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Abstract The emergence of non-trivial embedded sensor units and cyber-

physical systems and the Internet of Things has made possible the design and im-
plementation of sophisticated applications where large amounts of real-time data 
are collected, possibly to constitute a big data picture as time passes. Within this 
framework, intelligence mechanisms based on machine learning, neural networks 
and brain computing approaches play a key role to provide systems with advanced 
functionalities. Intelligent mechanisms are needed to guarantee appropriate per-
formances within an evolving, time variant environment, optimally harvest the 
available and manage the residual energy, reduce the energy consumption of the 
whole system, identify and mitigate occurrence of faults, provide shields against 
cyber-attacks.  

The chapter introduces the above aspects of intelligence, whose functionalities 
are needed to boost the next generation of cyber-physical and Internet of Things 
applications, smart world generation whose footprint is already around us.  

 
1. Introduction 

 
Advances in embedded systems and communication technologies and the 

availability of low-cost sensors have paved the way to a pervasive presence of dis-
tributed applications in our everyday lives as well as in diversified segments of the 
market. In this direction, Cyber-Physical Systems (CPS) i.e., hardware/software 
systems interacting with the physical world are providing the technological 
framework to support such epochal shift in the human-machine interaction.  
A cyber-physical system is typically composed of a network of heterogeneous 
units strongly interacting with the physical environment they are deployed in. In 
CPS individual units interact with the physical world, creating the basis for "smart 
solutions" which revolutionize scenarios from health to industry, from workplace 
to home, from transportation to entertainment, ultimately leading to an enhanced 
quality of life. Designing such systems means actively participating in a new "dig-
ital revolution" that enables augmented interaction with the real world.  

Cyber-physical systems are present at home, at work and provide the core tech-
nologies to design smart homes, buildings and cities, enable the Internet of Things 
(IoT), support smart energy production, environmental protection, precise agricul-
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ture, management and metering, facilitate smart transportation and healthcare just 
to provide a very concise list. The expected evolution of the field, as also per-
ceived by the industry [1, 2], will focus on the integration of hardware and soft-
ware technologies to support application reconfiguration, enable autonomous op-
erations, make native the access to the Internet, and extend the usage and 
operational models by introducing intelligent resources and application manage-
ment mechanisms.  

We all agree that addressing fundamental architectural, technological and 
standards challenges, e.g., the energy consumption of the transistor, the communi-
cation level and the IPV(6) protocol, will improve the units efficiency and net-
working ability [3]. However, fundamental advances in highly performing hard-
ware per se will not be enough to drastically change the way embedded 
applications impact on our lives. In fact, we should also design methodologies 
that, by adaptively optimizing the use of existing embedded resources, provide the 
application with intelligent functionalities granting adaptation abilities to envi-
ronmental changes, adaptive fault detection and mitigation facilities and sophisti-
cated adaptive energy-aware modalities to prolong the system lifetime [4]. Intelli-
gence is also needed to prevent attacks from malicious software (malware) 
designed to steal sensitive information from users, take control of systems, impair 
or even disable the functionalities of the attacked devices, distort money from us-
ers and so on. Recently, malware Mirai was shown to be able to take control of 
IoT devices and carry out a major cyber-attack  [5]; this represent a vulnerability 
issue that has to be promptly addressed.   

Current research addresses intelligent aspects mostly as independent research 
lines either without any functionality harmonization effort or with little emphasis 
on how to integrate the different –challenging– facets of these fields within a solid 
framework. Moreover, not rarely, strong assumptions are made to make deriva-
tions amenable at the cost of a high loss in performance, efficiency –and some-
times credibility– whenever real world applications are taken into account. In par-
ticular we assume infinite energy availability, in the sense that energy and power 
consumption is not an issue, stationarity/time invariance, implying that the pro-
cess generating sensor data (the physical world and the interaction with the sensor 
transducer) is not evolving with time, correct data availability claiming that ac-
quired data are complete and correct, and secure operations assuming that cyber-
attacks are not carried out. By relaxing above assumptions we enter in a new 
realm requesting presence of intelligence in all computational architectures; these 
aspects are addressed in subsequent sections. 

