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Abstract—The fifth generation telecommunication standard 
(5G) will make use of novel technologies, such as Software 
Defined Networks (SDN) and Network Function Virtualization 
(NFV). New models are integrating SDN and NFV in a control 
plane entity responsible of the Management and Orchestration 
(MANO) of the whole system. This entity, acting as director of 
the 5G control plane, is known as Service Orchestrator. This 
work presents SENATUS, an experimental service 
orchestrator targeting research and testing environments. 
SENATUS implements a set of innovations to support the 
validation of the future network planner modules that will be 
integrated on the management entities of the 5G architecture. 
Furthermore, we present two testbed scenarios to show the 
capability of SENATUS to control the SDN and NFV 
technologies previously mentioned.  
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I. INTRODUCTION

Telecommunication networks have become a critical 
infrastructure for any society enabling economic growth and 
social prosperity [1]. The demand for data is surging rapidly 
every year. In 2021, the global IP traffic will reach 3.3 ZB 
(10²¹ bytes!) [2]. Cloud services and Machine-to-Machine 
(M2M) applications, capacity hungry applications, and 
bandwidth-hungry devices are contributing to the increment 
in traffic and data congestion. It is foreseen that the 
introduction of new technologies, like 5G, will boost this 
growth. This situation is forcing the underlying network 
technologies to change, increasing the level of 
programmability, control, and flexibility of configuration, 
while reducing the overall costs related to network 
operations [3]. Contrary to the evolution of previous 
generations, 5G will require not only improved networking 
solutions but also more sophisticated mechanisms for traffic 
differentiation to fulfil stronger end-to-end Quality of 
Service (QoS) requirements of numerous different 
“verticals”, such as automotive, manufacturing, energy, 
eHealth, agriculture, etc [4] [5].  

This work presents an experimental service orchestrator 
(SO) named SENATUS, targeting research environment, as 
devised to support testbeds for the development and 
validation of network services and network planning 
algorithms. It implements functions for managing SDN 
networks as well as for deploying network services on NFV 
infrastructure. In addition, SENATUS introduces an interface 
for horizontal communication that allows interworking with 
experimental Machine Learning (ML) modules and 
optimization algorithms. SENATUS is destined to provide a 
suitable environment for validating service orchestration 
functions and modules for network planning tools. The 
contribution of this paper can be summarized in four points:  

1. Offer service orchestration in an infrastructure
integrating SDN and NFV technologies.

2. Provide means for integrating experimental
modules able to setup network configurations

taking into consideration past and current situation 
of the network. 

3. Propose testing SDN/NFV environments for
SENATUS.

4. Supply a suitable set of metrics and data to perform
performance evaluation.

SENATUS is presented together with two testbed 
architectures. The first one has its physical infrastructure 
emulated using Mininet and can validate the SDN-based 
functionalities, while the second, the main one, has been 
deployed using real equipment of BONSAI laboratory at 
Politecnico di Milano. The paper is organized as follows: 
Section II presents related works. Section III shows the 
SENATUS architecture. Section IV introduces two testbed 
architectures. Section V presents the validation and 
performance results of SENATUS. Finally, a discussion on 
open issues and the conclusions are presented in Section VI. 

II. RELATED WORKS 

This section will compare SENATUS orchestrator with 
other SO in the literature, highlighting similarities and 
innovations. 

CORD [6], as one of the first implementations of service 
orchestration, introduced some of the basic concepts of the 
joint use of SDN and NFV. CORD uses the NFV for fast 
and flexible deployment of network services, while SDN 
interconnects the equipment and provides end-to-end QoS. 
CORD set the foundations for latter architectures, dividing 
the service orchestration into what we can consider: a 
network manager, an infrastructure manager and a higher 
entity (XOS) that takes the role of service Orchestrator. 
Similarly, to CORD, SENATUS uses OpenStack to provide 
a virtualization layer over the HW, and ONOS gives 
network data plane (DP) abstraction.  

