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PLANETARY PROTECTION



▪ During interplanetary missions, spacecraft and debris may impact with other 
planets over long times

• Impacts from man-made objects can cause biological contamination

• Sensible targets for scientific research (Mars, Europa, Enceladus) impose 
very stringent planetary protection requirements1

• Space missions must satisfy these requirements during design phase

▪ Driving factors

• Uncertainty over the initial state of the launcher injection

• Uncertainty over spacecraft design parameters (e.g. area/mass ratio)

• Random failures of spacecraft propulsion system

1 G. Kminek, ESA planetary protection requirements, Technical Report ESSB-ST-U-001, European Space Agency, February 2012
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Planetary Protection
Motivations



SNAPPshot (Suite for the Numerical Analysis of Planetary Protection)2, developed 
by the University of Southampton under a study for the European Space Agency
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Planetary Protection
Suite for Numerical Analysis of Planetary Protection

2 Letizia F., Colombo C., Van den Eynde J., Armellin R., Jehn R., SNAPPSHOT: Suite for the numerical analysis of planetary protection, ICATT 2016
2 Colombo C., Letizia F., Van den Eynde J., SNAPPSHOT: ESA planetary protection compliance verification software, Final report, ESA contract, Jan
2016
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Planetary Protection
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2 Letizia F., Colombo C., Van den Eynde J., Armellin R., Jehn R., SNAPPSHOT: Suite for the numerical analysis of planetary protection, ICATT 2016
2 Colombo C., Letizia F., Van den Eynde J., SNAPPSHOT: ESA planetary protection compliance verification software, Final report, ESA contract, Jan
2016



The main goal is to improve the accuracy and the efficiency of the Planetary 
Protection analysis:

▪ Numerical integration
Understand how the errors in a single propagation may affect planetary 
protection verification

• RK schemes (current)

• Symplectic and energy-preserving methods (in development)

• Other (future)

▪ Sampling techniques
Efficient methods to sample the initial dispersion

• Monte Carlo (current)

• Line Sampling & Subset Simulation (in development)

• Other (future)
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Planetary Protection
Our approach
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NUMERICAL INTEGRATION



▪ Numerical methods accumulate errors during long-term integrations

• Fictitious dissipation of total energy of the system

• Large errors in the propagation introduced by fly-bys

• Effect of numerical errors in single propagations on the overall planetary 
protection has to be determined

▪ Alternative numerical approaches may improve the accuracy of the orbital 
propagation

• Symplectic schemes preserve constants of motion exactly or with bounded 
oscillations

• Additional numerical techniques can help in maintaining the correct 
qualitative behaviour of the solution (no energy dissipation)
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Numerical integration
Introduction



Method Explanation Pros Cons

RK

Generic Runge-Kutta schemes can 
become symplectic when applied to 
Hamiltonian systems under conditions on 
their coefficients

• Step adaptation is 
possible

• Symplectic schemes 
have to be implicit

GLRK
Implicit method based on Gauss-
Legendre quadrature points

• Symplectic
• Numerically stable

• Implicit
• Fixed step

RKN

Runge-Kutta-Nystrom methods for 
separable Hamiltonian, use different 
schemes to schemes to integrate 
coordinates and momenta of the 
Hamiltonian

• Symplectic
• Can be explicit

• High number of 
evaluations

• Fixed step

SY
Derived from the Hamiltonian 
formulation, make use of successive 
canonical transformations

• Symplectic
• Explicit

• High number of  
evaluations

• Fixed step
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Numerical integration
Selection of numerical methods
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Numerical integration
Selection of numerical methods

Method (Order, Stages) Type Time step Property Reference

RK

(4,4)

(8,13)
Explicit Fixed step

Dormand and Prince, 1980

(5/4,7)

(8/7,13)
Explicit Adaptive step

Prince and Dormand, 1981

GLRK

(4,2)

(6,3)

(8,4)

Implicit Fixed step Symplectic
Butcher, 1964

Jones et al., 2012

Aristoff et al., 2012

RKN
(6,6)

(8,26)
Explicit Fixed step Symplectic

Dormand et al., 1987

Calvo et al., 1993

SY

(4,4)

(6,8)

(8,16)

Explicit Fixed step
Symplectic, 

canonical

Yoshida et al., 1990

Neri, 1988



Propagation of Apophis 1989-2029 (reference ephemeris from JPL SPICE)

8th order, fixed-step methods
(initial step determined according to RK8(7) with relative tolerance 1e-12)

*Propagations performed in Matlab on processor Intel® Core™ i7-6500U CPU @ 2,50GHz

01/09/2017 SDSM 2017 Summer School 12

Numerical integration
Tests



▪ Step regularisation
Step is rescaled during the integration according to the behaviour of the 
dynamics

• Maximum eigenvalue Λ of Jacobian matrix taken as reference value4

hn+1 = hn ΤΛ tn Λ tn+1
• More efficient tracking of dynamics, but change in time step during the 

integration breaks down the conservation properties of symplectic 
methods

▪ Projection methods
Correct the numerical solution according to the gradient of the energy function5