 
2. System architecture 

 
The physical ICT architecture we consider here reflects those considered for 

CPS and IoT [6]. As such, it is a very variegated one composed, in its most gen-
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eral form, of heterogeneous hardware and software platforms. End point units of 
the (internet) connection communicate with servers (possibly also acting as gate-
ways) in a star, field bus, or general topology depending on the particular applica-
tion at hand. Computational complexity and hardware resources (e.g., memory ca-
pacity, energy availability) are application-specific, with units that, not rarely, are 
operating system-free. In other cases, units possess a simple operating system 
(e.g., RTOS), a more complex one (e.g., Android) or an operating system specifi-
cally developed for limited-resource devices, such as Contiki [7], ARMmbeb [8] 
or, again, specifically targeted to IoT such as the Google Android Things [9].     

An end unit can mount application-specific sensors and/or actuators, with the 
interesting case where humans can act both as sensors and actuators. Fog and 
cloud computing processing architectures can be elements of the overall architec-
ture: the final architectural decision depends on the expected and the maximum re-
sponse time tolerated by the application.  

Where intelligence should be located in the architecture? This complex ques-
tion receives a very simple answer: it depends on the energy availability and the 
computational and hardware/software resources needed by the application and the 
intelligent functionalities to carry out their tasks. Once intelligent functionalities 
are taken into account, we should consider hierarchical processing solutions with 
intelligence –for a given functionality- distributed along the processing architec-
ture. Within this framework, low performing end units provide (very) simple func-
tionalities but lack of a comprehensive, global view of the problem. As such, we 
should expect decisions taken in a hierarchical way, with the effectiveness of the 
decision increasing with the availability of a larger set of data/features and the 
possibility to execute a more complex algorithm. In fact, more processing de-
manding algorithms can be run, e.g., to identify a better solution to a specific 
problem, in systems where larger computational power/energy is available. Result 
outcomes from the processing stage are then sent back downward the communica-
tion chain to reach end units.  

 
3. Energy harvesting and management 

 
In cyber-physical systems where energy availability is an issue, an accurate and 
sound management of energy in addition to energy harvesting represents a major 
necessity. Due to its relevance the aspect has been widely addressed in the related 
literature [4] that, however, leaves major investigation areas open.  
The key point of harvesting is to maximize energy acquisition that, scavenged 
from an available source of power, is stored either in an energy accumulator (e.g., 
a battery or a super-capacitor) or directly consumed by the electronic system. 
Likewise, the major goal of energy management is to intelligently control energy 
consumption by acting at the hardware and software levels, with most sophisticat-
ed decision strategies based both on available and forecasted energy availability. 
Machine learning and, more in general, computational intelligence techniques, are 
suitable methods to be considered here since physical descriptions about the har-
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vestable energy is unavailable due to time variance of the environment and accu-
rate information about the current power consumption is available through meas-
urements only.  
 
3.1 Energy harvesting 
 
In CPSs energy can be harvested by relying on different technologies, e.g., from 
photovoltaic or Peltier cells to wind and flow turbines and, again, by relying on 
piezoelectric solutions. The optimal solution for a generic CPS application de-
pends on the available –and harvestable- energy, no matter whether the available 
power is high or not. “We get what we have, and that has to be enough” says an 
old leitmotiv. However, of particular relevance for the high density power har-
vestable are solutions coming from small photovoltaic cells. They can be both de-
ployed outdoor and indoor, with polymer flexible cells that, though less perform-
ing compared to the crystalline or amorphous counterparts, are foldable and 
assume any shape to fit with the available surface. This flexibility makes these 
harvesting solutions appealing with IoT since the cell can be designed to be de-
ployed directly on the target object.  Photovoltaic cells –but the same can be stated 
for wind and flow turbines- can greatly take advantage of intelligent solutions in 
the sense that we can maximize the acquired power through adaptation mecha-
nisms. Adaptation is needed every time the energy source, here the light, provides 
a power density that evolves with time, e.g., due the presence of clouds, dust or 
water drops on the cell surface as well as due to varying incidence angles. Defined 
vp to be the controllable voltage imposed at the photovoltaic cell, the harvestable 
power depends e.g., on the particular effective solar radiation as per figure 1a, 
where curve A is associated with a stronger power availability compared with case 
B. vp can be controlled over time by means of a Control Power Transfer Module 
(refer to figure 1b) that grants the harvester to maximize the extracted power to be 
sent to the storage mean. Details can be found in [4]. Adaptation can be seen as an 
online learning procedure where the optimal controlling parameters at time k+1 
can be achieved  through a gradient ascent algorithm as  
 

