
Cesare Alippi
Politecnico di Milano, Italy
Università della Svizzera Italiana, Switzerland
Cesare.Alippi@polimi.it

Seiichi Ozawa
Kobe University, Japan
ozawasei@kobe-u.ac.jp

COMPUTATIONAL INTELLIGENCE IN THE
TIME OF CYBER-PHYSICAL SYSTEMS AND THE

INTERNET-OF-THINGS

Cesare Alippi, Seiichi Ozawa

Abstract The emergence of non-trivial embedded sensor units and cyber-

physical systems and the Internet of Things has made possible the design and im-
plementation of sophisticated applications where large amounts of real-time data
are collected, possibly to constitute a big data picture as time passes. Within this
framework, intelligence mechanisms based on machine learning, neural networks
and brain computing approaches play a key role to provide systems with advanced
functionalities. Intelligent mechanisms are needed to guarantee appropriate per-
formances within an evolving, time variant environment, optimally harvest the
available and manage the residual energy, reduce the energy consumption of the
whole system, identify and mitigate occurrence of faults, provide shields against
cyber-attacks.

The chapter introduces the above aspects of intelligence, whose functionalities
are needed to boost the next generation of cyber-physical and Internet of Things
applications, smart world generation whose footprint is already around us.

1. Introduction

Advances in embedded systems and communication technologies and the

availability of low-cost sensors have paved the way to a pervasive presence of dis-
tributed applications in our everyday lives as well as in diversified segments of the
market. In this direction, Cyber-Physical Systems (CPS) i.e., hardware/software
systems interacting with the physical world are providing the technological
framework to support such epochal shift in the human-machine interaction.
A cyber-physical system is typically composed of a network of heterogeneous
units strongly interacting with the physical environment they are deployed in. In
CPS individual units interact with the physical world, creating the basis for "smart
solutions" which revolutionize scenarios from health to industry, from workplace
to home, from transportation to entertainment, ultimately leading to an enhanced
quality of life. Designing such systems means actively participating in a new "dig-
ital revolution" that enables augmented interaction with the real world.

Cyber-physical systems are present at home, at work and provide the core tech-
nologies to design smart homes, buildings and cities, enable the Internet of Things
(IoT), support smart energy production, environmental protection, precise agricul-

2

ture, management and metering, facilitate smart transportation and healthcare just
to provide a very concise list. The expected evolution of the field, as also per-
ceived by the industry [1, 2], will focus on the integration of hardware and soft-
ware technologies to support application reconfiguration, enable autonomous op-
erations, make native the access to the Internet, and extend the usage and
operational models by introducing intelligent resources and application manage-
ment mechanisms.

We all agree that addressing fundamental architectural, technological and
standards challenges, e.g., the energy consumption of the transistor, the communi-
cation level and the IPV(6) protocol, will improve the units efficiency and net-
working ability [3]. However, fundamental advances in highly performing hard-
ware per se will not be enough to drastically change the way embedded
applications impact on our lives. In fact, we should also design methodologies
that, by adaptively optimizing the use of existing embedded resources, provide the
application with intelligent functionalities granting adaptation abilities to envi-
ronmental changes, adaptive fault detection and mitigation facilities and sophisti-
cated adaptive energy-aware modalities to prolong the system lifetime [4]. Intelli-
gence is also needed to prevent attacks from malicious software (malware)
designed to steal sensitive information from users, take control of systems, impair
or even disable the functionalities of the attacked devices, distort money from us-
ers and so on. Recently, malware Mirai was shown to be able to take control of
IoT devices and carry out a major cyber-attack [5]; this represent a vulnerability
issue that has to be promptly addressed.

Current research addresses intelligent aspects mostly as independent research
lines either without any functionality harmonization effort or with little emphasis
on how to integrate the different –challenging– facets of these fields within a solid
framework. Moreover, not rarely, strong assumptions are made to make deriva-
tions amenable at the cost of a high loss in performance, efficiency –and some-
times credibility– whenever real world applications are taken into account. In par-
ticular we assume infinite energy availability, in the sense that energy and power
consumption is not an issue, stationarity/time invariance, implying that the pro-
cess generating sensor data (the physical world and the interaction with the sensor
transducer) is not evolving with time, correct data availability claiming that ac-
quired data are complete and correct, and secure operations assuming that cyber-
attacks are not carried out. By relaxing above assumptions we enter in a new
realm requesting presence of intelligence in all computational architectures; these
aspects are addressed in subsequent sections.

2. System architecture

The physical ICT architecture we consider here reflects those considered for

CPS and IoT [6]. As such, it is a very variegated one composed, in its most gen-

3

eral form, of heterogeneous hardware and software platforms. End point units of
the (internet) connection communicate with servers (possibly also acting as gate-
ways) in a star, field bus, or general topology depending on the particular applica-
tion at hand. Computational complexity and hardware resources (e.g., memory ca-
pacity, energy availability) are application-specific, with units that, not rarely, are
operating system-free. In other cases, units possess a simple operating system
(e.g., RTOS), a more complex one (e.g., Android) or an operating system specifi-
cally developed for limited-resource devices, such as Contiki [7], ARMmbeb [8]
or, again, specifically targeted to IoT such as the Google Android Things [9].