• Energy error is minimised

• Implicit non-linear problem has to be solved

4 F. Debatin, A. Tilgner, F. Hechler, Fast numerical integration of interplanetary orbits. In Second International Symposium on Spacecraft 
Flight Dynamics, 1986
5 Hairer, Geometric Numerical Integration Structure-preserving algorithms for ordinary differential equations (1990)
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Numerical integration
Additional techniques



Propagation of Apophis 1989-2039 (reference ephemeris from JPL SPICE)
Fly-by of 2029 is included

8th order, Regularised step
(initial step determined according to RK8(7) with relative tolerance 1e-12)

*Propagations performed in Matlab on processor Intel® Core™ i7-6500U CPU @ 2,50GHz

01/09/2017 SDSM 2017 Summer School 14

Numerical integration
Tests
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(initial step determined according to RK8(7) with relative tolerance 1e-12)
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Numerical integration
Tests



Fly-bys heavily affect the numerical solution, magnifying small numerical errors 
due to a strong non-linearity of the dynamics

▪ Possible solution: apply other techniques only during the fly-by

• Switch the centre of the propagation6

• Add projection

• other

▪ Problem: identification of the fly-by condition

• Set distance from the planet (arbitrary or SOI definition)

• Alternative approach: detection of fly-by according to the behaviour of the 
dynamics (Jacobian)

6 D. Amato, G. Baù, C. Bombardelli, Accurate orbit propagation in the presence of planetary close encounters, Monthly Notices of the Royal 
Astronomical Society, Volume 470, Issue 2, 11 September 2017, Pages 2079–2099
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Numerical integration
Additional techniques
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Physical model update
Fly-by detection through Jacobian

Considering the singular planet contributions to the Jacobian

▪ Value of planet contribution

Λj =
2𝜇𝑗

𝑟−𝑟𝑗
3

▪ Time variation of planet contribution

ሶΛj = −2𝜇𝑗
3(𝑟−𝑟𝑗)(𝑣−𝑣𝑗)

𝑟−𝑟𝑗
5

Fly-by detection criteria (approximation)

▪ Relative value w.r.t. main attractor: ΤΛj Λ0 ≥ tol (similar to SOI definition)

▪ Relative variation w.r.t. main attractor: ΤሶΛj ሶΛ0 ≥ tol
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SAMPLING TECHNIQUES



▪ Monte Carlo

• Number of runs selected to ensure the desired confidence level is respected 
(SNAPPShot)

▪ Other approaches to sampling
Methods compared in previous work7:

• Line Sampling
Aimed to increase accuracy of probability estimation

• Subset Simulation
Aimed to increase efficiency by reducing number of propagations

7 M. Romano, M. Losacco, C. Colombo, P. Di Lizia, Estimation of impact probability of asteroids and space debris through Monte Carlo Line 
Sampling and Subset Simulation, KePASSA 2017 Workshop
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Sampling techniques
Explored ideas



The Line Sampling (LS) is a Monte Carlo sampling method that probes the 
uncertainty domain by using lines instead of random points

▪ The lines are used to identify the boundaries of the impact region inside the 
coordinate space

• This can be done independently from the initial uncertainty and the 
probability estimation

• The lines follow a reference direction pointing toward the impact 
subdomain

▪ The estimation of impact probability is reduced to a number of 1D integration 
problems along each line

• Analytical integration results into a more accurate solution3

3 Enrico Zio, Nicola Pedroni, Subset Simulation and Line Sampling for Advanced Monte Carlo Reliability Analysis, Proceedings of the 
European Safety and RELiability (ESREL) 2009 Conference, 2009, pp.687-694. <hal-007210> 

01/09/2017 SDSM 2017 Summer School 21

Sampling techniques
Line Sampling
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Sampling techniques
Line Sampling

1. Determination of the “reference direction”
a. Impact region not known a priori

𝑥1

𝑥2
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Sampling techniques
Line Sampling

1. Determination of the “reference direction”
a. Impact region not known a priori

𝑥1

𝑥2

1. Determination of the “reference direction”
a. Impact region not known a priori
b. Information can be obtained in 

different ways
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Sampling techniques
Line Sampling

1. Determination of the “reference direction”
a. Impact region not known a priori

𝑥1

𝑥2

xG

𝛼

1. Determination of the “reference direction”
a. Impact region not known a priori
b. Information can be obtained in 

different ways

1. Determination of the “reference direction”
a. Impact region not known a priori
b. Information can be obtained in 

different ways
c. Reference direction generally pointing 

toward impact region
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Sampling techniques
Line Sampling

𝛼xk

2. Mapping onto the standard normal space
a. Generation of random samples 

according to given distribution

𝑥1

𝑥2
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Sampling techniques
Line Sampling

