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We explore quantum beats in the photoelectron signal produced when a bound electron wave
packet created by an isolated attosecond pulse is ionized by a delayed, few cycle infrared pulse. Our
calculations for helium atoms show that the broad bandwidth of the few cycle pulse creates spectrally
overlapping photoelectron peaks that result from one-, two- or three-photon ionization processes.
The beat signals can in principle be interferometrically resolved with high resolution, giving access
to the relative phase between different multi-photon ionization pathways. For few-cycle NIR fields
the relative spectral phases can be extracted over a large energy region and dynamical information
becomes available. We find that multi-photon ionization is delayed with respect to one-photon
ionization by a couple of hundred attoseconds.

I. INTRODUCTION

Attosecond pulses, when interacting with atoms or
molecules, create broadband electron wave packets that
can be probed, steered and controlled by laser pulses
in the visible (VIS) or near-infrared (NIR) regime [1–
9]. In order to capture and ultimately control the local-
ized electron motion, it is necessary to be able to recon-
struct the excited bound states and their (possibly time-
dependent) coherence. Interferometric measurements of
electron wavepackets employ one of two methods, which
may be present in the same experiment. The first is
based on quantum-state holography [10] where a known
reference interferes with the unknown wave packet in the
detection step but not during the evolution of the elec-
tron dynamics of interest. An attosecond holographic
setup was proposed in [6] and shown to be able to re-
trieve the initial wave packet [11]. In that experiment an
attosecond pulse was employed to create a wave packet
around the ionization threshold in helium and a coherent
probe pulse subsequently ionized the bound part which
then interfered with the reference continuum wave packet
created in the initial excitation step.

The second interferometric method uses quantum-beat
spectroscopy where different pathways interfere in the
probing step. This is widely used in femtochemistry [12,
13] to study the electronic and vibrational properties of
atoms and molecules.

In this paper, we explore a setup similar to that used in
[6] for measuring only the quantum beats between differ-
ent bound state contributions without a reference contin-
uum state by employing a shaped attosecond pulse that
excites states only below threshold. Ionization by a syn-
chronized few-femtosecond NIR probe pulse of medium
intensity leads to a plethora of pathways via one-, two-
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or three-photon ionization that interfere in the contin-
uum. We note that very recently in a similar measure-
ment in helium by Lucchini et al. [9] quantum beats be-
tween states of mixed parity were reported. In their
setup a few-femtosecond XUV pulse consisting of only
two harmonics below threshold was used. Here, we use
an attosecond XUV pulse and show that careful analysis
of the various beating signals reveals that not only the
energy difference of the initial states but also that the rel-
ative phase can in principle be retrieved with great accu-
racy. The phase contains rich information not only about
the initial wavepacket but also about the ionization pro-
cess by the NIR itself. For example, for one-photon ion-
ization we find a considerable phase contribution stem-
ming from depletion of the initial wavepacket that occurs
for helium singly excited states already for intensities of
1 · 1012 W/cm2. Similar modifications of beating ampli-
tudes due to the intensity of an NIR probing pulse were
also seen in neon [14] in an experiment similar to the one
proposed here. Simulations based on a few-state model
could identify population transfer among bound states
and ac Stark shifts by the probing pulse as reasons for
the intensity dependence in [14]. Such modifications by
the probing step have to be understood for quantum state
holography and quantum beat spectroscopy to be a valu-
able tool. Here we show that establishing a complete un-
derstanding of the simple one-photon process also allows
us to use it as a reference signal to retrieve phase infor-
mation about more complicated multi-photon ionization
processes.

Retrieving the phase of the ionization step by quan-
tum beat spectroscopy complements other phase mea-
surements in the continuum that have recently been used
to gain information on photoemission time delays, like
RABBIT (“reconstruction of attosecond beating by in-
terference of two- photon transitions”, [2, 15, 16]) and
attosecond streaking [1, 17, 18]. Here, however, we oper-
ate in a very different regime from those measurements
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as we are close to threshold with electron kinetic ener-
gies . 2 eV. Another fundamental difference is that in
attosecond streaking or RABBIT the XUV pulse pho-
toionizes the atom while the IR field serves only as a
probe. This probing step contains continuum-continuum
transitions which themselves modify the extracted de-
lays. These additional contributions, called Coulomb-
laser coupling in the case of streaking and continuum-
continuum delay in RABBIT, are very large near thresh-
old, which makes it difficult to model them for low ki-
netic energies [16, 18]. In the beat spectroscopy setup
described here the interference condition is already met
after the ionization by the IR field (without absorption
of further photons in the continuum) and therefore these
additional contributions are absent.