An end unit can mount application-specific sensors and/or actuators, with the
interesting case where humans can act both as sensors and actuators. Fog and
cloud computing processing architectures can be elements of the overall architec-
ture: the final architectural decision depends on the expected and the maximum re-
sponse time tolerated by the application.

Where intelligence should be located in the architecture? This complex ques-
tion receives a very simple answer: it depends on the energy availability and the
computational and hardware/software resources needed by the application and the
intelligent functionalities to carry out their tasks. Once intelligent functionalities
are taken into account, we should consider hierarchical processing solutions with
intelligence –for a given functionality- distributed along the processing architec-
ture. Within this framework, low performing end units provide (very) simple func-
tionalities but lack of a comprehensive, global view of the problem. As such, we
should expect decisions taken in a hierarchical way, with the effectiveness of the
decision increasing with the availability of a larger set of data/features and the
possibility to execute a more complex algorithm. In fact, more processing de-
manding algorithms can be run, e.g., to identify a better solution to a specific
problem, in systems where larger computational power/energy is available. Result
outcomes from the processing stage are then sent back downward the communica-
tion chain to reach end units.

3. Energy harvesting and management

In cyber-physical systems where energy availability is an issue, an accurate and
sound management of energy in addition to energy harvesting represents a major
necessity. Due to its relevance the aspect has been widely addressed in the related
literature [4] that, however, leaves major investigation areas open.
The key point of harvesting is to maximize energy acquisition that, scavenged
from an available source of power, is stored either in an energy accumulator (e.g.,
a battery or a super-capacitor) or directly consumed by the electronic system.
Likewise, the major goal of energy management is to intelligently control energy
consumption by acting at the hardware and software levels, with most sophisticat-
ed decision strategies based both on available and forecasted energy availability.
Machine learning and, more in general, computational intelligence techniques, are
suitable methods to be considered here since physical descriptions about the har-

4

vestable energy is unavailable due to time variance of the environment and accu-
rate information about the current power consumption is available through meas-
urements only.

3.1 Energy harvesting

In CPSs energy can be harvested by relying on different technologies, e.g., from
photovoltaic or Peltier cells to wind and flow turbines and, again, by relying on
piezoelectric solutions. The optimal solution for a generic CPS application de-
pends on the available –and harvestable- energy, no matter whether the available
power is high or not. “We get what we have, and that has to be enough” says an
old leitmotiv. However, of particular relevance for the high density power har-
vestable are solutions coming from small photovoltaic cells. They can be both de-
ployed outdoor and indoor, with polymer flexible cells that, though less perform-
ing compared to the crystalline or amorphous counterparts, are foldable and
assume any shape to fit with the available surface. This flexibility makes these
harvesting solutions appealing with IoT since the cell can be designed to be de-
ployed directly on the target object. Photovoltaic cells –but the same can be stated
for wind and flow turbines- can greatly take advantage of intelligent solutions in
the sense that we can maximize the acquired power through adaptation mecha-
nisms. Adaptation is needed every time the energy source, here the light, provides
a power density that evolves with time, e.g., due the presence of clouds, dust or
water drops on the cell surface as well as due to varying incidence angles. Defined
vp to be the controllable voltage imposed at the photovoltaic cell, the harvestable
power depends e.g., on the particular effective solar radiation as per figure 1a,
where curve A is associated with a stronger power availability compared with case
B. vp can be controlled over time by means of a Control Power Transfer Module
(refer to figure 1b) that grants the harvester to maximize the extracted power to be
sent to the storage mean. Details can be found in [4]. Adaptation can be seen as an
online learning procedure where the optimal controlling parameters at time k+1
can be achieved through a gradient ascent algorithm as

vp(k + 1) = vp(k) + γ d(ipvp)
dvp

 =vp(k) + γ(ip + d�ip�
dvp

) (1)

where γ is a small constant accounting for the step taken along the gradient de-
scent direction. Such of a solution requires acquisition of current ip and vp over
time through suitable sensors.

5

Figure 1: a) the characteristic curves for a photovoltaic cell: the acquired power
depends on the applied controlling voltage vp. b) The Control Power Transfer Module
identifies the optimal voltage according to (1) and applies it to the cell; other architectures
can be considered, e.g., see[4].

3.2 Energy management and research challenges

Energy management is a very important issue in any cyber-physical and IoT sys-
tem given the fact units are mostly battery powered and need to be kept as simple
as possible to reduce their cost.
Energy management can be carried out both at hardware and software/application
level by leveraging on

• Voltage/frequency scaling. By scaling power voltage and clock frequency the

power consumption of the device reduces. In fact, for a CMOS technology the
power consumption scales quadratically with the voltage and linearly with the
working frequency [4]. Machine learning and fuzzy logic techniques can be
adopted e.g., to profile the application at compile time and identify both at
compile and run time when and how the control variables should be scaled.
Evolutionary computation algorithms can also be considered at compile time
to identify the optimal setting of controlling parameters over execution time.