ADRENALINE [7][8] introduces the hierarchical 
approach to multi-domain orchestration that CORD lacked. 
It is a testbed designed to be integrated in advanced 
scenarios with multiple heterogeneous networks segments, 
each one with its own local manager that uses the Control 
Orchestration Protocol (COP) on its NBI to communicate 
with the multi-domain orchestrators. ADRENALINE is a 
powerful environment suitable for testing end-to-end 5G 
service orchestration. Statistics and status are pulled from 
the NBI of the bottom entities to the SBI of the superior one, 
and the actions and new configurations for the network are 
pushed from the top. Up to this point, ADRENALINE does 
not provide a horizontal communication interface like the 
one required by the network planner, that would allow the 
introduction of specific purpose modules to enhance the 
capabilities of the orchestration system. The lack on this 
interface makes it difficult to attach new modules to the 
service orchestrators without creating new layers of 
abstraction. By contrast, SENATUS introduces some 
horizontal functions that allows the delegation of some of 



the decision-taking features to external Planner modules, 
such as ML routing solution or ML algorithms for VNF 
placement. 

OSM [9] emphasizes multi-domain NFV/SDN 
orchestration, being devised to provide a single service 
orchestration point for both technologies from where to 
encompass the placement and interconnections, trough 
virtual overlay networks, of the VNFs forming the NS to be 
deployed. Nevertheless, OSM is still an immature project, 
and many of its planned features are not implemented yet. 
As an example, up to the date, it does not provide specific 
control over VNF placement and most of the SDN-related 
functions are yet to be integrated. Whereas the SENATUS 
orchestrator circumscribes to a less general scenario than 
OSM, that is, the control of a single administrative segment; 
the SO and the testbeds implemented on this work covert the 
full stack from the physical layer to the SO layer and, in 
addition, already implement the SDN features and VNF 
placement that OSM is still lacking. 

ETSO [10] uses specific-purpose modules for VNF 
placement and interconnection. It implements the full stack, 
and can use several strategies for VNF placement due to 
their custom modules. However, despite following the 
TOSCA specifications for NS description, it is a self-
contained orchestrator that does not follow the NFV 
standard and lacks compatibility to be integrated with 
common open solutions and projects. 

The limitations reported in this section have been 
addressed developing SENATUS. 

III. SENATUS ARCHITECTURE

SENATUS is a service orchestrator designed for research 
and validation environments. Its architecture resembles the 
structure proposed by the ETSI MANO framework and 
takes as reference the modular division used by OSM. 
SENATUS orchestrator corresponds to the highest layer of 
abstraction in the proposed Control Plane (CP) architecture, 
see Fig. 1. The name of SENATUS is borrowed from the 
ancient Roman Republic Senate, where administrative 
decision, usually taking into account the history, were made 
and passed down to the rest of the administrative system. On 
this line, we have reproduced this mechanism, combining 
the service orchestrator with horizontal modules that have 
the task of implementing actions on the underlying network. 
The CP architecture in Fig. 1 refers to the full system, which 
integrates five different entities:  

1. Openstack 1 as Virtual Infrastructure Manager 
(VIM).

2. ONOS [11] as SDN controller.
3. SENATUS as the proposed  SO.
4. Network Planning Algorithms collects the modules 

that provision the network services in the SDN 
network.

5. Automatic Algorithms serve as collectors of 
historical information needed to run the network 
planning algorithms.

Then, the CP is integrated with the Data Plane (DP) 
described in Section IV. Internal SENATUS orchestrator 
architecture divides its functionalities into two modules: 
Service Orchestrator (SO) and the Resource Orchestrator 
(RO). SENATUS orchestrator has been entirely 
programmed in Python.  

A. Resource Orchestrator (RO)
SENATUS uses three sources as metric providers, which 
are: Openstack, Gnocchi and ONOS. Openstack has access 
to the information status of the system, such as 
characteristics of the deployed VNFs. Gnocchi [12] is a 
software that provides metric collection and aggregation at 
fixed time intervals and allows to define custom metrics 
regarding computing network resources. Gnocchi is 
especially useful for managing the storage of data coming 
from diverse sources, such as the case of distributed 
platforms like Openstack. ONOS, as SDN controller, is able 
to recover a wide set of metrics from the underlying network 
devices and provide them to its native applications and to 
external entities using the NBI. The granularity of the 
measures (by default 5 seconds) can be set in ONOS 
configuration. In contrast to Openstack and Gnocchi, where 
data is queried using dedicated API libraries, ONOS 
provides the data through REST API. Information from the 
REST APIs are transformed by SENATUS RO to JSON 
lists or matrices of data for being presented to the rest of the 
modules. Some of the information retrieved by the RO is 
included on Table 1. 

