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ABSTRACT As new services and business models are being associated with the power distribution network,
it becomes of great importance to include load uncertainty in predictive computational tools. In this paper,
an efficient uncertainty-aware load flow analysis is described which relies on generalized polynomial chaos
and stochastic testing methods. It is described how the method can be implemented in order to account
for real data-based load profiles due to two different usage models: residential loads and electrical vehicle
charging profiles. Hence, it is shown how some relevant information affecting the quality of service can
be deduced by means of non-elementary post-processing computations. The proposed technique is tested
by using a benchmark scenario for typical European low voltage networks, considering the variation of
both residential loads and EV charging profiles. The results are compared with the same simulation done
by means of the Monte Carlo methodology. The consideration done during the analysis will be useful to
clarify the application of the methodology but also to understand the effect of load variations on the grid
characteristic quantities.

INDEX TERMS Distribution network, load uncertainty, variability analysis, load forecasting, EV charging
profiles, electrical vehicles.

I. INTRODUCTION
Electrical distribution networks are a specific kind of large
scale systems that are designed to provide the required power
to the loads while ensuring stability of node voltages, i.e. the
quality of service. The recent trends towards the exploita-
tion of renewable energy sources and the integration of
new services, e.g. the charging of electrical vehicles, are
introducing a remarkable variability of the powers that are
delivered and/or absorbed at the terminal loads. Such a vari-
ability can jeopardize the stability of the network and the
quality of service [1]. For such reasons, it is now notice-
able the key role that uncertainty-aware computational tools
can play during the design and real time control of power

distribution circuits [2]–[5]. In fact, such tools can provide a
comprehensive view of the overall network: they can predict
bus voltages and line currents variations at network points that
can hardly be measured.

The mainstream network uncertainty analysis approach
adopts probabilistic models for the loads and uses repeat-
edly deterministic Load Flow (LF) analysis within a
Monte Carlo (MC) iterative procedure. This approach, which
is commonly referred to as Probabilistic Load Flow (PLF)
analysis, can however be very time consuming and thus
unpractical. Indeed, many open issues remain in PLF anal-
ysis. A first relevant issue is connected to modeling load
uncertainty in a realistic way. Load modeling is commonly
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based on statistical analyses of available customer profile
data that are collected and analyzed for several network areas
and utility types (e.g residential, commercial and industrial,
electrical vehicles). Several modeling approaches exist, some
of these are built on the aggregated data about the total
load of the network, some others on the analysis of the
statistical distribution of the loads at each node. In order
to account for the interplay of many independent uncertain
loads (i.e. variations in the active powers supplied at the
different phases of the network) a great number of MC runs
is needed to achieve a satisfactory statistical description.
In fact, even though loads uncertainty can commonly be
assumed to be Gaussian distributed, the nonlinear nature of
load flow leads to state variable variations, e.g. maximum
voltage at nodes or lines current, that are non-Gaussian-
distributed. In this case, the statistical information aboutmean
value and variance of an electric variable is not enough
to describe it properly and the detailed Probability Density
Function (PDF) shape is required for further inferences. The
accurate determination of PDF with MC method can require
tens of thousands repeated load flow analyses thus becoming
very time consuming.

To address the above issues, in this paper we focus on
an efficient uncertainty quantification method recently pre-
sented in the literature [6], [7], and describe its specific appli-
cation to the PLF problem [8], [9]. The method is based on
generalized Polynomial Chaos (gPC) expansion and Stochas-
tic Testing (ST) algorithm and is denoted as gPC+ST. Com-
pared to other approximate techniques adopted for PLF
analysis [2], [3], the gPC+ST method exhibits some features
that make it well suitable for PLF applications. In fact,
gPC+ST can be applied in connection to any available deter-
ministic load flow solver without having to modify the codes.
Furthermore, the gPC+ST method can deal with truly non-
linear problems that provide non-Gaussian-distributed out-
put variables even in the case of uncertainty sources being
modelled as Gaussian-distributed parameters. This is indeed
the case for load flow analysis formulated in terms of node
voltages and powers.