This paper is organized as follows. In section II we
give an overview of our theoretical description, discussing
how quantum beat spectrograms can be analyzed and
which information becomes available. In section III we
focus on the contributions to the spectral phase of the
ionized wavepacket within first-order perturbation the-
ory and beyond. Finally in section IV we study which
dynamical information can be extracted from quantum
beat spectroscopy by investigating interferences involv-
ing multi-photon pathways.

Atomic units are used throughout the paper if not
stated otherwise.

II. QUANTUM BEAT SPECTROSOCPY

In contrast to previous attosecond holographic experi-
ments [6, 11] we consider the initial state as a pure bound
wave packet consisting of a manifold of 1𝑠𝑛𝑝 states (see
Fig. 1). Experimentally this can be achieved by filtering
the XUV continuum produced by a few-cycle driven HHG
source with a Sn filter resulting in a spectrum extending
up to 24 eV (the first ionization threshold of helium is
24.56 eV). In the theoretical discussion of this paper we
focus on the non-overlap region of a delay scan where the
NIR pulse arrives long after the XUV pulse. In this case
the initial wave packet created by the XUV pulse is well
described by first-order perturbation theory [19],

|𝜓𝑖⟩ = −𝑖
∑︁
𝑛

⟨𝑛𝑝|ê�⃗�|1𝑠⟩𝐹XUV(�̃�)|𝑛𝑝⟩ =
∑︁
𝑛

𝑐𝑛|𝑛𝑝⟩ , (1)

with the perturbation operator given in length gauge,
�⃗�𝐹XUV, and the Fourier transform of the laser field
𝐹XUV(�̃�) at �̃� = 𝐸𝑛𝑝 −𝐸0 (from here on we omit the 1𝑠
in the notation of singly excited states). In this contribu-
tion we assume that the spectral width of the XUV pulse
populates the singly-excited states 2𝑝 to 7𝑝. We solve
the time-dependent Schrödinger equation (TDSE) for
the interaction of the wavepacket with the NIR pulse in
the single-active electron approximation using a pseudo-
spectral split-operator method [20] with a model po-
tential for helium taken from [21]. The energy of the

low-lying excited states are adjusted to their experimen-
tal values (taken from [22]) during propagation in the
spectral basis. In order to obtain the spectral distribu-
tion we project the final wave function onto continuum
eigenstates. The linearly polarized laser field has a sine-
squared envelope with a FWHM duration of typically
7 fs, a central wavelength of 800 nm and peak intensities
between 1011 W/cm2 and 3 · 1012 W/cm2.

FIG. 1. Schematics of multi-photon quantum beat spec-
troscopy. An attosecond XUV pulse excites at 𝑡0 a bound
state wave packet in helium of 1𝑠𝑛𝑝 states subsequently ion-
ized by a delayed NIR probing field (see red arrows and field
in the inset). Different quantum paths via absorption of one
to three NIR photons interfere in the continuum resulting in
a characteristic beating signal.

Combining the spectra for different delays 𝜏 between
the excitation by the XUV and the ionization by the NIR
pulse results in a beating spectrogram, Fig. 1 and Fig. 2a.
When the width of the short probing pulse (e.g. 0.3 eV
for an 800 nm pulse with 7 fs FWHM duration) is larger
than the energy spacing of the ionic states two different
one-photon pathways can contribute at a given photo-
electron kinetic energy, see Fig. 1. This results in inter-
ference fringes with a frequency corresponding to the en-
ergy difference of the two contributing initial states. The
higher lying singly excited 𝑛𝑝−states in helium (𝑛 ≥ 3)
are within the bandwidth of the NIR pulse which results
in the characteristic beating signal. In other words, the
interference condition is met since the probing pulse is
short compared to the time scale of the wave packet dy-
namics to be probed.

