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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Metal additive manufacturing (AM) technologies enable the production of complex shapes, lightweight structures and novel 
functional features. Such increased complexity of the products imposes various challenges in terms of statistical process 
monitoring and quality assessment. However, one great potential of AM processes, compared to conventional ones, consists of 
the possibility of gathering a large amount of data layer by layer. This study investigates a data fusion methodology to combine 
in-situ data from multiple sensors embedded in Electron Beam Melting (EBM) systems to automatically detect faults and process 
errors. The aim consists of making sense of information already available from the system to enhance its embedded intelligence 
via novel data mining techniques. A real case study in EBM is presented and discussed.   
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1. Introduction 

The industrial use of metal powder bed fusion (PBF) 
processes has been continuously growing in the last years, 
especially in the aerospace and bio-medical sectors, where 
they provide brand new capabilities with respect to 
conventional processes. Despite of this, several sources of 
process instability and various kinds of defects may lead to 
high scrap fractions. The most common defects include 
internal and surface porosity, cracks and delaminations, 
residual stresses, dimensional and geometrical distortions, 
impurities and deviations from the expected microstructure 
[1-5]. Because of this, most metal PBF system developers 
have been integrating sensors for in-situ data acquisition and 
process monitoring [3]. There is also a rapidly growing 
literature devoted to in-situ process monitoring techniques 
based on different sensing configurations [7 – 31]. Generally 
speaking, laser-PBF processes may be monitored via co-axial 
sensors (i.e., sensors installed within the optical path of the 
laser) and off-axis sensors (i.e., sensors placed outside the 

optical path) [1, 3, 30 - 31]. In electron beam-PBF (a.k.a. 
Electron Beam Melting- EBM), instead, only off-axis 
configurations are available, because the energy source is an 
electron beam deflected by electro-magnetic coils, which 
prevents from using co-axial sensing [1]. In the mainstream 
literature devoted to EBM process monitoring [3], off-axis 
infrared (IR) cameras represent the major source of 
information. [34] used IR vision to characterize the surface 
pattern of scanned slices to detect flaws and surface defects. 
[35] and [38] used IR vision for surface pattern and geometry 
characterization of molten slices, whereas the temperature 
distribution over the entire build area was studied by [36 - 
37]. [32] and [33], instead, used video imaging to monitor the 
evolution of thermal patterns during the EBM process.  

However, EBM systems are also equipped with a large 
number of embedded sensors to monitor the vacuum chamber 
environment, the energy source and different subsystems. 
Currently, those sensor signals are not used for monitoring 
purposes, but they enclose a large amount of relevant 
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use of a one-class-classification variant of the Support Vector 
Machine (SVM) formalism. SVMs represent classification 
techniques based on the maximization of the margin between 
distinct classes. One-class-classification means that only one 
class is available for training, i.e. the class of in-control data, 
whereas any data point that does not belong to this class shall 
be classified as out-of-control. This variant, known as Support 
Vector Data Description (SVDD) [41 - 42] allows using the 
SVM method for statistical process monitoring. In the training 
phase, the SVDD algorithm is applied to a set of multivariate 
data representative of in-control conditions. First, a kernel 
width estimation is applied to determine the shape of a 
multivariate control region that adapts to the natural spread of 
the training data. Second, the kernel distance of each data 
point from the centre of the control region is computed and 
whenever such a distance is such that the data point is outside 
the control region, an alarm is issued. This monitoring scheme 
is also known as K-chart [41]. The analytic formulation of the 
SVDD procedure and the resulting monitoring scheme is 
briefly summarized in Appendix A. 

The application of this method to the multi-sensor data 
gathered from embedded sensors during the EBM process 
works as follows: 

 A training set consisting of in-control replicates of the 
same product is generated. For each part, the multi-
sensor signals are recorded during the entire process. 

 The SVDD control region is estimated based on 
training data. It can be used in retrospective way, to 
determine if the training data were actually in-control 
or not. 

 During the production of new products, the sensor 
signals are acquired on-line and the corresponding 
values of the control statistic are compared with the 
designed control region. An alarm in case of control 
limit violation.  

It is worth noticing that this approach applies to series 
production of the same product. Actually, most relevant 
industrial applications of the EBM process in the aerospace 
(e.g. turbine blades and fuel nozzles) and bio-medical sectors 
(e.g., hip prostheses and other medical implants) currently 
involve series production. However, it is known that one 
notable potential of metal additive manufacturing processes 
consists of being suitable for highly customized productions. 
In that case, a different training approach is needed. This can 
represent a possible extension of the current study. 