As a first original contribution of this paper, we describe
how the gPC+STmethod can be implementedwhile account-
ing for real data-based load profiles. We will focus on two
different types of load. The first is a mix of residential and
commercial loads, while the second represents the power
used to recharge electric vehicles.The two load categories
are different one another, however, they are well suited to be
interpreted in a unified probabilistic way.

The profiles of the residential and commercial loads are
considered from the low voltage side and the data are pro-
vided by the benchmark IEEE European low voltage test
feeder network [10]. The benchmark is also used as a test
network to demonstrate the validity of our method. The data
relating to the recharging of electric vehicles, on the other
hand, are measured and acquired in the context of the Ital-
ian project Teinvein [11] and represent a special case of
recharging: low voltage and on recharging stations consisting

of several parallel recharging points. These are used by a
very specific fleet of vehicles that are the object of the cited
project.

A second contribution of our research is showing how the
proposed method can be exploited to predict the detailed
probability distribution and variability interval of a set of
Quantities of Interest (QoI) that directly impact on the quality
of service. Such variables can include the peak and minimum
values assumed by the three phase voltages at some observ-
able nodes as well as more general quantities that require
non-elementary post-processing computations. In fact, real
load profiles tend to produce sharp fluctuations in time of the
node voltages. However, only the peak voltages that last for
a sufficiently long period of time actually affect the quality
of service. In this paper, we show how, for a given degree of
variability of the load profiles, the proposed gPC+STmethod
can be exploited to deduce the probability that a node voltage
will exceed a safe limit for a time duration W .
The remainder of the paper is organized as follows:

Sec. II reviews the deterministic load flow analysis;
in Sec. III, we model load uncertainty and present the idea
behind the gPC+ST method while in Sec. IV we provide
the computational details. In Sec. V, we describe a rele-
vant example of non-elementary post-processing computa-
tion and, finally, in Sec. VI we illustrate some application
results in different scenarios.

II. LOAD FLOW ANALYSIS
An electrical distribution system can be seen as a set of buses
connected to each other by lines. Devices and equipment
capable of providing or absorbing active and reactive power
are connected to each one of the buses. The load flow problem
consists in finding the set of voltages, i.e. the magnitude
and angle, which, together with the network impedances,
produces the load flows that are known to be correct at the
system terminals. Assuming that the network is made of N
buses and Nl lines, the problem is formulated mathematically
as a set of nonlinear equations [12], [13] of the type:

Fn( EV) = Sn − Vn

N∑
i=1

YniV∗i = 0 (1)

for n = 1, . . . ,N . In (1), Sn = Pn+ jQn denotes the complex
power at node n where Pn and Qn are the active and reactive
powers respectively, Vn is the node voltage phasor, while Yni
are the entries of the bus admittance matrix. Node voltage
phasors are collected into vector EV.
Network terminations are specified by imposing the known

active and reactive powers Pn, Qn absorbed or delivered by
loads. Load conditions vary in time and thus the associated
powers become functions of time, Pn(t), Qn(t). Let us con-
sider a given observation time period (e.g. a day or a week),
that is discretized into a sequence of Nt equally-spaced time
instants tm = m ·1t , over which the load profiles are given.
Node voltage waveforms Vn(t) are calculated by repeat-
edly solving the nonlinear problem (1) over the sequence of
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time instants tm. In doing that, the network state computed
at time tm is used as the solver initial condition at next
time tm+1.

III. UNCERTAINTY QUANTIFICATION WITH
GENERALIZED POLYNOMIAL CHAOS
A. MODELING LOAD VARIABILITY
In the literature, load modeling is commonly achieved by
exploiting historic data sets that are collected and analyzed
for several network areas and utility types (e.g residential,
commercial and industrial, electrical vehicles). Coherently
with such an approach, the gPC-based methodology that
we illustrate in this paper allows accounting for the typical
time evolution (i.e. the chronological variation) of the most
common power load profiles. The first type of loads herein
considered are residential and commercial ones: these are
single-phase loads connected at different nodes of the net-
work. To realistically reproduce the effects that these loads
could have on the network, we consider 55 different power
profiles pRCn (t), with n = 1, . . . 55, selected among the ones
provided with the benchmark test case [10]. These data rep-
resent with good approximation what can happen in a daily
scenario. The 55 profiles are randomly subdivided into three
roughly equivalent sets, and each set is then connected to one
of the three phase lines (each load is connected to a different
node). Fig. 1 shows the average value (i.e., the ensemble
average) and the variability range of the loads for each phase
line. It is evident how residential and commercial power
demand is higher over certain time slots of the day where it
can exhibit significant variability. In order to reproduce the
uncertainty of the total power demand at each phase line the
active power at the nth node is written as:

Pn(t) = pRCn (t)
[
1+ σRCn ξj

]
(2)

FIGURE 1. Load variability in the three phases for the residential and
commercial loads. The blue line present the mean value and the
shadowed region the variability range.

where we remind that pRCn (t) is the (known) nominal power
profile over the time period. In (2), ξj denotes a zero-mean
Gaussian-distributed statistical variable having unitary vari-
ance, i.e. 〈ξj〉 = 0 and 〈ξ2j 〉 = 1, while σRCn is a scaling
constant that determines the degree of variability.

FIGURE 2. Load variability in the three phases for the Electrical Vehicle
Charging Stations. The blue line present the mean value and the
shadowed region the variability range.

The second type of loads that we consider in this paper
is the active power absorbed by EV charging stations. Fig. 2
shows some typical time evolutions of the EV power profiles
pEV (t) measured during the research activity of the Italian
Project TEINVEIN [11]. The electric vehicles that are con-
sidered in this project compose the fleet of a very successful
urban car sharing service. These vehicles are recharged by
service personnel at times of day with a distribution that is
essentially optimized for the car sharing purposes: i.e. having
the maximum number of charged vehicles at peak usage
times.

Similarly to what has been done for commercial and res-
idential profiles, the EV profiles are randomly grouped into
three sets and connected to the three phase lines. To the aim
of reproducing the effect of EV loads and their statistical
uncertainty, a second active power contribution

P′n(t) = pEV (t)
[
1+ σEVn ξj

]
(3)

is added at the nth node, where σEVn is the degree of vari-
ability for the EV profile. Compared to the first type of
loads, EV profiles exhibit some different features: they are
more continuous with time and involve higher power con-
sumptions. The addition of EV profiles thus enriches the
scenario of the probabilistic analysis. We finally remark that
the number of statistical parameters ξj employed does not
necessarily corresponds to the number of nodes or loads,
in fact sets of power profiles at different nodes can be
scaled by the same statistical parameter. As an instance,
in Sec. VI, devoted to applications, we will consider
only three statistical ξj variables, one for each phase
line.
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B. GENERALIZED POLYNOMIAL CHAOS
We consider a probabilistic problem where the uncertainty
in the load power profiles is described by means of l
stochastic parameters ξr modeling active power variability
as in (2). Stochastic parameters are collected in the vector
Eξ = [ξ1, ξ2, . . . , ξl]. The gPC method consists in adopting
generalized polynomial chaos expansions for the node volt-
ages. Depending on the numerical technique used to solve
the gPC problem, the variables that have to be expanded can
be all of the node voltages in the network or a subset of
them, obviously these voltages are in general represented as
complex phasors includingmagnitude and phase information.
In some cases, the variables that we need to expand are
limited to the quantities that we want to monitor: they may
be the magnitude of some node voltages or line currents at
a given time or the peak or minimum value assumed over a
time period. In what follows, we will generically denote as
V (t, Eξ ) one of these variables. Under the mild hypothesis that
V (t, Eξ ) has finite variance (i.e. it is a second-order stochastic
process), it can be approximated by an order-β truncated
series [14]

V (t, Eξ ) ≈
Nb∑
i=1

ci(t)Hi(Eξ ), (4)

formed by Nb multi-variate basis functions Hi(Eξ ) weighted
by unknown polynomial chaos coefficients ci(t). The main
feature in expression (4) is that the dependence of V (·) on
the deterministic variable time, which is incorporated into
coefficients ci(t), is separated by its dependence on statistical
parameters Eξ represented by basis functions Hi(Eξ ).
Each multi-variate basis function is given by the product

Hi(Eξ ) =
l∏

r=1

φir (ξr ) (5)

where φir (ξr ) is a univariate orthogonal polynomial of degree
ir whose form depends on the density function of the
r th parameter ξr . For instance, φir (ξr ) are Hermite polyno-
mials if ξr is a Gaussian-distributed variable, while φir (ξr )
are Legendre polynomials if ξr is a uniformly distributed
variable. A complete list of correspondence between sev-
eral typical stochastic distributions and associated orthogonal
polynomials can be found in [14].