𝛼

2. Mapping onto the standard normal space
a. Generation of random samples 

according to given distribution

2. Mapping onto the standard normal space
a. Generation of random samples 

according to given distribution
b. Transformation from physical 

coordinates into normalised standard 

space following Φ θk = F xk

xk → θk

𝜃1

𝜃2
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Sampling techniques
Line Sampling

3. Sampling along the lines
a. Lines defined in normalised space

෨𝜃𝑘 = 𝑐𝑘𝛼 + 𝜃𝑘,⊥

𝜃1

𝜃2

𝛼

𝜃k,⊥

ck
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Sampling techniques
Line Sampling

3. Sampling along the lines
a. Lines defined in normalised space

෨𝜃𝑘 = 𝑐𝑘𝛼 + 𝜃𝑘,⊥

𝜃1

𝜃2

𝛼

𝜃k,⊥

ck

3. Sampling along the lines
a. Lines defined in normalised space

෨𝜃𝑘 = 𝑐𝑘𝛼 + 𝜃𝑘,⊥

b. Intersections ҧ𝐜𝟏
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𝐤 with impact 

region found where objective function

𝑌 𝑐𝑘 = 0
തc1

k

തc2
k
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Sampling techniques
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3. Sampling along the lines
a. Lines defined in normalised space

෨𝜃𝑘 = 𝑐𝑘𝛼 + 𝜃𝑘,⊥

b. Intersections ҧ𝐜𝟏
𝐤, ҧ𝐜𝟐

𝐤 with impact 

region found where objective function

𝑌 𝑐𝑘 = 0

Iterative procedure requires extra 
orbital propagations
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Sampling techniques
Line Sampling

𝑥1

𝑥2

3. Sampling along the lines
a. Lines defined in normalised space

෨𝜃𝑘 = 𝑐𝑘𝛼 + 𝜃𝑘,⊥

b. Intersections ҧ𝐜𝟏
𝐤, ҧ𝐜𝟐

𝐤 with impact 

region found where objective function

𝑌 𝑐𝑘 = 0

c. Boundaries of the impact region are 
covered
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Sampling techniques
Line Sampling

4. Estimation of impact probability

a. Partial probability estimates are 
computed along each line using the 
CDF of the unit gaussian:

Pk I = Φ ҧ𝐜𝟐
𝐤 −Φ ҧ𝐜𝟏

𝐤

b. Total probability and variance

P I =
1

NT
σk=1
NT Pk(I)

ෝσ2 P I =
1

NT(NT−1)
σk=1
NT Pk I − P I

2

𝜃1

𝜃2
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Sampling techniques
Test: Launcher of Solo

Solar Orbiter (SolO) is a planned Sun-observing satellite, under development by ESA.

Analysed event: fly-by of Venus

𝐍𝐒𝐚𝐦𝐩𝐥𝐞𝐬 𝐍𝐏𝐫𝐨𝐩 𝐏(𝐈) ෝ𝛔

MCS 54114 54114 4.2e-2 8.6e-4

LS ~54000 ~200000 4.3e-2 5.5e-4

LS identifies well the boundaries of the impact region

but
Large expected probability and compact impact region 
make the method less efficient for the same 
confidence level
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Sampling techniques
Test: Apophis

MCS LS

𝐍𝐒𝐚𝐦𝐩𝐥𝐞𝐬 𝐍𝐏𝐫𝐨𝐩 𝐏(𝐈) ෝ𝛔

MCS 1e6 1e6 5.00e-5 6.86e-6

LS
1e4 ~1e5 5.38e-5 1.18e-6

1e5 ~1e6 5.32e-5 3.45e-7 Similar number of orbital 
propagations as MC

Similar confidence level as MC

Small expected probability
Distributed impact region

Analysed event: return in 2036 (according to observations in 2009)9

9 http://newton.dm.unipi.it/neodys
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CONCLUSIONS



▪ Integration

• Symplectic methods show good performance in cases of regular dynamics

• Very close fly-bys introduce very large numerical errors in the integration

• Techniques to cancel the effect of a fly-by on the propagation exist and are 
being investigated

▪ Sampling

• LS can achieve a lower variance of the solution (higher accuracy) with the 
same number of random samples, with larger efficiency as the impact 
probability gets lower

• Current implementation supposes a unique impact region with a regular 
shape, during a given time window

• Current implementation uses extra evaluations to probe each line, thus 
decreasing the efficiency of LS
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Conclusions
Final considerations



▪ Numerical integration

• Explore alternative methods (symplectic and non)

• Explore alternative formulations of the dynamics (Keplerian/equinoctial 
parameters, Delaunay parameters, universal variables, etc.)

• Develop other numerical schemes (symplectic and non)

▪ Uncertainty sampling

• Obtain an analytical expression for the confidence interval in LS

• Improve the computation of zeros

• Explore other techniques to improve efficiency

▪ Final goal: apply the two approaches (efficient sampling and conservative 
integration) to planetary protection analysis
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Conclusions
Future work
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