• Adaptive sampling. A great energy saving can be achieved by implementing
an adaptive sampling strategy where the sampling frequency is adapted ac-
cording to the current needs of the application. By reducing the sampling fre-
quency –sometimes below the value granting signal reconstruction - we can
also reduce the bandwidth needed for communication [10]. Machine learning
and fuzzy logic can be fruitfully considered here to control the energy con-
sumption of the system by adaptively acting on the sampling rates of sensors
by also taking into account predictions for both the residual and the harvesta-
ble (in the future) energy.

• Keep the solution simple. This design strategy is always up-to-date in the
sense that, in general, complex solutions require a high energy to carry out the
due computation which, most of time, is not needed. In fact, in presence of
uncertainty affecting the measurements and with the optimal application to be
executed on the CPS unknown, it does not make much sense to implement too
complex solutions. Machine learning and statistical methods should be inves-
tigated to assess the loss in performance associated with a given solution by

6

also taking into account existing uncertainty and available hardware re-
sources.

• Consider incremental applications. Whenever performance accuracy is an is-
sue we can tradeoff accuracy for energy, in the sense that if a higher accuracy
level is needed than we tolerate the algorithm to be more complex and ener-
gy-eager. Identification of the tradeoff between accuracy performance and
energy savings can be carried out with optimization algorithms, e.g., those
based on evolutionary algorithms.

• Duty cycling. The more you sleep (i.e., the device enters low and deep power
sleep modalities) the less energy you consume. By implementing duty cycling
at the processor, sensor and memory levels we can significantly control ener-
gy consumption. Identification of timing to switch on and off different hard-
ware elements as well as selection of the optimal sleep modality represent an
application-dependent complex optimization problem whose optimal solution
can be found at compile time with both machine learning and evolutionary
computation algorithms.

4. Learning in nonstationary environments

In designing cyber-physical and IoT applications we mostly assume that the pro-
cess generating the sensor datastream is either stationary (i.e., data or features ex-
tracted from the signal are independent and identically distributed (i.i.d.) random
variables) or time invariant (the signal does not show an explicit dependency on
time) [11]. However, such assumptions are hardly met in real applications and rep-
resent, in the best case, a first order approximation of the reality. In fact, sensors
and actuators are naturally subject to ageing and the environment evolves per se,
e.g., think of seasonality, day-night cycles or unpredictable effects affecting a
plant. This problem is rarely addressed in existing CPS or IoT applications mostly
due to the intrinsic difficulties and challenges that learning in nonstationary envi-
ronments pose. In the extreme cases where the change intensity impairs the per-
formances of the system, designer implement strategies permitting the application
to be remotely updated. However, adaptation to the change in stationarity should
be anticipated and managed as early as possible in order to meet the expected
quality of service.
In the literature, the difficult problem of detecting time-variance is generally trans-
formed into the detection of changes in stationarity, through suitable transfor-
mations, with only few studies addressing time-variance directly at the acquired
datastreams level. As such, in the sequel, we focus on the change in stationary
problem.
The current literature about learning in nonstationary environments either propos-
es passive strategies, with the application undergoing a continuous adaptation
(passive adaptation modality or passive learning) e.g., see [11-12], or active ones,
with adaptation activated only once a trigger detects a change (active adaptation
modality or active learning) [11, 13].

7

Let’s assume that the embedded application can be controlled through a vector of
parameters 𝜃𝜃 so that the application code is described by means of the differentia-
ble family function 𝑓𝑓(𝑥𝑥, 𝜃𝜃), x representing the input vector, e.g., containing sen-
sors data. At time t the vector of parameters 𝜃𝜃𝑡𝑡 , is associated with algorithm
𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡) . The notation becomes easier to follow if we imagine that function
𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡) is a linear filter or a neural function. Differentiability is a convenient as-
sumption to ease the presentation here but it is not strictly requested. In fact, we
just require the application to be updated in response to a need.
Every time we are provided with output 𝑦𝑦𝑡𝑡 (measurement) in correspondence
with input 𝑥𝑥, the discrepancy 𝐿𝐿(𝑦𝑦𝑡𝑡, 𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡)) can be used to update the application.
𝐿𝐿(. ,.) is any appropriate figure of merit used to assess such discrepancy, e.g., a
mean square, a Kullback-Leibler distance, etc. Passive and active approaches dif-
ferentiate on the way the application update is carried out. More in detail,

4.1 Passive adaptation modality

In passive solutions the parameters describing the application are always updated
following a compulsive update modality. The classic example is that of linear fil-
ters which update online the filter parameters based on the value of the discrepan-
cy (𝑦𝑦𝑡𝑡, 𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡) , mostly based on a least square loss function. More in general, the
updated parameters are