4. Discussion of results 

The proposed approach was applied to two sensor signals, 
i.e., the left and right rake sensor pulse signals. The pulse 
signal is a proxy of the amount of powder collected by the 
rake from one hopper. The left and right pulse signals during 
each powder recoating operation exhibit natural oscillations 
and varying gaps that depend on the natural variability of the 
powder dispatching process.  

Fig. 2 shows an example of contours of the bivariate space 
spanned by the two sensor signals (training phase only) such 
that each contour corresponds to a Type I error, 𝛼𝛼, value. The 

points plotted in Fig. 2 corresponds to measured sensor values 
during the production of in-control parts. Fig. 2 shows that the  

 
Fig. 2. Iso-lines of the SVDD control region corresponding to different Type I 
error levels (from bright yellow to dark blue in decreasing Type I error order); 

black points correspond to data observed during the training phase 

bivariate distribution of the two signals is strongly non-
normal and it exhibits some regions of the bivariate space 
where the density of measured values is higher. By setting 
𝛼𝛼 = 0.0027, the control region is the one shown in Fig. 3. It 
was generated by applying a leave-one-out cross-validation to 
the training data. 

Fig. 4 shows a superimposition of bivariate data acquired 
during the production of the two out-of-control parts (red 
points) superimposed to the training data and the SVDD 
control region. Fig. 4 shows that during the production of the 
out-of-control part there was a modification of the recoating  

Fig. 3. SVDD control region corresponding to 𝛼𝛼 = 0.0027 

 
Fig. 4. Superimposition of bivariate data (red crosses) acquired during the 
production of the out-of-control part on the SVDD control region; black 

points correspond to bivariate signal data observed during the training phase 
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information about the process and the occurrence of undesired 
events.  

Differently from previous studies based on external IR 
cameras, the goal of this study consists of proposing a novel 
data mining approach to fuse together information from 
sensors that are already embedded in the system, in order to 
determine the process stability and to anticipate the detection 
of out-of-control behaviors that may affect the final quality of 
the part. To this aim, a statistical learning method based on 
the Support Vector Machine (SVM) formalism [39] is 
proposed and combined with a control charting scheme 
applied to multiple sensor data streams. The proposed 
approach is aimed at detecting defects and process faults that 
can be related to the stability of embedded signals. This 
includes defects caused by errors in the powder deposition, 
unstable beam behaviors, so-called smoking phenomena [3] 
that alter the environmental conditions, etc. This study 
specifically deals with an out-of-control state corresponding 
to a geometrical distortion of the part caused by a wrong 
powder deposition. Such defect is among the ones that can be 
detected online via the proposed approach as various signals 
related to the recoating behavior and the dosing in each layer 
are available from embedded sensors. However, those signals 
provide only indirect information about the occurrence of 
geometrical defects. To further improve the capability of 
detecting this kind of defects during the process, a data fusion 
approach that integrates embedded signals with in-situ 
imaging is needed. This is will be the subject of a future work. 
In this study, a real case in EBM of Ti6Al4V parts produced 
either under in-control and out-of-control conditions is 
presented. Section 2 introduces the real case study and the 
signals available from embedded sensors. Section 3 briefly 
described the proposed methodology. Section 4 presents the 
results and Section 5 concludes the paper. 

2. Real case study 

 The real case study consists of the production of a test 
artifact via EBM of Ti6Al4V powder on an Arcam A2 system 
(see Fig. 1). This artifact is commonly used by the EBM 
system developed for acceptance testing after system 
installation or major maintenance/reconfiguration operations.  

Fig. 1. Top panel: two in-control test parts produced via EBM; bottom panels: 
one out-of-control part produced via EBM and a detail of the local 

geometrical distortion 

Fig. 1 (top panels) show two parts produced under in-
control conditions, with acceptable final part quality. Fig. 1 
(bottom panels) show one part produced with local 
geometrical defects caused by a wrong control of the powder 
recoating operation. All the parts were produced applying the 
nominal process parameters for the Ti6Al4V material (see 
Table 1). 