For a given number of parameters l and series expansion
truncation order β, the degrees ir of univariate polynomials
in (5) forming Hi(Eξ ), for r = 1, . . . , l, satisfy the following
relation

l∑
r=1

ir ≤ β. (6)

For generic truncation order β and number of parameters l,
the number of gPC basis functions is given by [6]

Nb =
(β + l)!
β! l!

. (7)

IV. COMPUTING THE GPC COEFFICIENTS
There are two different mainstream approaches for comput-
ing the gPC expansion coefficients in (4): Galerkin Projection
and Collocation Method [15].

A. GALERKIN PROJECTION (GP)
Galerkin projection is an intrusive numerical technique that
requires modifying the LF code (1). In accordance with the
this method, a gPC expansion of the type (4) is adopted for
each unknown nodal voltage Vn(t), i.e.

Vn(t, Eξ ) ≈
Nb∑
i=1

cni (t)Hi(Eξ ), (8)

leading to Nb × N unknown cni coefficients that are complex
variables. Such coefficients are determined by plugging the
expansions (8) into (1) and then projecting the resulting nodal
equations along the Nb basis functions. This results in a very
large nonlinear system of size Nb × N , i.e.

〈Fn( EV(Eξ ),Hi(Eξ )〉� = 0, (9)

for n = 1, . . . ,N and i = 1, . . . ,Nb, where 〈·〉� denotes the
inner product in the stochastic space [6]. The solution of (9)
requires a significant computational effort both in terms of
time and allocated memory. As an example, consider the case
of a distribution network withN = 100 nodes, and suppose to
perform stochastic Galerkin with l = 3 statistical parameters
and expansion order β = 3. In this case, Nb = 20, so that
the nonlinear system to be solved has size Nb × N = 2, 000.
Due to problem nonlinearity, equations (9) tend to be strongly
coupled among them (i.e. intermodulation of expansion coef-
ficients) so that the computational time required for solving
the system tends to grow as a power of two of the system size,
i.e. about (Nb×N )2. In our example, the computational time
for solving the Galerkin problem is about 400× longer than
that needed for a single LF analysis. The GP computational
time grows very rapidly with the number of statistical param-
eters thus limiting the applicability of the method to networks
of small size.

B. STOCHASTIC COLLOCATION (SC)
SC is a nonintrusive method that can be combined with any
LF formulation (1) without modifying the implementation
codes. A second advantage of the SC method is that gPC
expansion (4) is adopted limitedly to the set of network
variables that we want to evaluate, i.e. the peak value of some
monitoring node voltages. In what follows, we will focus on
a recently proposed efficient implementation of SC method
referred to as Stochastic Testing (ST) method. In accordance
with the collocation-based Stochastic Testing (ST) [6], the
Nb unknown coefficients cj(t) in the series (4) are calculated
by properly selecting Ns = Nb testing points Eξ k , for k =
1, . . . ,Ns in the stochastic space where Vk (t) = V (t, Eξ k ) is
calculated with a deterministic LF analysis.
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At each testing point, the series expansion (4) is enforced
to fit exactly (i.e., the polynomials interpolate the samples)
the values Vk (t).
Mathematically, this results in the following linear system

M Ec(t) = EV (t), (10)

where Ec(t) = [c1(t), . . . , cNb (t)]
T and EV (t) = [V1(t), . . . ,

VNs (t)]
T are the column vectors collecting the unknown coef-

ficients and node voltage values respectively.
The Nb×Nb square matrixM = {ak,i} = {Hi(Eξ k )} collects

the gPC basis functions evaluated at the testing points, i.e.