θt+1 = θt − γ ∂L(x,θ)
∂θ

�
θt

 (2)

where 𝛾𝛾 is a small and application dependent scalar value controlling the step tak-
en along the gradient descent direction.
Passive solutions do not suffer from false positives and negatives in detecting a
change in stationarity/time variance, since the learning-based system/application
continuously updates parameters over time by integrating the available novelty
content into the model. From this perspective the partial derivative in (2) can be
intended as the operator extracting the novelty information content from current
data: if there is novelty, the model needs to be updated. As a consequence, passive
models are rather sensitive to noise in incoming data: after parameter convergence
the application continues to update the parameters so as to track the particular
noise realization. A vast literature on passive approaches exist (also called online
learning in the neural networks field) and the interest reader can focus on and im-
plement those results in her/his CPS/IoT application [4, 11, 14]. However, the
computational complexity of a passive approach might be inappropriate for em-
bedded applications given the continuous need to update the model, operations
which might end up in a prohibitive energy consumption and processing time
whenever the update phase is energy/computation eager. Ensemble solutions and
complex neural networks are examples in this direction where the cost we have to
pay for high accuracy and flexibility is computational.

8

4.2 Active adaptation modality

In the active adaptation strategy, the presence of a change-detection trigger acti-
vates the due application reaction following the detected change in stationarity,
e.g., by updating the learning-based system. This means that the application run-
ning on the embedded device undergoes an update/reconfiguration phase to track
the change in stationarity only when triggered by the change detection module.
The change detection module –or Oracle- operates by inspecting features 𝜑𝜑 ex-
tracted from the input data or preprocessed variables [4,13] to assess the presence
of a change. In other terms the Oracle 𝜔𝜔 acts as the indicator function

𝜔𝜔(𝜑𝜑) = �1, 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

and the update equation becomes

 θt+1 = θt − γ ω(φ) ∂L(x,θ)

∂θ
�
θt

 (3)

In its basic form the Oracle is based on a threshold; in more sophisticated versions
the Oracle also relies on a confidence level –e.g., as it happens in statistical tests-
or, even, takes control of the occurrence of false positives by setting its expecta-
tion to a predefined value.
Adaptive strategies at cyber-physical systems following the active adaptation mo-
dality are known as “detect & react” approaches; such solutions have much fo-
cused on classifiers in the related literature, though results are more general [4].

It should be commented that if the computational load of passive solutions is neg-
ligible they should be preferred than active ones unless the application is interest-
ed in knowing that a change in stationarity occurred (the change in stationarity
might be associated with a faulty sensor for instance, as investigated in the next
section). If the computational complexity of the update phase is not negligible, al-
so in relationship with the dynamics of the change, we might prefer active solu-
tions. However, active approaches suffer from false alarms (false positives) intro-
duced by the change-detection triggering mechanism hence inducing the
application to update even though not strictly needed. Fortunately, in CPS applica-
tions false positives do not negatively affect performance but only introduce an
extra, not requested, computation.
One should expect that if the physical environment is changing with a low fre-
quency then an active approach might be more appropriate than a passive one.
However, again, one should balance the application update phase with its compu-
tational complexity and the level of time-variance exposed by the environment the
system interacts with. This problem becomes even more relevant and up-to-date in
CPSs, IoT, and Smart-X technologies, producing high-dimensional datastreams
where it is expected the computational load to be high. Since active and passive

9

solutions represent extreme strategies, current solutions are investigating hybrid
approaches aiming at taking major advantages from them.

4.3 Research challenges

Several research challenges should be addressed in order to support a quick and
effective design of cyber-physical and IoT technologies

• Design methodologies. Neither investigations nor methodologies are available

to shed light on the relationships among the effectiveness of active/passive
approaches w.r.t. the speed/nature of the change and the computational
complexity of involved methods. Such investigations are fundamental to
permit embedded applications to detect possible changes in the environment
and react accordingly to keep the quality of service at the appropriate level.

• Design of distributed decision making applications. There are no
computationally-light change detection mechanisms for distributed embedded
systems able to control the false positive rates. The challenge here is to
provide distributed –possibly autonomous- decision making strategies,
reasonably based on machine learning methods.

• Approximate computing. What is largely needed are strategies permitting the
harmonization of the learning in nonstationarity environment functionality for
distributed embedded systems, possibly within an approximate computing
framework. In this case, the approximation level introduced by the hardware
as well as that introduced by the adoption of incremental software should be
traded-off with accuracy performance as coming from active or passive
learning strategies. It is expected that the optimization problem identifying the
most suitable level of approximation over time can be carried out with
evolutionary computation algorithms.

• Addressing subtle changes. Design of learning-based methodologies to detect
and anticipate subtle drift changes are needed, e.g., to deal with aging at the
sensor and actuators level. In fact, slowly developing changes are hard to
detect in the sense their magnitude is small and can be detected by current
change detection tests only in the long time period. However, it is expected
that availability of datastreams should permit to run machine learning tools to
estimate the current behavior of the features and build predictive models to
assess the level of time variance.