Table 1. Detail information about the part, the material and the process 
parameters used in the real case study 

Part dimensions 126 x 126 x 98,6 mm 
Material Ti6Al4V (size 45 – 106 μm) 

Major process parameters 
Layer thickness 50 μm 
Max current 20 mA 
Focus offset 25 mA 
Speed function 45 
Line offset 0.2 mm 
Hatch rotation 90° 

 
Differently from laser-PBF systems, the Arcam A2 

involves a feedback adaptation of the powder dosing in each 
layer. The recoated consists of a rake blade with metallic teeth 
that, under default settings, spreads the powder over the layer 
three times per layer. The powder is provided by two hoppers, 
on the left and on the right of the building area. On each side, 
a sensor measures a quantity that is a proxy of the amount of 
powder collected by the rake blade from the hopper. 
Depending on this sensor reading, the fetch positions of the 
rake are adapted layer-by-layer in order to keep a stable 
dosing from both the hopper during the entire process. When 
the sensor looses accuracy, the system may be forced to 
produce an over- or under-dosing, which leads to uneven 
powder beds and hence to local geometrical distortions (a.k.a. 
swelling) like the one shown in Fig. 1. The Arcam A2 system 
embeds different sensors that can be used to monitor the 
recoating process. Available signals for this purpose include 
the pulse values from powder flow sensors, the rake current 
and the rake positions. 

In addition, the system embeds several other kinds of 
sensors for the measurement of temperature (at bottom level 
and column level), currents and voltages, beam current and 
focus, duration of each phase of the process, pressure levels, 
etc. In this study, we propose a statistical learning method for 
the monitoring of multiple signals associated to the powder 
recoating operation. The method can be extended to include a 
larger number of sensor readings into the monitoring tool to 
further enhance the embedded intelligence of the system.  

3. Proposed methodology 

In the presence of multivariate data from different sensors, 
data fusion techniques are needed to extract the relevant 
information content and, at the same time, tackle the violation 
of common assumptions adopted in statistical process control. 
Indeed, multi-sensor data typically exhibit violations of 
distributional assumptions that motivate the use of data 
mining / machine learning methods [40]. In this framework, a 
suitable technique for multi-sensor data fusion relies on the 
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𝑘𝑘𝑘𝑘(𝒛𝒛) = 𝐾𝐾(𝒛𝒛 × 𝒛𝒛) − 2∑𝑗𝑗=1
𝑀𝑀 𝛼𝛼𝑗𝑗𝐾𝐾(𝒙𝒙𝑗𝑗 × 𝒛𝒛)  + ∑𝑗𝑗,𝑘𝑘=1

𝑀𝑀 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝐾𝐾(𝒙𝒙𝑗𝑗
× 𝒙𝒙𝑘𝑘) 

(4) 

In this study, the Gaussian radial basis (GRB) function was 
used and the heuristic procedure described in [41] for the 
kernel width selection was applied.  
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behavior. Indeed, the larger pulse peaks were observed on the 
right side instead of the left side, which probably caused a 
modification of the powder recoating and finally yielded the 
observed swelling effect.  

Fig. 5 shows the time series of the right and left pulse 
signals acquired during the production of the out-of-control 
part. The red circles in the figure indicate the observations 
where an out-of-control was issued by the SVDD method. 
Fig. 5 shows that the anomalous recoating events occurred 
between layer 1050 and layer 1750, i.e., in the second half of 
the process. The analysis of the printed part shows a growing 
swelling effect starting from 70% of the overall height along 
the building direction. 

An early detection of either an unexpected event or an out-
of-control behavior provides the system with the novel 
capability of signaling an alarm during the production of the 
part and, when needed, of stopping the process. An early 
detection of deviations from the expected behavior is also 
fundamental to pave the way to the future development of 
novel strategies for in-line adaptation of process parameters 
and defect prevention/correction. The major advantage of the 
proposed method consists of using sensor data that are already 
available in the system, without the need to install additional 
and external sensing equipment.  

Fig. 5. Time series of the left (top panel) and right (bottom panel) sensor 
pulse signals acquired during the production of the out-of-control part; red 

circles indicate data points that were classified as out-of-control by the 
SVDD-based method. 

5. Conclusion 

The industrial breakthrough of PBF systems is still limited 
by quality related issues, especially in highly regulated sectors 
like the aerospace and biomedical ones, which are pulling the 
metal additive manufacturing market. Indeed, the stability and 
repeatability of process is affects by several sources of defects 
and process errors. Despite increasing efforts to integrate 
sensing toolkits in commercial PBF systems (mainly co-axial 
and off-axial cameras and pyrometers), there is still a lack of 
statistical methods to make sense of acquired data in-line and 
automatically detect the onset of defects. This study attempts 
to develop a novel data mining approach for EBM processes 
by using only sensor data that are already available in the 
system, i.e., sensors that are normally used for environmental 
control and for the normal management of process operations. 