M =

 H1(Eξ1) . . . HNb (Eξ
1)

...
. . .

...

H1(EξNs ) . . . HNb (Eξ
Ns )

 . (11)

It is worth noting that matrixM only depends on the selected
basis functions and testing points, so that it can be precalcu-
lated, inverted and used for any t = tm as follows:

Ec(tm) =M−1 EV (tm). (12)

The ST method enables handling PLF problems with larger
size and larger number of parameters.

The selection of the testing points Eξ k in the stochastic
space is done so to ensure the highest numerical accuracy
of the gPC-based interpolation scheme and of the associated
statistical description. This is achieved by considering as
testing points the (β + 1)l Gauss quadrature nodes in the
l-dimensional stochastic space. Since the number (β + 1)l of
nodes is greater than the numberNb of basis functions defined
in (7), a subset formed byNs = Nb quadrature nodes has to be
selected as testing points in order to make problem (12) well
posed. A possible method for selecting the subset of testing
points among the quadrature nodes is presented in [6].

V. NON-ELEMENTARY POST-PROCESSING
COMPUTATION
Once the coefficients cj(t) are computed, the mean value
and standard deviation of an observable variable V (t, Eξ )
can easily be determined [6]. Furthermore, and even more
importantly, the gPC expansion (4) provides a compact model
for the V (t, Eξ ) multi-dimensional dependence. This enables
repeated evaluations of V (t, Eξ ) for large numbers of uncer-
tainty vector realizations Eξ k in very short times (one million
evaluations require only few seconds on a quad-core com-
puter) and the determination of the detailed shape of the
PDF. Such accurately-computed PDF can then be exploited
in further inferences such as the evaluation of the variability
interval of the observable variable (with a certain confidence
degree).

More general information can further be deduced through
non-elementary post-processing computations. In what fol-
lows, we illustrate two examples of non-elementary comput-
ing that are relevant for PLF applications.

A. PEAK VOLTAGE LASTING FOR A TIME DURATION W
In this first example, we focus on the determination of the
probability that a node voltage will exceed a safe limit VL
for a time duration W . To this aim, and using the notation
introduced in Sec. II, we consider the generic time window
of duration W = nw1t (with nw << Nt ) corresponding to
the time subgrid tm+1, . . . , tm+nw and the related samples of
the observable node voltage, i.e.

V (tm+1, Eξ ), . . . ,V (tm+nw , Eξ ). (13)

We denote

αm(Eξ ) = min{V (tm+1, Eξ ), . . . ,V (tm+nw , Eξ )} (14)

the minimum of such voltage values. It results that the value
αm is exceeded (or equated) by the considered node voltage
for all the duration W . As a consequence, the maximum
value of αm calculated over all possible time windows of
duration W , i.e.

V peak
W (Eξ ) = max{αm(Eξ )}︸ ︷︷ ︸

m∈(0,...,Nt−nW )

(15)

provides the maximum voltage level that is exceeded (or
equated) by the node voltage for a time period W . For a
given degree of variability of the power load profiles, the PDF
fW (V ) of the quantity of interest V peak

W (Eξ ) can be computed by
means of the proposed gPC+ST method and post-processing
expressions (14) and (15). After that, the integral∫

∞

VL
fW (V )dV (16)

supplies the probability that the safe limit VL is exceeded by
the considered node voltage for a time duration W .

B. VOLTAGE UNBALANCE FACTOR
Probabilistic fluctuations of node voltages can induce some
unbalance among the line phases eventually affecting the
quality of service in accordance with the IEC EN 50160. The
percentage Voltage Unbalance Factor (VUF) is just a measure
of such a quality deterioration. It is defined as the ratio of
the negative voltage sequence component Vn to the positive
voltage sequence component Vp [16], i.e.