This last requirement does not need to be met if we
consider interference between pathways with a different
number of NIR photons. This is the case for the well
separated 2𝑝 initial state, which can reach similar final
energies by absorbing three NIR photons as single-photon
ionization of the higher states, leading to the fast beat-
ing in Fig. 1 and Fig. 2a. Throughout the paper we will
discuss spectra recorded in the forward direction along
𝜃 = 0. Note that depending on the emission angle or
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FIG. 2. Beating spectrogram (a) and absolute square (b) as well as the argument (c) of the Fourier transform along the delay
axis of (a). The initial wave packet was excited at 𝑡0 = 0 as a superposition of 𝑛𝑝 states with 𝑛 = 2, 7. The 800 nm probing
NIR pulse has an intensity of 1012 W/cm2 and duration of 7 fs.

if the fully-integrated spectra are analyzed certain path-
ways may not interfere due to different parity (cf. [9]).

For a quantitative analysis of the beatings in the time
delay signal (Fig. 2a) we Fourier transform with respect
to delay along each final photoelectron kinetic energy.
This results in a map of the interference signals as a func-
tion of beating frequency 𝜈, and photoelectron energy 𝐸,
see Fig. 2b. As long as the temporal beating signal can
be resolved by the delay step, the spectral analysis re-
veals the energy differences between the components of
the initial wave packet with high resolution. The verti-
cal width of each beating pattern is determined by the
spectral overlap of the two contributing pathways, while
the horizontal width results from the length of the time
series. Beating patterns can be observed for each pair
of pathways for which the energy difference of the ionic
states is smaller or comparable to the spectral width of
the NIR pulse. One-photon ionization of the Rydberg
series above 3𝑝 leads to interference patterns at low en-
ergies (see blue arrows in Fig. 2b,c). The beatings at
higher frequencies stem from the interference of pathways
with a different number of photons, for example 2𝑝 plus
three photons overlaps with one-photon peaks of higher
Rydberg states, red arrows. The beating frequency only
depends on the bound state energies, since the ionization
by the NIR field is independent of 𝜏 in the non-overlap
region that we consider.

The origin of the beating signal as well as the infor-
mation contained therein can be understood by looking
at an initial wave packet that for simplicity only consists
of two bound states 𝛼 and 𝛽. The wave packet at the
arrival time 𝜏 of the NIR pulse reads

|𝜓𝑓 (𝜏)⟩ = 𝑐𝛼𝑒
−𝑖𝐸𝛼𝜏 |𝛼⟩+ 𝑐𝛽𝑒

−𝑖𝐸𝛽𝜏 |𝛽⟩ , (2)

where 𝑐𝑛, 𝑛 = 𝛼, 𝛽, are the initial amplitudes after ab-
sorption of the XUV photon at time 𝑡0 = 0. The transi-
tion amplitude after ionization by the NIR pulse to the
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FIG. 3. Spectral phase and spectrum after ionization of a
pure 4𝑝 or 5𝑝 initial state by one NIR photon and 2𝑝 with
three NIR photons. The laser pulse has a duration of 7 fs and
intensity 3 · 1012 W/cm2. The black dashed-dotted line shows
the perturbative limit Eq. 8.

continuum energy 𝐸 at time 𝑡𝑓 is given by

𝑎𝐸(𝑡𝑓 ) =
[︀
𝑐𝛼𝑒

−𝑖𝐸𝛼𝜏𝐶𝛼,𝐸 + 𝑐𝛽𝑒
−𝑖𝐸𝛽𝜏𝐶𝛽,𝐸

]︀
𝑒−𝑖𝐸(𝑡𝑓−𝜏) ,

(3)
where 𝐶𝑛,𝐸 describes the ionization step by the NIR. The
spectrum reads

𝑃 (𝐸, 𝜏) = |𝑎𝐸(𝑡𝑓 )|2 = |𝑀𝛼(𝐸)|2 + |𝑀𝛽(𝐸)|2

+ |𝑀𝛼(𝐸)| |𝑀𝛽(𝐸)| cos [(𝐸𝛼 − 𝐸𝛽)𝜏 +Δ𝜙(𝐸)] , (4)

where we combined the two amplitudes, 𝑀𝑛(𝐸) =

𝑐𝑛𝐶𝑛,𝐸 . In Fig. 3 we show |𝑀𝑛(𝐸)|2 and arg𝑀𝑛(𝐸) for
different initial states and ionization pathways. Note that
the arg𝑀𝑛(𝐸) are not directly available in experiments.
However, as long as both 𝑀𝑛 in Eq. 4 do not vanish at
a given final energy 𝐸 we see an interference signal at
frequency Δ𝐸 = 𝐸𝛼 − 𝐸𝛽 (see Fig. 2) with a possible
phase offset