The study showed that the SVDD-based approach is 
suitable to learn from a training dataset representative of in-
control process runs a control region that adapts to the natural 
spread of sensor data. The method can be used in-line to 
signal any major departure from the training pattern, to 
anticipate the detection of defects and faults and to enhance 
the embedded intelligence capabilities of the system. 

The method here proposed can be extended in a future 
study to monitor a larger number of sensor signals, in order to 
expand the range of detectable defects and anomalous events. 

Appendix A. Support vector data description 

Given a multivariate training dataset {𝒙𝒙𝒋𝒋 ∈ ℝ𝒑𝒑, 𝒋𝒋 =
𝟏𝟏, … , 𝑴𝑴}, where 𝒙𝒙𝒋𝒋 = [𝒙𝒙𝟏𝟏,𝒋𝒋, 𝒙𝒙𝟐𝟐,𝒋𝒋, … , 𝒙𝒙𝒑𝒑,𝒋𝒋] 𝑻𝑻, the SVDD method 
consists of finding a minimal volume control region 
characterized by a centre 𝒐𝒐 ∈ ℝ𝒑𝒑 , and a radius 𝑹𝑹, that can 
envelop a given percentage of the original data. The statistical 
process monitoring methods relies on the estimation of the 
kernel distance of any observation 𝒛𝒛 ∈ ℝ𝒑𝒑 from the centre 𝒐𝒐 ∈
ℝ𝒑𝒑 of that region. The control limit is estimated to guarantee a 
target Type I error with the available dataset. A kernel 
distance, hereafter denoted by 𝒌𝒌𝒌𝒌(𝒛𝒛), replaces the traditional 
Euclidean and statistical distance notions to adapt the control 
region boundary to the actual spread of the data. The 
estimation of the minimal volume control region, centred in 
𝒐𝒐 ∈ ℝ𝒑𝒑  and with radius 𝑹𝑹 , requires the solution of the 
following data-driven optimization problem: 
 
min (𝑅𝑅2 + 𝐶𝐶 ∑ 𝜉𝜉𝑗𝑗)𝑀𝑀

𝑗𝑗=1   
s.t. (𝒙𝒙𝑗𝑗 − 𝒐𝒐)𝑇𝑇(𝒙𝒙𝑗𝑗 − 𝒐𝒐) ≤  𝑅𝑅2 + 𝜉𝜉𝑗𝑗 and 𝜉𝜉𝑗𝑗 ≥ 0, 
𝑗𝑗 = 1, … , 𝑀𝑀 

(1) 

 
where 𝝃𝝃𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … , 𝑴𝑴, are slack variables, and 𝑪𝑪 is a penalty 
coefficient used to weight the trade-off between the volume of 
the region and the percentage of enclosed data (𝑪𝑪 > 𝟎𝟎). By 
introducing the Lagrangian function: 
 
𝐿𝐿(𝑅𝑅, 𝒐𝒐, 𝜉𝜉𝑗𝑗; 𝛼𝛼𝑗𝑗, 𝛾𝛾𝑗𝑗) = 𝑅𝑅2 + 𝐶𝐶∑𝑗𝑗=1

𝑀𝑀 𝜉𝜉𝑗𝑗 − ∑𝑗𝑗=1
𝑀𝑀 𝛼𝛼𝑗𝑗(𝑅𝑅2 + 𝜉𝜉𝑗𝑗 − (𝒙𝒙𝑗𝑗

− 𝒐𝒐)𝑇𝑇(𝒙𝒙𝑗𝑗 − 𝒐𝒐)) − ∑𝑗𝑗=1
𝑀𝑀 𝛾𝛾𝑗𝑗𝜉𝜉𝑗𝑗 (2) 

 
and by setting the partial derivatives w.r.t. 𝑹𝑹, 𝒐𝒐, and 𝝃𝝃𝒋𝒋, 𝒋𝒋 =
𝟏𝟏, … , 𝑴𝑴, to zero, the problem (2) can be simplified as follows 
[41]: 
 
max (∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑗𝑗 −𝑀𝑀

𝑗𝑗=1 ∑ 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑘𝑘)𝑀𝑀
𝑗𝑗,𝑘𝑘=1   

s.t. ∑ 𝛼𝛼𝑗𝑗 = 1𝑀𝑀
𝑗𝑗=1  and 0 ≤ 𝛼𝛼𝑗𝑗 ≤ 𝐶𝐶, 𝑗𝑗 = 1, … , 𝑀𝑀 (3) 

 
A particularly interesting feature is that only the data 

points whose Lagrangian coefficients are larger than zero, 
called “support vectors”, influence the shape of the region.  
This allows one not only to avoid the time-consuming 
estimation of the complete density function, but also to 
determine the shape of the control boundary by using a subset 
of original data.  