VFU =
|Vn|
|Vp|
· 100, (17)

with

Vn =
VAB + a2 · VBC + a · VCA

3
(18)

and

Vp =
VAB + a · VBC + a2 · VCA

3
, (19)

where VAB, VBC , VCA are the phasors of the unbalanced line
voltages while a = exp (j 120◦) and a2 = exp (j 240◦).
By means of the gPC+ST method and post-processing
expression (17), the detailed PDF of the maximum VUF
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over a given observable time window (e.g. a day) can
be determined. Furthermore, combining (17) with (14)
and (15), it is possible to deduce the PDF of the maximum
VUF, i.e. VUFpeakW , lasting for a sufficiently long time W
(e.g. 15 minutes) and thus able to deteriorate the quality of
service.

VI. SIMULATION FRAMEWORK AND
NUMERICAL RESULTS
A low-voltage distribution network, typical of Europe, was
chosen to demonstrate the method. It is a Radial network,
described through buses and lines with their impedance. The
phenomena of voltage drop and coupling between the phases
are therefore not negligible and it is precisely these effects
that are analyzed in order to determine the quality of the
network.

Such a test network, published by the Test FeedersWorking
Group of the Distribution System Analysis Subcommit-
tee of the Power Systems Analysis, Computing, and Eco-
nomics Committee (PSACE), provides a valid benchmark for
researchers willing to study low voltage feeders which are
common in Europe [10]. Fig. 3 shows the tree topology of
the benchmark power distribution network that we will use as
the case study: the markers represent the loads and the colors
the load phase connection. In the figure the Charging Stations
and the observation point are also shown.

FIGURE 3. Topology of the IEEE low voltage European test feeder used in
this research as a benchmark example: the loads are applied to the node
with the circle marker (Red = phase A, Black = phase B, Green =

phase C). The charging stations CS for each phase are shown.

In our implementation, the gPC+ST code developed at
Massachusetts Institute of Technology [6] and written inMat-
lab is interfaced with the Load Flow deterministic solver
OpenDSS [17]. Such a simulation framework is used to per-
form variability analysis of the test IEEE European low
voltage test feeder shown in Fig. 3. The LV test feeder
model is composed of 906 low voltage nodes, connected by

905 branches. The network is radial, with 55 load buses.
In this work, we assume that all of the powers at the termi-
nation are given as 1-phase loads. Such loads are assigned to
55 nodes and their shapes are provided by the benchmark,
as 1 minute time series, over 24h time span [10]. In the
following, we consider three different scenarios. The first is
where only residential/commercial loads are present. In the
second two scenarios we consider also the presence of Elec-
trical Vehicles. In one case by keeping the residential loads
fixed and varying only the contribution of electric vehicles,
in the other by varying both types of load but with different
values of σ .

A. SCENARIO I: VARIATION OF LOAD WITHOUT EV
In what follows, we describe one possible application of the
proposed variability analysis where we consider statistical
variations of the total power of the loads assigned to a line
phase. To this aim, and in accordance with the load model (2),
we assume that the active powers Pn(t) of all of the nodes
assigned to a given phase line, e.g. Phase A, are scaled
by the same ξ Gaussian statistical parameter, e.g. ξ1. As a
result, three statistically independent parameters ξ1, ξ2 and
ξ2 are taken into account for the three phase lines A, B, C,
respectively. The The degrees of variability are constant and
set to σp1 = σp2 = σp3 = 0.2 for all of the loads connected to
the three phase lines. This choice is completely arbitrary and
wasmade to ensure that the scaling factor, comprised between
0 and 1, induces a variation no greater than 20 %.

FIGURE 4. Time domain curves of the envelope of maxima and minima in
the 20 sampling points.

Assuming a β = 3 expansion order, 20 testing points are
generated in the statistical space and for each one of them a
deterministic load flow analysis is performed. Fig. 4 reports
the envelope of the voltage waveforms of the phase Bminima
and maxima at node 898 evaluated in the 20 sample points
(i.e. a given set of parameters Eξ ), simulated with OpenDSS,
while in Fig. 5 the boxplot of the phase B voltage is reported
for each gPC sample. Voltage waveforms exhibit sharp fluc-
tuations over the day due to the time varying nature of the
load profiles. In addition, the daily peak and minimum of
the phase voltages undergo statistical variations due to the
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FIGURE 5. Scenario I. For each gPC sample the variation of the phase B
voltage waveform is plotted. The red cross markers represent the outliers,
the horizontal red line in each box represents the median value, while the
extent of the blue box is the interval of variation from the 25th to the
75th percentile.