Δ𝜙(𝐸) = Δ𝜑𝑖 +Δ𝜑𝑓 (𝐸) (5)
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which becomes accessible in the experimental setup, see
Fig. 2c. Here Δ𝜑𝑖 is the phase difference of the com-
ponents of the initial wave packet (Eq. 1) while Δ𝜑𝑓 is
the phase difference accumulated in the ionization step.
If no additional phases are accumulated in the ioniza-
tion process (Δ𝜑𝑓 (𝐸) = 0) it was shown in [11] that the
phases of the initial wave packet can be retrieved. Here
we go a step further and ask the question what additional
information is encoded in the beating phases, especially
for the more complicated multi-photon ionization by the
NIR pulse.

In Fig. 2c we show the argument of the Fourier trans-
form wherever there is a significant signal (see the abso-
lute square value in Fig. 2b). Since the horizontal exten-
sion of the Fourier beatings only stems from the finite
time series the only valuable information is in the phase
variation along the photoelectron energy axis. This ver-
tical extension represents the energy region over which
we can retrieve the (difference) phase of two quantum
pathways. In the following, we exploit the fact that the
phase is available over a large energy region to gain in-
formation about the dynamics of the ionization process
that would not be available in a single point. Moreover,
the Fourier analysis reveals a plethora of different beat-
ing signals that can be grouped together depending on
the number of NIR photons involved. States in the initial
wave packet that lie within the bandwidth of the ionizing
pulse interfere in lowest order with the absorption of one
NIR photon each. Those can be found at low frequencies
(𝜈 . Δ𝜔) and are labelled “1+1” in Fig. 2b,c. Since we
analyze the spectrogram along a certain direction (paral-
lel to the laser polarization) interferences from pathways
with mixed parity, “1+2” and “2+3” are also visible (note
that they would be absent in an angle-integrated spectro-
gram). The binding energy of the 2𝑝 state is about 3 eV
lower than the higher states so that it overlaps with the
Rydberg series by the absorption of two more photons
leading to the high frequency beatings, labeled “1+3”. A
lineout for two different beating frequencies is shown in
Fig. 4. We observe a quite different behaviour for the
“1+1” beating (4𝑝− 5𝑝) and the “1+3” (2𝑝− 5𝑝) as well
as a large intensity dependence, showing that the ioniza-
tion step indeed can not be ignored, but on the contrary
is of interest on its own.

III. SPECTRAL PHASE FOR ONE-PHOTON
IONIZATION BY A STRONG NIR FIELD

The spectral phases of photoelectrons contain infor-
mation about the atomic system as well as the dynamics
of the ionization process. In the following, we analyze
the spectral phase of the final state within lowest-order
perturbation theory. The first-order perturbation theory

−π

−π2

0

π
2

π

0.4 0.6 0.8 1 1.2 1.4

E4p +ω E5p +ω E2p + 3ω

Ph
as
e
d
if
fe
re
n
ce

(r
ad

)

4p-5p

2p-5p

1 · 1011W/cm2

3 · 1012W/cm2

−π

−π2

0

π
2

π

0.4 0.6 0.8 1 1.2 1.4

E4p +ω E5p +ω E2p + 3ω

Ph
as
e
d
if
fe
re
n
ce

(r
ad

)

4p-5p

2p-5p

1 · 1011W/cm2

3 · 1012W/cm2

FIG. 4. Extracted beating phase for the beating between
4𝑝 + 𝛾 and 5𝑝 + 𝛾 and the higher order process 2𝑝 + 3𝛾 and
5𝑝+ 𝛾 for a laser intensity of 𝐼 = 3 · 1012 W/cm2. Note that
in the original data in Fig. 2c the phases are shifted by a
constant phase depending on the actual time 𝑡0.

amplitude for one-photon ionization reads

𝑎
(1)
𝑖→𝑓 = −𝑖

𝑡𝑓∫︁
𝑡0

d𝑡′𝑒𝑖𝐸𝑓 (𝑡
′−𝑡𝑓 )⟨𝑓 |V̂(𝑡′)|𝑖⟩𝑒−𝑖𝐸𝑖(𝑡

′−𝑡0) . (6)