B. Service Orchestrator (SO)
The SO module integrates the high-level control logic 
responsible of the Management and Orchestration (MANO). 
The set of functions provided by SENATUS SO (some of 
them presented in Table 1) often rely on a combination of 
data and actions to be taken by Openstack and ONOS. As 

1 Weblink: https://www.openstack.org/ 

Table 1. SUMMARY OF 
ORCHESTRATOR COMMANDS 

Fig. 1. CONTROL PLANE (CP) ARCHITECTURE WITH THE SENATUS ORCHESTRATOR 



SENATUS RO abstracts the subjacent layers, the SO 
module focus on high level and complex processing 
functions not available at lower levels.  

C. Network Planning Algorithms
This entity represents one of the main innovations proposed 
by this work. The Network Planning Algorithms encloses 
the algorithms that are executed to realize the network 
services, see Fig.1. This module gives the possibility in the 
future to implement different network optimization 
algorithms, such as VNF placement and routing 
computation. The algorithms defined in this module use the 
functions provided by the SO and RO, defined in the Table 
1, to carry out their purpose. Network Planning Algorithms 
can access a data storage where it is possible to acquire 
historical data and therefore be able to train various machine 
learning based algorithms. In [13], a machine learning based 
algorithm has been implemented exploiting the potential of 
SENATUS. The algorithm classifies the traffic matrices in 
order to optimize routing in the underlying network 
scenarios (see Mininet and BONSAI testbed in section IV).  

D. Automatic Algorithms
This entity is used to execute algorithms that collect data 
from the network and from servers running VNFs. The 
network data acquisition module is responsible for the 
continuous collection (every 5 seconds) and processing of 
information regarding network traffic exchanged between 
nodes and link status over time. This gives the possibility to 
the planning algorithms, given the history of the network, to 
optimize the distribution of network resources. Furthermore, 
it opens the possibility for a network operator to monitor his 
network and provide increasingly efficient services. 

IV. TESTBED SCENARIOS

This section introduces the testbed scenarios that have been 
deployed to be used as experimental Data Plane (DP) 
working under the CP described. Two dedicated scenarios 
have been setup for SENATUS. The first one is devised for 
testing the SDN features of the service orchestrator. It does 
not have Openstack enabled and only takes advantage of the 
SENATUS functions related exclusively to ONOS. The 
topology of this first scenario is a virtual and emulated on 
Mininet: for this reason, this testbed will be named as 
“Mininet testbed” (see Fig. 2). The second environment is a 
physical implementation deployed at the  Broadband Optical 

Networks, Security and Advanced Internet (BONSAI) 
laboratory of Politecnico di Milano. This second testbed, 
named “BONSAI testbed” (see Fig.2), provides both SDN 
and NVF capabilities, taking full use of the SENATUS. We 
are dedicating a last subsection to describe the VNFs used 
during this work to validate SENATUS. 

A. Mininet Testbed
This testbed scenario has been created with a virtual 
topology emulated by Mininet [14] and an instance of 
ONOS version 1.12.0 Magpie. Mininet is one of the most 
widely used network emulators [15]. It can create virtual 
networks with operational nodes and allows interaction 
among them. One of the key features of Mininet is that it 
supports OpenFlow and Software-Defined Network (SDN) 
systems, which can be created as easy by running a single 
command. Mininet scenario is suitable for simplified testing 
of the SDN-related functions developed inside SENATUS. 
Using Mininet, the topology replicates 12 switches and 4 
virtual hosts. These virtual hosts use the Distributed Internet 
Traffic Generator (D-ITG) tool to generate traffic [16]. D-
ITG is a platform capable of producing packet-based traffic, 
emulating various stochastic processes for both IDT (Inter 
Departure Time) and PS (Packet Size) random variables 
(e.g., with Exponential, Uniform, Cauchy, Normal, Pareto, 
etc.). D-ITG supports both IPv4 and IPv6 traffic generation 
and it is capable to generate traffic at network, transport, and 
application layer. 