By introducing the kernel trick, the inner product 𝒂𝒂𝑻𝑻𝒃𝒃 is 
replaced by a kernel function 𝑲𝑲(𝒂𝒂 × 𝒃𝒃). The kernel distance 
𝒌𝒌𝒌𝒌(𝒛𝒛) of any new observation 𝒛𝒛 ∈ ℝ𝒑𝒑 from the centre 𝒐𝒐 is: 
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𝑘𝑘𝑘𝑘(𝒛𝒛) = 𝐾𝐾(𝒛𝒛 × 𝒛𝒛) − 2∑𝑗𝑗=1
𝑀𝑀 𝛼𝛼𝑗𝑗𝐾𝐾(𝒙𝒙𝑗𝑗 × 𝒛𝒛)  + ∑𝑗𝑗,𝑘𝑘=1

𝑀𝑀 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝐾𝐾(𝒙𝒙𝑗𝑗
× 𝒙𝒙𝑘𝑘) 

(4) 

In this study, the Gaussian radial basis (GRB) function was 
used and the heuristic procedure described in [41] for the 
kernel width selection was applied.  
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behavior. Indeed, the larger pulse peaks were observed on the 
right side instead of the left side, which probably caused a 
modification of the powder recoating and finally yielded the 
observed swelling effect.  

Fig. 5 shows the time series of the right and left pulse 
signals acquired during the production of the out-of-control 
part. The red circles in the figure indicate the observations 
where an out-of-control was issued by the SVDD method. 
Fig. 5 shows that the anomalous recoating events occurred 
between layer 1050 and layer 1750, i.e., in the second half of 
the process. The analysis of the printed part shows a growing 
swelling effect starting from 70% of the overall height along 
the building direction. 

An early detection of either an unexpected event or an out-
of-control behavior provides the system with the novel 
capability of signaling an alarm during the production of the 
part and, when needed, of stopping the process. An early 
detection of deviations from the expected behavior is also 
fundamental to pave the way to the future development of 
novel strategies for in-line adaptation of process parameters 
and defect prevention/correction. The major advantage of the 
proposed method consists of using sensor data that are already 
available in the system, without the need to install additional 
and external sensing equipment.  

Fig. 5. Time series of the left (top panel) and right (bottom panel) sensor 
pulse signals acquired during the production of the out-of-control part; red 

circles indicate data points that were classified as out-of-control by the 
SVDD-based method. 

5. Conclusion 

The industrial breakthrough of PBF systems is still limited 
by quality related issues, especially in highly regulated sectors 
like the aerospace and biomedical ones, which are pulling the 
metal additive manufacturing market. Indeed, the stability and 
repeatability of process is affects by several sources of defects 
and process errors. Despite increasing efforts to integrate 
sensing toolkits in commercial PBF systems (mainly co-axial 
and off-axial cameras and pyrometers), there is still a lack of 
statistical methods to make sense of acquired data in-line and 
automatically detect the onset of defects. This study attempts 
to develop a novel data mining approach for EBM processes 
by using only sensor data that are already available in the 
system, i.e., sensors that are normally used for environmental 
control and for the normal management of process operations. 

The study showed that the SVDD-based approach is 
suitable to learn from a training dataset representative of in-
control process runs a control region that adapts to the natural 
spread of sensor data. The method can be used in-line to 
signal any major departure from the training pattern, to 
anticipate the detection of defects and faults and to enhance 
the embedded intelligence capabilities of the system. 

The method here proposed can be extended in a future 
study to monitor a larger number of sensor signals, in order to 
expand the range of detectable defects and anomalous events. 

