that this operation may also define335

an alternative criterion, given that it should be repeated for all the possible

combinations of blade sets, unless one knows which the damaged blade is. After

defining “pivotal element” the blade index that always appears in the first set

and never appears in the second one (blade number 1 in Figure 20), only the

analysis performed with the damaged blade as the pivotal element would exhibit340

a significant discrepancy between the two sets.

Considering the mean value and frequency domain analysis criteria, the pres-

ence of the excitation makes the discernment more complicated but still feasi-

ble. The mean value criterion (Figure 21) remains highly predictive, whereas

the PSD of the ∆∆-signals (Figure 22) becomes less sharp, especially above the345
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Figure 19: Autocorrelation of ΔΔ-signal in presence of collective excitation.
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Figure 20: Sum of autocorrelations of ΔΔ-signal in presence of collective excitation.

2/rev frequency. Moreover, as expected from Figure 18, there are significant

peaks in the low-frequency range (up to 2/rev), which are caused by the col-

lective input and the subsequent free response. In fact, the latter is dominated

by the low-frequency blade lead-lag and flap modes (respectively slightly below

and slightly above 1/rev). However, also in this region the ∆∆-signals involving350

the damaged blade are on average greater.

Finally, the ∆-PSDs of the sum of ∆-signals are shown in Figure 23. Here, no-

ticeable differences are present also above 3/rev, although much less pronounced

than in the steady flight case.

In order to reduce the problems caused by unsteady phenomena during flight,355

the exclusion of strain data coming from strongly maneuvered flight sections (for

instance discerned through c.g. acceleration rms) is advisable. This should not

represent a big issue, since flight is usually characterized by long almost steady

flight periods.
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Figure 21: Mean value of ΔΔ-signal in presence of collective excitation.
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Figure 22: PSD of ΔΔ-signal in presence of collective excitation.
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Figure 23: ΔPSD of the sum of Δ-signal in presence of collective excitation.
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4. Conclusions & future work360

The structural health monitoring of helicopter blades has been addressed

using both frequency and time domain analyses applied on the difference of

strain signals (∆-signals) among rotor blades. Although here they rely only on

one measurement point for each blade, the techniques may be applied to the

same measurements used for shape sensing, an asset in view of an integrated365

instrumentation lodged on the rotor head. Moreover, these techniques may be

conveniently applied to wind turbine rotors, for which continuous, long term

operations are required and the choice of the right maintenance time is crucial

for minimizing the Cost of Energy (CoE).

The different techniques showed the capability to detect blade mass or stiff-370

ness alterations, even of small entity, as well as the ability of easily identifying

the damaged blade. The use of a reference ∆-signal (to address the differences

among blades caused by fabrication process) is promising in order to reduce false

positives. Preliminarily, all the proposed techniques have shown to be inherently

lowly affected by random noise (being based on relatively long period of acqui-375

sition); furthermore, the comparison with the baseline signal is also aimed at

minimizing the effect of systematic measurement errors. The accuracy and ro-

bustness during maneuvered flight in presence of external disturbance has been

addressed as well, coming to the conclusion that strong maneuvers worsen the

accuracy of the autocorrelation and PSD criteria for damage detection, whereas380

mean value criterion turned out to be more robust. Due to this, in practical

applications the signal analysis should be limited to steady or quasi-steady flight

periods.

Many future investigations may be envisaged: i) assessment of the need of a

database of reference ∆-signals for various flight conditions. In particular the385

feasibility of such a database has to be assessed, since previous attempts to build

one in terms of signals only had partial success. ii) a more systematic analyis of

the effect of the measurement noise on the SHM algorithm performance iii) use

of a network of sensors instead of only one sensor for each blade and the devel-
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opment of data fusion algorithms, also for reducing the effects of measurement390

errors; iv) the use of different time-frequency transformations, like the wavelet

transform; v) the use of machine learning/deep learning algorithms to identify

damage characteristic patterns in the damage indicators proposed in the present

paper.
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