B. BONSAI testbed
BONSAI testbed refers to the physical testing scenario in 
BONSAI laboratory at the Politecnico di Milano. This 
environment integrates equipment acting as VNF 
hypervisors along with a network composed OpenFlow 
switches2. OpenStack has been deployed for providing NVF 
capabilities, while ONOS is used as SDN controller. 
SENATUS is deployed as service orchestrator on the same 
computer where Openstack controller is hosted. Two 
separate networks are used in BONSAI testbed. Network 1 
(red dotted lines in Fig.2) is a traditional IP network used for 
the communication exchange between the CP entities. 
Network 2 (black lines) is the SDN network composed 
by Zodiak FX Openflow switches. A set of 
computers, collectively named Compute Nodes, provide 
the equipment 

2 Weblink: https://northboundnetworks.com/products/zodiac-fx 

Fig. 2. TESTBED SCENARIOS. MININET TESTBED (LEFT) AND BONSAI TESTBED (RIGHT) 



and the power to run three instances of Openstack compute 
nodes, an instance of the Openstack controller with 
SENATUS and one with ONOS. A virtual router has been 
instantiated through OpenWrt VNF (see section IV.C.3) to 
connect both SDN and Management network, providing 
external connectivity to internet. 

C. VNF deployed
Three VNFs have been used on the validation process of 
SENATUS.  

1) CirrOS. It is a light Linux image typically used for
proof of concepts and testing purposes. This Linux 
distribution only requires 13 MB of disk space, 32 MB of 
RAM and 1 CPU available to be launched, which makes it 
perfect for testing the health of the VIM installation. 

2) Ubuntu 16.04. Ubuntu is a free open source Linux
distribution operating system based on Debian. The VNF 
image is based on Ubuntu Server, requires around 279 MB 
of RAM, 1 CPU. 

3) OpenWrt. It is a Linux distribution for embedded
systems, typically used as an open source firmware for 
routers. As a proof of concept, we have generated and 
configured a OpenWrt VNF with 4 network interfaces and 
the necessary software packages to act as a virtual router. It 
requires 250 MB of RAM and 1 CPUs from the hypervisor. 

V. VALIDATION AND PERFORMANCE RESULTS

In order to validate SENATUS, we have run several 
experiments aimed at evaluating: 

1. VNF Building time: we measure the time required
to deploy a VNF.

2. VNF migration time: we measure the time for
creating a snapshot image. Then, we calculate the
migration time as (VNF Building time + Snapshot
creation time). We compare the data with results
taken from literature.

3. SENATUS overhead: with this test we estimate the
time taken by SENATUS to perform: a VNF
deployment, a request of VNF status using
Openstack API and a request of VNF metrics using
Gnocchi API. We repeat the same experiments on
the Command Line Interface and compare the
performance.

4. ONOS experiments: this test is devised to measure
the performance of SENATUS SDN capabilities on
Mininet testbed.

A. VNF building time
With the first experiment, we measure the building time of a 
VNF inside the BONSAI testbed. For this, two of the VNFs 
already introduced in IV.C have been used: CirrOS and 
Ubuntu 16.04. We use several container flavors, as indicated 
by Table 2, to compare the outcoming values. The flavors 
are obtained by varying the RAM and the number of core 
assigned to the virtual machine container. We observe that 
assigning more RAM to the VNF containers the deployment 
time improves slowly. This is reasonable, since the 
processing of the installation of the VNF image inside the 
VM depends on the resources allocated for the VNF. 
However, taking into account the minimum size of RAM 
required by CirrOS (32 MB) and Ubuntu 16.04 (279 MB), 

the impact is minimal, only gaining a second for CirrOS 
deployment at the cost of allocating 20 times more RAM. 

Table 2. CONTAINERS FLAVORS WITH VNF INSTATIATION TIME 

Flavor VCPU RAM (MB) VNF instantiation time (s) 
Cirros Ubuntu 16.04 

F1 1 256 8.04 - 
F2 1 512 7.87 7.72 
F3 1 1024 7.57 7.66 
F4 1 2048 7.54 7.47 
F5 1 4062 7.02 6.93 
F6 2 512 7.77 7.71 

Deployment of Ubuntu VNF is speed up half a second using 
a container four times larger than the minimum size 
required. If we compare deployment times for flavors F2 
and F6, we notice that allocating an extra CPU does not 
have significant impact. 