The interaction with the laser field (the perturbation) is
given by V̂(𝑡) = ê�⃗�𝐹 (𝑡). We assume for now that the
time 𝑡0 when the initial wave packet |𝑖⟩ was excited by
the XUV pulse is known and set it to 𝑡0 = 0. In general,
the absolute delay is not known in experiment, however,
we will discuss later how in our setup this problem can
be circumvented. For a time 𝑡𝑓 after the end of the pulse,
the time integral in Eq. 6 can be formally taken from −∞
to ∞ (when 𝐹 (𝑡 < 𝑡0) = 𝐹 (𝑡 > 𝑡𝑓 ) = 0) and as such it is
the Fourier transform of the laser field. The amplitude
(Eq. 6) then follows as

𝑎
(1)
𝑖→𝑓 = −𝑖⟨𝑓 |ê�⃗�|𝑖⟩𝑒−𝑖𝐸𝑖𝜏𝑒−𝐸𝑓 (𝑡𝑓−𝜏)𝐹 (𝜔) , (7)

where we have assumed that the laser field is symmetri-
cally centered around 𝜏 and explicitly write out all phases
so that the Fourier transform of the field, 𝐹 (𝜔 > 0), is
real. Comparing Eq. 7 with Eq. 3 reveals that 𝐶𝑛,𝐸 =

−𝑖⟨𝑓 |ê�⃗�|𝑛⟩𝐹 (𝜔). The accumulated phase 𝜙(1)
𝑛 = arg 𝑎

(1)
𝑖→𝑓

for a pure initial state |𝑖⟩ = |𝑛⟩,

𝜙(1)
𝑛 = −𝜋

2
+ arg ⟨𝑓 |ê�⃗�|𝑛⟩ − 𝐸𝑖𝜏 − 𝐸𝑓 (𝑡𝑓 − 𝜏) (8)

then consists of the scattering phase shift contained in the
dipole transition matrix element and the free propagation
phases before and after the pulse (see inset of Fig. 1).

The resulting beating phase Δ𝜙(𝐸) in Eq. 5 for an
initial wave packet |𝑖⟩ =

∑︀
𝑛 𝑐𝑛|𝑛𝑝⟩ follows as

Δ𝜑𝑖 = arg 𝑐𝛼 − arg 𝑐𝛽 (9a)

Δ𝜑𝑓 (𝐸) = arg ⟨𝑓 |ê�⃗�|𝛼⟩ − arg ⟨𝑓 |ê�⃗�|𝛽⟩ . (9b)

In the following discussion we assume a flat phase for
the initial wave packet (𝑐𝑛(𝑡0) ∈ R in Eq. 1) and hence
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FIG. 5. Argument 𝜙(𝐸) of the final wave function for the
solution of the TDSE for ionization of an initial 4𝑝 state com-
pared to argument of the corresponding transition matrix el-
ement and non-perturbative corrections (see text) for a laser
intensity of 𝐼 = 3 · 1012 W/cm2.

Δ𝜑𝑖 = 0. The final state |𝑓⟩ is a single continuum
state |𝐸ℓ⟩, or |𝐸𝜃⟩ for the spectra along one direction
𝜃, respectively. Since arg⟨𝐸ℓ|ê�⃗�|𝑛𝑝⟩ only depends on the
scattering phase of the final state it is independent of
the principle quantum number 𝑛. Following Eq. 9 we
expect Δ𝜑(𝐸) to approximately vanish in the perturba-
tive regime. For the beating between 4𝑝 and 5𝑝 shown
in Fig. 4, Δ𝜑(𝐸) indeed nearly vanishes for lower inten-
sities while we observe modifications for higher intensi-
ties, especially at the ends of the overlap region. In the
nonperturbative regime we find that the phases of the
final wave function of the individual 𝑝-states in Fig. 3
deviate from the perturbative limit (Eq. 8) for intensi-
ties & 1 · 1012 W/cm2. We have also checked that for
𝐼 . 1 · 1011 W/cm2 the solution of the TDSE agrees per-
fectly with the perturbative limit.