5. Model-free fault diagnosis systems

Cyber-physical applications are mostly data-eager, in the sense that applica-

tion decisions and behaviors are strongly driven by the information content ex-
tracted from a generally large platform of sensors. This dependency on sensor data
can be however very critical, since sensors and real apparatus are prone to faults
and malfunctioning that, in turn, negatively affect the information content carried
by data and used by the application to make decisions [15, 16]. The problem am-

10

plifies when low cost sensors are considered and/or sensors are deployed in harsh
and challenging environments (e.g., think of a body network where sensors, exter-
nal buses and connectors are subject to mechanical stress and environmental chal-
lenges). As such, faulty sensors detection (also including sensors working in sub-
optimal conditions) and mitigation are intelligent functionalities that must be in-
cluded in the design of any CPS to prevent propagation of erroneous information
to the decisional level [17]. At the same time, we comment that a generic method
designed to detect a fault occurrence will also detect any deviation in the infor-
mation carried by data, e.g., caused by changes in the environment the sensor is
deployed in (time variance), and react erroneously: a novel family of methods are
hence requested to detect changes in the information content carried by data, dis-
ambiguate between faults and violation of the time invariant hypothesis as well as
identify, isolate and possibly mitigate the occurrence of faults. These tasks are car-
ried out by Fault Diagnosis Systems (FDSs).

Figure 2: A full fault diagnosis system is characterized by four phases: fault de-
tection aiming at identifying the presence of a fault; fault identification character-
izing the type and nature of the fault; fault isolation, localizing the fault and fault
mitigation, whose goal is to reduce the impact of the fault on the system

5.1 Model-free fault diagnosis systems

Since CPSs rely on a rich and diversified set of sensors produced by a pletho-

ra of companies, it is not possible to request an accurate physical model describing
their modus operandi. In this direction, model-free Fault Diagnosis Systems are
requested to detect, identify and isolate the occurrence of faults without assuming
that their signatures, the nature of uncertainty and their ruling equations are avail-
able.
Research on standard (not model-free) FDSs has provided major breakthroughs in
past decades by yielding several methodologies for detecting and diagnosing faults
in several real world applications e.g., see [17, 18]. However, the effectiveness of
a traditional FDS is directly proportional to the available information and priors
about the given system, in the sense that availability of 1) the equations ruling the

11

interaction between the cyber system and the physical phenomenon, 2) infor-
mation about the inputs and the system noise and 3) availability of the “fault dic-
tionary” containing the characterizations of feasible faults, permits the FDS to op-
erate in optimal conditions. Even though some information might become
available in some very specific applications, in general it is hardly usable in cyber-
physical applications since the characterization of the CPS interaction, the nature
of existing noise and uncertainty, and the signature of expected faults are missing.
Moreover, we cannot spend huge efforts in designing a FDS for any CPS-based
application if the requested procedure is too complex and articulated since costs
and time-to-market are fundamental requirements in designing successful applica-
tions. Instead, we would appreciate a methodology able to automatically learn the
FDS directly from the data the application receives (computational intelligence-
based model-free approach: no available model for the system under investigation,
no fault dictionary or fault signatures, no information about the nature of uncer-
tainty). In other terms, all unknown needed entities are learned from available data
through computational intelligence and machine learning techniques.
The particular computational intelligence technique depends on the information
available to solve a specific sub-problem. For instance, we can use machine learn-
ing and fuzzy systems to detect faults; the same technologies can be used to design
a fault dictionary, identify the type of fault through a classifier or its magnitude
through inference. Fault localization can take advantage of a statisti-
cal/probabilistic or fuzzy logic framework whereas mitigation can be based on
machine learning and fuzzy systems.
Existing model-free FDSs automatically learn the nominal and the faulty states
from sensor data-streams and take advantage of existing temporal and spatial rela-
tionships among sensors to detect a possible occurrence of faults. The learned re-
lationships are then used to characterize the system nominal state as well as detect
any deviation from such a nominal behavior, diagnose the causes of the deviation,
identify the nature of the faults, isolate faulty sensors and –possibly- mitigate their
effects. It must be pointed out that most of existing solutions either apply the
learning mechanism only to a particular aspect of the FDSs (e.g., the fault diction-
ary), or solve specific applications: very few –preliminary- model-free methodol-
ogies have been proposed in the literature, e.g., see [19]. Such solutions aim at
characterizing the relationships present in the acquired data-streams to autono-
mously learn the nominal state and construct, whenever possible, the fault diction-
ary during the operational life of the system for fault detection, isolation and iden-
tification purposes.
However, despite of these encouraging results major investigations must be ac-
complished to reach the maturity level needed to support an automatic design of a
model-free FDS for networked cyber-physical applications that is automatic, ef-
fective, controls false positives/negatives and is computationally light.