B. Snapshot creation time and migration
Using the results of the VNF building time tests, we aim at 
checking the system performance for a theoretical VNF 
migration. We perform an offline migration, which involves 
two steps: generating the VNF snapshot and deploying the 
new VNF on the desired node. In Fig.3, we compared the 
migration time using some of the flavors defined in the 
previous section with results from literature. These results 
include experiments carried out migrating a VNF in a 
container equivalent to F4 in two high speed optical 
networks at 7 Gbits/s (SAI1) and 3.3 Gbits/s (SAI2) 
respectively [17]. We point out that, in contrast to the SAI1 
and SAI2 networks, BONSAI testbed provides a maximum 
speed of only 100 Mbits/s. Another comparison is taken 
from [18] (RBD). Here a 1 Gbits/s switch is used. 
Nonetheless, the specifications of the hosts used for the 
experiment far exceed the ones from BONSAI testbed. 
Finally, a tighter value is derived from [19] (Toronto) for 
migration between enterprise clouds of a VNF of Ubuntu 
12.04 of 243.6 MB using a flavor comparable to F4. 

Fig. 3. VNF MIGRATION TIME 
As we can see in the Fig.3, the time to complete the VNF 
migration, as we can infer from the results provided by the 
literature, greatly affects the performance of a network 
service. Despite the differences in throughput between the 
BONSAI testbed and the architectures proposed by the 
literature, such as the ones used on SAI1, SAI2 and Toronto, 
the results are comparable. 

C. SENATUS overhead
Here we present the results from the experiments comparing 
the overhead introduced by SENATUS against the use of a 
script that exploits the Command Line Interface (CLI), 
which is the most common way of using Openstack without 
a service orchestrator. Fig 4 shows the time required for the 
communications for each API: Openstack and Gnocchi. On 



Openstack, we have taken as reference the creation time of a 
VNF. Using the flavor F2 and CirrOS VNF of previous 
subsection, we measure the time between summoning the 
VNF creation and the instant when the VNF start running. 

Fig. 4. SENATUS OVERHEAD 
On the second experiment, we measure the time to recover 
information from Openstack, specifically, a request of the 
status of a VNF. Finally, we check the time required to 
recover a set of metrics from Gnocchi. The results above 
show that SENATUS is remarkably faster that the usage of 
the CLI for summoning actions and collect information. 
This is possible due to the direct usage of the Openstack and 
Gnocchi libraries, in contrast to the CLI methodology that 
must spend some time to convert the terminal input to API 
calls. 

D. ONOS experiment
On this last set of experiments, we present some results 
from the SDN-related features of SENATUS. Experiment 
have been performed on the Mininet testbed.  

Table 3. FLOW INSTALLATION TIME FOR DIFERENT SDN 
CONTROLLERS 

Action SENATUS+
ONOS (ms) OpenDayLight (ms) Ryu (ms) 

Flow 
installation 1.52 1.5 0.3 

In addition, as done with VNF migration experiment, we 
introduce some results from literature [19]. In particular, in 
Table 3 we compare the values of flow installation with 
another two commonly used SDN controllers: OpenDaylight 
[21] and Ryu 3. It is observed that installing a flow from
SENATUS using ONOS has similar performance than the
provided by OpenDaylight, and both of them are much
slower than Ryu. ONOS and OpenDaylight provides a full
network operating system and run and support native
network applications, while Ryu is based on a lighter
approach as a python framework for SDN application
development: thus, a faster response on flow installation
was expected.

VI. CONCLUSIONS

In this work, we show a new service orchestrator called 
SENATUS. It provides service orchestration for network 
segments deploying Openstack as infrastructure manager 
and ONOS as SDN controller. SENATUS innovates with 
the provisioning of external modules that accomplishes the 
task of providing support for decision-taking algorithms for 
network planning. Furthermore, SENATUS in conjunction 
with ONOS and Openstack implements a rich variety of 
metrics that are available for collecting measurements of 
different performance of the system. In order to provide the 

3 Weblink: https://osrg.github.io/ryu/ 

full research ecosystem, SENATUS is presented together 
with two testbeds that have been deployed and configured as 
part of the architecture being studied. 
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