FIGURE 6. Distribution of the daily peak and minimum value for the
Phase B at observable node 898.

uncertainty of the loads.With the proposed gPC+STmethod,
we calculate the detailed statistical distribution of the voltage
minima and peak values for the same phase B at node 898.
Fig. 6 shows, as an example, the distribution of the daily peak
and minimum value for the Phase B at observable node 898.

It can be seen how, for the load distribution provided
by the benchmark, Phase-B exhibits great variability of the
minimum value, that ranges within the interval (232, 242) V
with 90% probability. The peak value of Phase B, fluctuates
within a narrower interval, i.e. about (252.5, 254) V, however
its distribution is non Gaussian. This result is better seen
in Fig. 7 where the statistical distributions of the Phase-B
peak computed with the proposed gPC and with the reference
MC method are reported and compared with the Gaussian
distribution of equal mean value and variance.

Such a nonGaussian distribution of the node voltage
is due to the nonlinearity of the PLF problem which
is correctly reproduced by the gPC+ST model. It is
worth noting how the MC method (implemented with a
latin-hypercube sampling [18]) requires more than 5, 000

FIGURE 7. (Histogram) Detail of the distributions of the Phase-B daily
peak value as computed with gPC and MC method (5,000 samples). (Blue
Dashed Line) Gaussian distribution of equal mean value and variance.

FIGURE 8. Distributions of V peak
W of the Phase B at observable node 898

for different time durations.

samples
(i.e. deterministic load flow analyses) in order to obtain a
sufficiently accurate estimation of the peak value distribution.
With this setting, the peak value distributions provided by the
proposed gPC and MC method are almost superimposed and
the associated standard deviations, i.e. σgPC = 0.396 V and
σMC = 0.401 V, match within a relative accuracy of 2%.
As a second example, Fig. 8 shows the distributions of the

quantity V peak
W defined in (15) (i.e., the maximum voltage

level that is exceeded by the node voltage for a time dura-
tionW ) for time durationsW = 5 min andW = 20 min. If a
safe upper limit of VL = 252.5V is assumed, by integrating
the PDFs, we derive that there is a ≈ 70% probability that
the Phase-B node voltage will exceed the upper limit for a
time duration of five minutes. Such a probability reduces to
zero for time durations of 25 minutes or longer. A further
fundamental element to assess the quality of low voltage
networks in the presence of single-phase loads is the voltage
unbalance factor VUF defined in (17) along with the quantity
VUFpeakW , i.e. the VUF peak lasting for a sufficiently long
timeW . Fig. 9 shows the PDFs of VUFpeakW , for three different
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FIGURE 9. Distribution of voltage unbalance peak VUFpeak
W at 898 for

three different time windows.

TABLE 1. Simulation times.

time windows. It is seen how the mean value of VUFpeakW
reduces as the observable time duration W is increased.
Finally, in Table 1, we report the simulation times of the

proposed variability analysis (dominated by the deterministic
load flow simulation with OpenDSS) for growing number
of statistical parameters and fixed expansion order β = 3.
For the case with l = 3 parameters, one deterministic load
flow analysis takes about 12 second and thus the variability
analysis with the gPC method is completed in about 4 min-
utes. The same analysis with the same accuracy, performed
with the accurate MC method (with 5, 000 samples) takes
more than sixteen hours.

B. SCENARIO II: CHARGING POWER VARIATION
FIXING THE LOADS
In the second scenario we want to investigate what hap-
pens when electric vehicle charging stations are connected
to a network that works with its instantaneous loads. In the
hypothesis considered, let’s imagine three charging points
described by the base loads reported in the section III, one
for each phase and installed at the nodes indicated in Fig. 3.

We consider only single-phase and slow recharging, as
is considered in the TEINVEIN project [11], and suppose a
smaller variation in power, as the loads have less uncertainty.
This is due to the fact that the recharging of the vehicles
of the considered fleet takes place in accordance with the
scheduling established by the fleet manager and therefore
with low variability.