5.2 Research challenges

12

In order to support the next generation of any cyber-physical application we need
to address some open research issues
• Multiple faults. The “single fault” assumption has to be relaxed to host

multiple “concurrent” faults, possibly also of transient type, as it is the case in
cyber-physical/human applications. In fact, once a fault occurs it is likely that
a domino effect will arise and a subset of sensors affected. Graph-based
machine learning techniques are expected to be the right tools to address this
research topic.

• Disambiguation module. Once a change in stationarity is detected we need to
run powerful methods able to disambiguate among changes in the
environment, faults and false positives introduced by the change detection
method. Given the nature of the problem and the type of information
available, it is expected that machine learning and fuzzy tools should be the
appropriate techniques to be applied here.

• Unbalanced data. Faults are rare events; as such it is hard to have many data
coming from the “faulty class”. This implies that we need to provide machine
learning methodologies to design effective FDSs starting from few and
unbalanced data.

• Modeling aspect. We need to provide novel design methodologies for model-
free FDSs. Such methodologies should be able to automatically configure the
FDS for the given application after having profiled sensor data. It is expected
that machine learning techniques should be the right tools to be used here to
design such of a system.

6. Cyber-security

As mentioned in the previous sections, CPS and IoT technologies will make

our life easier and richer in opportunities. However, at the same time, such tech-
nologies are prone to cyber-attacks designed to steal precious information and
harm people, companies, and governments. In late September 2016 bot nets in-
fected by the infamous IoT malware Mirai [5] caused a severe Distributed Denial
of Service Attack (DDoS) that prevented major sites to correctly provide services
to clients.
Cyber-attacks using IoT devices are expected to steadily increase by taking ad-
vantage of network scalability and vulnerability of IoT devices, an aspect that is
far from being fixed. Moreover, malware Mirai that was originally designed to in-
fect Linux-based IoT devices is still evolving, with its offspring targeting Win-
dows computers and possibly, in the future, also Android smartphones.

Cyber-attacks to CPS are of deeper concern once applications target our daily
life. Consider, for instance, an elderly-care smart home with a solo senior person
whose behavior is continuously monitored for safety purposes. The monitoring
system consists of some surveillance cameras and various IoT sensors such as
door lock and proximity sensors deployed in rooms and corridors. Once the moni-

13

toring system detects an emergency situation an alert is issued and sent to caregiv-
ers and doctors. Following a malware infection, the system control is completely
taken by the attacker who might decide to activate e.g., a DDoS attack, hence
leaving the person safety issue unattended. Needless to say, CPS designed to pro-
tect the person will, in the best case, not work properly. It comes per se that smart
cyber-security systems need to be considered in order to prevent such situations.

6.1 How can CPS and IoT be protected from cyber-attacks?

In order to effectively protect a given CPS or IoT device from cyber-attacks we

need to consider several cyber-security levels. The first security level should be
designed to protect IoT sensor units, the second one has to shield the server where
sensor data are processed and control signals issued to be delivered to actuators.
Finally, the third level is designed to protect the whole CPS application by moni-
toring trends of cyber-attack activities on the Internet.

When thinking about the first level of security we should keep in mind that the
number of IoT units could be very large and heterogeneous in hardware and soft-
ware. Here, given the constrained hardware resources, it is mostly unrealistic to
implement a complex form of security such as installing anti-virus software or
embedding a network intrusion detection mechanism in hardware. The protection
measures depend then on the computational resources of the end device. One solu-
tion here would be to utilize an anomaly (fault) detection mechanism as those used
in fault diagnosis systems or an Oracle, as discussed in the learning in nonstation-
ary environment sections.

Various software products are available to implement the second level of secu-
rity. However, there is still plenty of room to design machine learning-based algo-
rithms to identify malwares and detect unknown cyber-attacks using zero-day vul-
nerability. Many approaches have been proposed so far in this direction, e.g., see
[20][21] for details.

The third security layer is also very important and can be seen at the applica-
tion level. Usually, the number of new malware victims gradually increase, infec-
tion then rapidly spreads following some triggering events associated with mal-
ware evolution (the open source code of the malware is made available) and,
finally, we end up in a pandemic situation. Early detection of malware can then
mitigate the infection as presented in the next subsection case study.

6.2 Case study: Darknet analysis to capture malicious cyber-attack behaviors

In order to protect users form cyber threats it is important to characterize mal-
ware behavior, with malware instances caught both within one’s local network
domain and the Internet as a whole. A classification system can then be designed
to monitor the current system behavior in order to detect cyber-attacks. One way
to observe large-scale events taking place on the Internet is to design a network
probe inspecting activity in the darknet. The darknet is defined as the set of un-

14

used address-space of a computer network which should not be used and, as such,
not have any normal communication with other computers. Following the defini-
tion, it comes out that almost all communication traffic along the darknet is there-
fore suspicious; by inspecting such of a traffic we can grasp information related to
cyber-attacks. Observable cyber-attacks are mainly activities of random scanning
worms and DDoS backscatter messages. However, since the darknet can receive
packets from the whole Internet space, by operating in the darknet we can monitor
the large-scale malicious activities on the whole Internet.