We can identify two main effects that become impor-
tant for higher intensities: (i) the ponderomotive shift is
not negligible anymore and (ii) the initial wave packet
gets depleted. Both manifest themselves in the phase
of the final wave packet. The ponderomotive shift for a
free electron is given by 𝑈P = 𝐼/4𝜔2 which amounts to
0.18 eV for 800 nm and 𝐼 = 3 · 1012 W/cm2. In Fig. 3
we see that the spectrum of an initial 2𝑝 state is indeed
shifted by ∼ 𝑈P. The spectrum of the 4𝑝 and 5𝑝 ini-
tial states though, is only marginally shifted. For those
higher Rydberg states we have to take into account that
already the initial states experience an AC-Stark shift. In
the limit of highly excited states, where the energy dif-
ference of neighboring states becomes small compared to
the frequency of the IR field and the field strengths are
subatomic, the AC-stark shift becomes identical to 𝑈𝑃

[23]. From that follows that the shift of the initial and fi-
nal state cancel in the photoelectron spectrum (note that
the slight shift to lower energies is due to the cross section
which strongly decreases as a function of energy).

In contrast, the effect of the ponderomotive shift of
the initial and final state energies, 𝐸𝑛𝑝 → 𝐸𝑛𝑝 − 𝑈P and
𝐸𝑓 → 𝐸𝑓 −𝑈P, adds up in the propagation phase Eq. 8.
For a Rydberg state this additional phase can be ap-

proximated by the ponderomotive shift over the effective
duration of the laser pulse, 𝑇eff ,

𝜑𝑈P
= 𝑈P𝑇eff , 𝑇eff =

∫︁ ∞

−∞
𝐹 2(𝑡)d𝑡/𝐼0 (10)

where 𝐼0 is the peak intensity of the laser field. For an
intensity of 3 ·1012 W/cm2 this is already a considerable,
yet constant, phase shift for each individual state, see
Fig. 5. It is the same for all the easily polarizable Ryd-
berg states and hence cancels in the relative phase Δ𝜑𝑓
observed in the beating spectrogram (Fig. 4) for ‘1+1’
photon process but not for ‘1+3’ processes.
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FIG. 6. Additional phase due to depletion of the initial
state for pulses with a Gaussian envelope (a) or a sine-squared
envelope function (b).

Depletion of the initial state further modifies the ion-
ization process beyond the perturbative limit. For the
example shown in Fig. 5 for ionization of an initial 4𝑝
state by an NIR field of 3 · 1012 W/cm2 only 27% of the
initial population is left after the end of the pulse so
that depletion can not be ignored. On an intuitive level
we would expect more ionization at the beginning of the
pulse than at the end and hence an effective shift of the
ionization time. Formally, a phase is introduced since
already an infinitesimal amount of depletion breaks the
time-symmetry of the ionization process and hence the
Fourier transform in Eq. 7 can not be real anymore. In
a lowest-order treatment, we include the depletion in the
first-order perturbation theory amplitude by assuming
that the initial state is decaying. We replace |𝑖⟩ in Eq. 6
with a time-dependent initial state

√︀
𝑃𝑖(𝑡)|𝑖⟩ where the

time-dependent probability 𝑃𝑖(𝑡) is given by

𝑃𝑖(𝑡) = exp [−𝛼
∫︁ 𝑡

−∞
𝐹 2(𝑡′)d𝑡′] (11)

with 𝛼 being proportional to the cross section per energy.
The integral can be solved analytically and yields for a
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Gaussian pulse envelope with a FWHM duration of 𝑇

𝑃𝑖(𝑡) = exp

[︂
log𝑃𝑖(∞)

2

(︁
1 + erf

[︁
𝑡
√︀
log 16/𝑇

]︁)︁]︂
. (12)

Including the decay rate into Eq. 6 results in a modi-
fied Fourier transform of the laser field shown in Fig. 6.
While the amplitude only gets diminished by an overall
scaling factor, the phase shows a dramatic change. Near
the center frequency the phase has a nearly linear slope
corresponding to a time shift of the ionization since more
ionization takes place in the first part of the pulse. The
not so intuitive part is the phase transition of 𝜋 that oc-
curs for a Gaussian pulse over the spectral width, Fig. 6a.
Already for an infinitesimal amount of depletion the inte-
grand in Eq. 6 becomes asymmetric which together with
the Gaussian pulse enforces this 𝜋 phase change. Due
to the finite temporal length, the Fourier transform of a
sine-squared envelope function always contains zeros in
the spectrum which causes 𝜋 phase jumps at every zero
crossing (see phase for 𝑃 (∞) = 1.0 in Fig. 6b). Including
the depletion then “smears” out these jumps.