According to the load model (2), we assume that the active
powers Pev(t) of all of the charging stations assigned to a
given phase line, e.g. Phase A, are scaled by the same ξ

FIGURE 10. Scenario II. For each gPC sample the variation of the phase B
voltage waveform is plotted. The red crosses represent the outliers, while
the blue box is the interval of variation with the related median.

FIGURE 11. Distributions of daily voltage peak and minimum value of the
Phase B at observable node 898 in the scenario II.

Gaussian statistical parameter, e.g. ξ1, such as already done
in the previous scenario. The degrees of variability are fixed
equal and set to σev1 = σev2 = σev3 = 0.08 for all
of the charging stations, that means a statistical variation
smaller than 8%. Fig. 10 reports the boxplot of the B phase
voltage waveform for each gPC sample. Fig. 11 shows, as in
the previous scenario, the distribution of the daily peak and
minimum value for the Phase B at observable node 898 This
gives us a good idea about the variability of the peaks and
minima voltage.

Particularly significant is the comparison between the
peaks distributions (Fig. 12) in the two scenarios. This is
due to the current values that induce higher voltages in this
phase. It should be remembered that the test network is a
network with all the lines described by means of auto and
mutual inductance and the Phase B is the uncharged phase
(The loads are in this example inserted in phase A and the
EV in phase C). In this case there is no relevant voltage drop
in this phase, nevertheless induced voltages due to the mutual
coupling between the phases are present and strictly related
to the current variation due to the EV charge
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FIGURE 12. Comparison of the distributions of daily voltage peaks for the
Phase B at observable node 898 in the two scenarios.

FIGURE 13. Distribution of voltage unbalance peak VUFpeak
W at

observable node 898 for three different time windows in the case of
electrical vehicle charging scenario.

FIGURE 14. Scenario III. For each gPC sample the variation of the phase B
voltage waveform is reported. The red cross represent the outliers, while
the blue box is the interval of variation with the related median.

Starting from the consideration that the trend of the powers
absorbed by electric vehicles is more regular than those of
residential loads, we can see that the instantaneous value of
the voltage unbalance (Fig. 13) is lower in this scenario and is
very far from the cases calculated on the window, a sign that
the network has a higher quality of voltage in this case.

FIGURE 15. Distributions of daily voltage peak and minimum value of the
Phase B at observable node 898 in the scenario III.

FIGURE 16. Comparison of Peaks distributions in the three diffent
scenarios.

FIGURE 17. Distribution of voltage unbalance peak VUFpeak
W at node

898 for three different time windows in the scenario III.

C. SCENARIO III: CHARGING POWER
AND LOADS VARIATIONS
In the last scenario both loads and vehicles are varied using
the same parameters ξ and σ as in the two previous scenarios.
It is assumed that the statistical variation is the same for
each of the three phases, regardless of whether the load is
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a charging station or a residential/commercial type. In this
case the variability of the voltage in the considered node is
very wide as shown in Fig. 14. Compared to the previous
scenario, in this case the distribution of the minima changes
and becomes wider, as well as the distribution of the max-
imums is very different from that obtained in scenario I as
shown in Figs. 15 and 16.

The unbalance voltage in this scenario is more similar to
that of scenario I, but the values involved are much lower.
It may therefore be that the combined action of load variation
and charge profile can lead to improvements in terms of volt-
age unbalances. This result depends a lot on the shape of the
charging profile: from the data in our possession the charging
profile is very constant and if connected on a normally uneven
phase it contributes to keep the imbalance contained.

VII. CONCLUSION
In this paper, we have presented an efficient computational
technique for predicting the statistical distribution and vari-
ability interval of relevant observable variables in distribution
networks due to loads uncertainty. The proposed technique
is able to account for real data-based load profiles and can
provide information which is relevant for assessing the qual-
ity of service. As an example, the method has been applied
to a IEEE benchmark network by considering variability of
the loads connected at the three phases and to real Electric
Vehicle recharge data. We have shown how, in this example,
the proposed gPC method is able to achieve a speed up factor
in computation of about 200× compared to standard Monte
Carlo simulation.
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