(a) DDoS attacks (b) Scanning

Figure 3: Examples of tiles to represent two typical darknet traffic patterns

Figure 3 shows the darknet traffic patterns representing 2 cases of typical mali-
cious behaviors: (a) DDoS attacks and (b) scanning. The vertical axes of the plots
represent the port number of a source host and a destination IP (darknet side). The
horizontal axis is divided into two parts: the left one refers to the time needed to
send a packet from a source host while the right half refers to the destination IP.
Therefore, the plot shows that a packet is delivered from a point in the left side to
a point in the right one. According to the nature of cyber-attacks, traffic patterns
differentiate. For instance, figures 3 shows a typical DDoS attack and a typical
scanning activity.
We discovered that a darknet traffic pattern can be successfully described by the
following 17 features related to the statistics of darknet packets [22]:

(1) #Total Packets (2, 3) Avg and Std of Time Spans of Packets
(4) #Source Ports (5, 6) Avg and Std of #Packets from Source Ports
(7) #Destination IPs (8, 9) Avg and Std of #Packets from Dest. IPs
(10) #Destination Ports (11, 12) Avg and Std of #Packets from Dest. Ports
(13) #Protocol Types (14, 15) Avg and Std of Payload Sizes
(16, 17) Avg and Std of Spans of Dest. IP Numbers.

Once a darknet traffic pattern for a specific source host is transformed into the
17-dimentional feature vector, machine learning techniques can be applied to clus-

15

ter data based on the similarity of traffic patterns. Figure 4 illustrates results of
darknet traffic patterns inspected in March 2014.

Figure 4: A distribution of darknet traffic patterns. A red point corresponds to a
source host whose packet traffic is classified as a DDoS. A blue point refers to a
non-DDoS backscatter activity, mostly associated with scanning.

As seen from figure 4 darknet traffic patterns are clearly separated into some clus-
ters of DDoS and non-DDoS (mainly scanning) attacks by t-Stochastic Neighbor
Embedding (t-SNE) [23].

In order to identify a particular type of cyber-attack classifiers must be de-
signed, e.g., SVM and random forests.

The abovementioned 17 features intentionally eliminate detailed information
such as port numbers and header information of a TCP packet. This type of ab-
straction is important to define a broad feature space covering unknown malicious
activities. Once unknown darknet traffic patterns are identified using an anomaly
detection method, a more precise analysis such as identifying a specific malware
type is conducted. In a way what done within the cyber-attack protection intelli-
gent functionality is similar to some steps introduced by fault diagnosis systems
where, at first malware is detected, secondly, identified and, third, mitigation
strategies taken into account.

Acknowledgement
The authors thank to Dr. Ban Tao, Dr. Junji Nakazato (National Institute of Infor-
mation and Communications Technology, Japan), and Mr. Jumpei Shimamura
(Clwit Inc.) for providing the darknet traffic data and their well-experienced ex-
pert knowledge on cybersecurity. This chapter partially contains the experimental
results in the research project, supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research (B) 16H02874.

16

References

[1] International Data Corporation (IDC), “Final Study Report: Design of Future
Embedded Systems”, 2012.
[2] D.Evans, “The Internet of Things. How the Next Evolution of the Internet Is
Changing Everything”, CISCO White Book, 2011.
[3] P.Marwedel, Embedded Systems Design, Springer, pp.241, 2011
[4] C. Alippi. Intelligence for Embedded Systems: A Methodological Approach.
Springer, Switzerland, pp.283, 2014
[5] US-CERT - United States Computer Emergency Readiness Team, Alert
(TA16-288A) - Heightened DDoS Threat Posed by Mirai and Other Botnets. No-
vember 2015. Tech. rep. URL: https://www.us-cert.gov/ncas/alerts/TA16-288A
[6] C.Alippi, R.Fantacci, D.Marabissi, M.Roveri, "A Cloud to the Ground: The
New Frontier of Intelligent and Autonomous Networks of Things", IEEE Com-
munication Magazine, Vol.54, No 12, pp. 14-20, December 2016
[7] Contiki: The Open Source OS for the Internet of Things. URL:
http://www.contiki-os.org
[8] ARM, Introduction to the mbed OS 5 handbook. URL:
https://docs.mbed.com/docs/mbed-os-handbook/en/latest
[9] Google Inc. Android Things. https://developer.android.com/things
[10] C.Alippi, G.Anastasi, M. Di Francesco, M.Roveri: An Adaptive Sampling
Algorithm for Effective Energy Management in Wireless Sensor Networks with
Energy-hungry Sensors, IEEE-Transactions on Instrumentation and Measurement.
Vol. 59, Issue 2, pp. 335 – 344, February 2010
[11] C.Alippi, R.Polikar, Guest editorial, IEEE Neural Networks and Learning
Systems, Special issue on “Learning in nonstationary and evolving environments”,
Vol. 25, No. 1, pp. 9-11, January 2014
[12] L. I. Kuncheva, Classifier ensembles for changing environments, in Proc. 5th
Int. Workshop Multiple Classifier Systems, pp. 1-15, 2004
[13] C. Alippi; G. Boracchi, and M. Roveri, Hierarchical Change-Detection Tests,
IEEE Transactions on Neural Networks and Learning Systems, Vol.28, No.2, pp.
246 – 258, 2017
[14] J. Gama, I. Žliobaite, A. Bifet, M. Pechenizkiy, and A.Bouchachia, A survey
on concept drift adaptation, ACM Computing Survey, vol. 46, no. 4, pp. 1-44,
April 2014
[15] M. Basseville, I. V. Nikiforov, Detection of Abrupt Changes: Theory and
Application, volume 104. Prentice Hall Englewood Cliffs, pp.529, 1993
[16] R.Isermann, Fault-diagnosis systems: introduction from fault detection to
fault tolerance, Springer, 2006.
[17] V.Reppa, M. M. Polycarpou, C. G. Panayiotou, Distributed Sensor Fault Di-
agnosis for a Network of Interconnected Cyber-Physical Systems, IEEE Transac-
tions on control of networked systems, Vol.2, No.1, pp.15-23, 2015
[18] C.Alippi, S.Ntalampiras, M.Roveri, Model-free fault detection and isolation
in large-scale cyber-physical systems, IEEE Transactions on Emerging Topics in
Computational Intelligence, pp.61-71, February 201