The phase modifications are minimal at the center of
the spectral width which is probably the reason why they
have never been observed, to the best of our knowledge.
In our setup, however, since we observe the phase differ-
ence in the overlap region we need the phase over a wider
range and hence we observe distortions at off-center fre-
quencies. Combining the effects of the ponderomotive
shift, 𝜑𝑈P

, and depletion, 𝜑dep, indeed mostly explains
the difference between the atomic phase from the dipole
transition and the solution of the TDSE for the 4𝑝 ini-
tial state shown in Fig. 5. We note, however, that for
increasing 𝑛 the agreement of the actual phase with our
model including ponderomotive shift and depletion gets
worse. Since those higher lying states are highly polar-
izable and have strong couplings to other bound states
while the ionization cross section decreases, we suspect
further phase distortions that go beyond the simple mod-
eling presented here.

One possibility of minimizing the laser-induced phase
distortions is the use of lower NIR intensities. For
example, for 𝐼 = 1 · 1012 W/cm2 64% of the population
is left in an initial 4𝑝 state as compared to 27% for
𝐼 = 3 · 1012 W/cm2. However, since we are interested
in multi-photon beatings lower intensities diminish the
three photon signals. The other possibility is the use of
shorter NIR pulses with a larger spectral width. This
helps in two ways, first the depletion is reduced and
second the different pathways overlap in a much broader
region so that the center of the overlap is not at the edge
of the spectral width.

IV. MULTI-PHOTON QUANTUM BEATS

As we have seen, the relative beating phases for one-
photon processes contain information about the strong-
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FIG. 7. Δ𝜑(𝐸) for the higher order processes 2𝑝 + 3𝛾 and
3𝑝+2𝛾 both beating against Rydberg states with 𝑛 = 4, 5, 6, 7.
The model (black dashed line) is based on the difference of
the spectral phase for the 2𝑝 or 3𝑝 ionization alone and the
argument of the one-photon dipole matrix element. The laser
had a duration of 7 fs and an intensity of 1012 W/cm2.
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FIG. 8. Δ𝜑(𝐸) for the higher order processes 2𝑝 + 3𝛾 and
3𝑝+2𝛾 both beating against 6𝑝 for (a) 7 fs and (b) 4 fs duration
of the NIR pulse. The relative phases are corrected by 𝑡0. The
NIR intensity is 1012 W/cm2.

field modifications by the NIR field we can now pose the
question to what extent dynamical information for multi-
photon processes becomes accessible. In Fig. 7, we show
the extracted phase difference for the higher order pro-
cesses 2𝑝+3𝛾 and 3𝑝+2𝛾 both beating against the vari-
ous overlapping one-photon ionized Rydberg states for a
laser intensity of 1012 W/cm2. Since the distortion of the
one photon phases are minimal at this intensity we find
perfect agreement between the different Rydberg states
for 𝑛 = 4, 5, 6, 7. We recall that the one photon signal in
the perturbative regime coincides with the argument of



7

the dipole transition element (see Eq. 8). The extracted
phase difference hence shows all phase contributions in
addition to the atomic scattering phase. Directly sub-
tracting the scattering phase from the numerically ex-
tracted spectral phase for an initial 2𝑝 state (“model” in
Fig. 7) is in near perfect agreement with the phase differ-
ence extracted from the beating signal. The nearly linear
slope of the 2𝑝 − 𝑛𝑝 signal corresponds to a nearly con-
stant spectral derivative of the phase difference which in
turn characterizes the group delay.

Looking at the energy level diagram in Fig. 1 reveals
that absorbing two photons from the 2𝑝 state is resonant
with the higher lying states close to threshold. From
there absorption of the third photon leads to ionization.
For this sequential process an arbitrary amount of time
can pass between the absorption of the last photon and
the other two. On average, this leads to an effectively
delayed ionization, i.e., the time at which three photons
have been absorbed from the NIR pulse is in the second
half of the pulse. We note that in the absence of resonant
states ionization would be nonsequential and could only
happen when all three photons are absorbed at the same
time. The sequential model is in agreement with the
positive slope of the spectral phase in Fig. 7 for the 2𝑝−𝑛𝑝
beating which amounts to a “delayed” emission of about
750 as.