Appendix A. Support vector data description 

Given a multivariate training dataset {𝒙𝒙𝒋𝒋 ∈ ℝ𝒑𝒑, 𝒋𝒋 =
𝟏𝟏, … , 𝑴𝑴}, where 𝒙𝒙𝒋𝒋 = [𝒙𝒙𝟏𝟏,𝒋𝒋, 𝒙𝒙𝟐𝟐,𝒋𝒋, … , 𝒙𝒙𝒑𝒑,𝒋𝒋] 𝑻𝑻, the SVDD method 
consists of finding a minimal volume control region 
characterized by a centre 𝒐𝒐 ∈ ℝ𝒑𝒑 , and a radius 𝑹𝑹, that can 
envelop a given percentage of the original data. The statistical 
process monitoring methods relies on the estimation of the 
kernel distance of any observation 𝒛𝒛 ∈ ℝ𝒑𝒑 from the centre 𝒐𝒐 ∈
ℝ𝒑𝒑 of that region. The control limit is estimated to guarantee a 
target Type I error with the available dataset. A kernel 
distance, hereafter denoted by 𝒌𝒌𝒌𝒌(𝒛𝒛), replaces the traditional 
Euclidean and statistical distance notions to adapt the control 
region boundary to the actual spread of the data. The 
estimation of the minimal volume control region, centred in 
𝒐𝒐 ∈ ℝ𝒑𝒑  and with radius 𝑹𝑹 , requires the solution of the 
following data-driven optimization problem: 
 
min (𝑅𝑅2 + 𝐶𝐶 ∑ 𝜉𝜉𝑗𝑗)𝑀𝑀

𝑗𝑗=1   
s.t. (𝒙𝒙𝑗𝑗 − 𝒐𝒐)𝑇𝑇(𝒙𝒙𝑗𝑗 − 𝒐𝒐) ≤  𝑅𝑅2 + 𝜉𝜉𝑗𝑗 and 𝜉𝜉𝑗𝑗 ≥ 0, 
𝑗𝑗 = 1, … , 𝑀𝑀 

(1) 

 
where 𝝃𝝃𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … , 𝑴𝑴, are slack variables, and 𝑪𝑪 is a penalty 
coefficient used to weight the trade-off between the volume of 
the region and the percentage of enclosed data (𝑪𝑪 > 𝟎𝟎). By 
introducing the Lagrangian function: 
 
𝐿𝐿(𝑅𝑅, 𝒐𝒐, 𝜉𝜉𝑗𝑗; 𝛼𝛼𝑗𝑗, 𝛾𝛾𝑗𝑗) = 𝑅𝑅2 + 𝐶𝐶∑𝑗𝑗=1

𝑀𝑀 𝜉𝜉𝑗𝑗 − ∑𝑗𝑗=1
𝑀𝑀 𝛼𝛼𝑗𝑗(𝑅𝑅2 + 𝜉𝜉𝑗𝑗 − (𝒙𝒙𝑗𝑗

− 𝒐𝒐)𝑇𝑇(𝒙𝒙𝑗𝑗 − 𝒐𝒐)) − ∑𝑗𝑗=1
𝑀𝑀 𝛾𝛾𝑗𝑗𝜉𝜉𝑗𝑗 (2) 

 
and by setting the partial derivatives w.r.t. 𝑹𝑹, 𝒐𝒐, and 𝝃𝝃𝒋𝒋, 𝒋𝒋 =
𝟏𝟏, … , 𝑴𝑴, to zero, the problem (2) can be simplified as follows 
[41]: 
 
max (∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑗𝑗 −𝑀𝑀

𝑗𝑗=1 ∑ 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑘𝑘)𝑀𝑀
𝑗𝑗,𝑘𝑘=1   

s.t. ∑ 𝛼𝛼𝑗𝑗 = 1𝑀𝑀
𝑗𝑗=1  and 0 ≤ 𝛼𝛼𝑗𝑗 ≤ 𝐶𝐶, 𝑗𝑗 = 1, … , 𝑀𝑀 (3) 

 
A particularly interesting feature is that only the data 

points whose Lagrangian coefficients are larger than zero, 
called “support vectors”, influence the shape of the region.  
This allows one not only to avoid the time-consuming 
estimation of the complete density function, but also to 
determine the shape of the control boundary by using a subset 
of original data.  

By introducing the kernel trick, the inner product 𝒂𝒂𝑻𝑻𝒃𝒃 is 
replaced by a kernel function 𝑲𝑲(𝒂𝒂 × 𝒃𝒃). The kernel distance 
𝒌𝒌𝒌𝒌(𝒛𝒛) of any new observation 𝒛𝒛 ∈ ℝ𝒑𝒑 from the centre 𝒐𝒐 is: 
 