https://www.us-cert.gov/ncas/alerts/TA16-288A
http://home.deib.polimi.it/alippi/articoli/A%20Cloud%20to%20the%20Ground%20The%20New%20Frontier%20of%20Intelligent%20and%20Autonomous%20Networks%20of%20Things.pdf
http://home.deib.polimi.it/alippi/articoli/A%20Cloud%20to%20the%20Ground%20The%20New%20Frontier%20of%20Intelligent%20and%20Autonomous%20Networks%20of%20Things.pdf
http://www.contiki-os.org/
https://docs.mbed.com/docs/mbed-os-handbook/en/latest
https://developer.android.com/things
http://home.deib.polimi.it/alippi/paper/An%20Adaptive%20Sampling%20Algorithm%20for%20Effective%20Energy%20Management%20in%20Wireless%20Sensor%20Networks%20With%20Energy-Hungry%20Sensors.pdf
http://home.deib.polimi.it/alippi/paper/An%20Adaptive%20Sampling%20Algorithm%20for%20Effective%20Energy%20Management%20in%20Wireless%20Sensor%20Networks%20With%20Energy-Hungry%20Sensors.pdf
http://home.deib.polimi.it/alippi/paper/An%20Adaptive%20Sampling%20Algorithm%20for%20Effective%20Energy%20Management%20in%20Wireless%20Sensor%20Networks%20With%20Energy-Hungry%20Sensors.pdf
http://home.deib.polimi.it/alippi/articoli/Model%20free%20fault%20detection%20and%20isolation%20in%20large-scale%20cyber-physical%20systems.pdf
http://home.deib.polimi.it/alippi/articoli/Model%20free%20fault%20detection%20and%20isolation%20in%20large-scale%20cyber-physical%20systems.pdf

17

[19] C.Alippi, M.Roveri, F.Trovo’, A Self-building and Cluster-based Cognitive
Fault Diagnosis System for Sensor Networks, IEEE Transactions on Neural Net-
works and Learning Systems, Vol. 25, No.6, pp. 1021-1032, June 2014
[20] R.Sommer, V.Paxson, Outside the Closed World: On Using Machine Learn-
ing for Network Intrusion Detection, Proceedings of the 2010 IEEE Symposium
on Security and Privacy, pp. 305-316, 2010.
[21] C.Sinclair, L.Pierce, S.Matzner, An Application of Machine Learning to
Network Intrusion Detection, Proceedings of 15th Annual Computer Security Ap-
plications Conference. pp. 371-377, 1999.
[22] N.Furutani, J.Kitazono, S.Ozawa, T.Ban, J.Nakazato, J.Shimamura, Adaptive
DDoS-Event Detection from Big Darknet Traffic Data, Neural Information Pro-
cessing, LNCS 9492, Springer, pp. 376-383, 2015.
[23] L.Maaten, G.E.Hinton, Visualizing Data Using t-SNE, Journal of Machine
Learning Research, Vol. 9, 2579-2605, 2008.

http://home.deib.polimi.it/alippi/paper/A%20Self-building%20and%20Cluster-based%20Cognitive%20Fault%20Diagnosis%20System%20for%20Sensor%20Networks.pdf
http://home.deib.polimi.it/alippi/paper/A%20Self-building%20and%20Cluster-based%20Cognitive%20Fault%20Diagnosis%20System%20for%20Sensor%20Networks.pdf