The second interesting multi-photon process is the
beating between 3𝑝 plus two NIR photons with the one-
photon signals of higher 𝑛𝑝-states, see Fig. 7. 3𝑝 plus
one NIR photon excites the system around the ionization
threshold so that sequential pathways should be open as
well. Nevertheless, the slope of the phase difference is
slightly negative. We suspect that in this case depletion
of the initial state (for 1 · 1012 W/cm2 only 35% is left
in the 3𝑝 state) plays a dominant role. A further indi-
cation therefore is the change of the beating phase for
higher intensities shown in Fig. 8. For both the 2𝑝+ 3𝛾
and the 3𝑝+ 2𝛾 processes the slope is getting more neg-
ative for higher intensities, which as we have seen, is the
typical behaviour for an additional depletion phase. As
mentioned earlier, the effect of depletion can be reduced
by using a shorter NIR pulse with the additional ad-
vantage of a wider available energy range. Indeed for
a pulse with a FWHM duration of only 4 fs the intensity
variation is greatly reduced, see Fig. 8b. We note that
for both multi-photon processes also strong couplings to
other states and a Rabi-flopping via two photons between
the 2𝑝 and higher excited states are present. Even though
it is tempting to interpret all the phase modifications as
temporal shifts of the ionization process, higher order
phases corresponding to a chirp or even more complicated
behaviour often lack such simple explanations. Further
discussion into this direction, however, goes beyond the
scope of this work.

Finally, we discuss the experimental feasibility of the
proposed setup. While the delay step can usually be con-
trolled on the ten attoseconds level the absolute delay
between XUV and NIR pulse is very difficult to obtain.
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FIG. 9. Extraction of 𝑡0 for three ‘1+1’ photon beatings and
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𝑡′0 = 6207 as.

Since the beating in Eq. 2 is given by Δ𝐸(𝜏 − 𝑡0) the
actual time 𝑡0 adds a phase of Δ𝐸𝑡0 to our final phase
difference Δ𝜑(𝐸). In our setup this poses a problem,
since all the beating frequencies Δ𝐸 are different. Note
that this is not the case for other interferometric pump-
probe setups like e.g. RABBIT which uses an attosecond
pulse train. Dynamical information is extracted from
the beating phase of the various sidebands which are all
modulated by 2𝜔 so that the additional phase 2𝜔𝑡0 is
the same for each sideband. In our setup we can ex-
ploit the fact that the beating phase between one-photon
processes should be zero so we can use them as a ref-
erence to extract the actual time 𝑡0 of the experiment.
In principle already one point would suffice to extract 𝑡0
from the condition Δ𝜑(Δ𝐸) = Δ𝐸𝑡0 in the absence of
the 2𝜋 ambiguity. Using at least two different beating
frequencies allows us to extract 𝑡0 from the derivative
𝜕Δ𝜑(Δ𝐸)/𝜕Δ𝐸 as long as the phase does not change by
more than 2𝜋. This condition can be met if 𝑡0 is approx-
imately known. For the beating frequencies of the one
photons signals that are below 0.3 eV there is no ambi-
guity for 𝑡0 < 13 fs which is longer than the used NIR
pulses. In Fig. 9 we demonstrate this for the example of
the three lowest ‘1 + 1’ beatings where we assumed an
offset of 𝑡0 by 6000 as. The linear fit retrieves a value of
𝑡′0 = 6207 as which amounts to a phase error of 0.15𝜋.

V. CONCLUSIONS

In summary, we have shown that the proposed attosec-
ond quantum beat spectroscopy setup is capable of ex-
tracting the spectral components of an initial wave packet
as well as the relative phases of different ionization pro-
cesses. The observed spectral phases of the ionized wave
packets can be well described within first-order pertur-
bation theory for one-photon transitions and intensities
below 1012 W/cm2. For higher intensities we showed
that the ponderomotive shift and depletion of the ini-
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tial wavepacket modify the phase. This allowed us to
draw conclusions about the dynamics of the ionization

process. Especially for the investigated multi-photon ion-
ization processes we observed large time shifts that stem
from sequential ionization via intermediate bound states.
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