vp(k + 1) = vp(k) + γ  d(ipvp) 
dvp

 =vp(k) + γ(ip +  d�ip�
dvp

)  (1) 

 
where γ is a small constant accounting for the step taken along the gradient de-
scent direction. Such of a solution requires acquisition of current ip and vp over 
time through suitable sensors.  
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Figure 1: a) the characteristic curves for a photovoltaic cell: the acquired power 
depends on the applied controlling voltage vp.  b) The Control Power Transfer Module 
identifies the optimal voltage according to (1) and applies it to the cell; other architectures 
can be considered, e.g., see[4].  
 
3.2 Energy management and research challenges 
 
Energy management is a very important issue in any cyber-physical and IoT sys-
tem given the fact units are mostly battery powered and need to be kept as simple 
as possible to reduce their cost.  
Energy management can be carried out both at hardware and software/application 
level by leveraging on  
 
• Voltage/frequency scaling. By scaling power voltage and clock frequency the 

power consumption of the device reduces. In fact, for a CMOS technology the 
power consumption scales quadratically with the voltage and linearly with the 
working frequency [4]. Machine learning and fuzzy logic techniques can be 
adopted e.g., to profile the application at compile time and identify both at 
compile and run time when and how the control variables should be scaled. 
Evolutionary computation algorithms can also be considered at compile time 
to identify the optimal setting of controlling parameters over execution time.    

• Adaptive sampling. A great energy saving can be achieved by implementing 
an adaptive sampling strategy where the sampling frequency is adapted ac-
cording to the current needs of the application. By reducing the sampling fre-
quency –sometimes below the value granting signal reconstruction - we can 
also reduce the bandwidth needed for communication [10]. Machine learning 
and fuzzy logic can be fruitfully considered here to control the energy con-
sumption of the system by adaptively acting on the sampling rates of sensors 
by also taking into account predictions for both the residual and the harvesta-
ble (in the future) energy.  

• Keep the solution simple. This design strategy is always up-to-date in the 
sense that, in general, complex solutions require a high energy to carry out the 
due computation which, most of time, is not needed. In fact, in presence of 
uncertainty affecting the measurements and with the optimal application to be 
executed on the CPS unknown, it does not make much sense to implement too 
complex solutions. Machine learning and statistical methods should be inves-
tigated to assess the loss in performance associated with a given solution by 
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also taking into account existing uncertainty and available hardware re-
sources.  

• Consider incremental applications. Whenever performance accuracy is an is-
sue we can tradeoff accuracy for energy, in the sense that if a higher accuracy 
level is needed than we tolerate the algorithm to be more complex and ener-
gy-eager. Identification of the tradeoff between accuracy performance and 
energy savings can be carried out with optimization algorithms, e.g., those 
based on evolutionary algorithms. 

• Duty cycling. The more you sleep (i.e., the device enters low and deep power 
sleep modalities) the less energy you consume. By implementing duty cycling 
at the processor, sensor and memory levels we can significantly control ener-
gy consumption. Identification of timing to switch on and off different hard-
ware elements as well as selection of the optimal sleep modality represent an 
application-dependent complex optimization problem whose optimal solution 
can be found at compile time with both machine learning and evolutionary 
computation algorithms.  
 

4. Learning in nonstationary environments 
 
In designing cyber-physical and IoT applications we mostly assume that the pro-
cess generating the sensor datastream is either stationary (i.e., data or features ex-
tracted from the signal are independent and identically distributed (i.i.d.) random 
variables) or time invariant (the signal does not show an explicit dependency on 
time) [11]. However, such assumptions are hardly met in real applications and rep-
resent, in the best case, a first order approximation of the reality. In fact, sensors 
and actuators are naturally subject to ageing and the environment evolves per se, 
e.g., think of seasonality, day-night cycles or unpredictable effects affecting a 
plant. This problem is rarely addressed in existing CPS or IoT applications mostly 
due to the intrinsic difficulties and challenges that learning in nonstationary envi-
ronments pose. In the extreme cases where the change intensity impairs the per-
formances of the system, designer implement strategies permitting the application 
to be remotely updated. However, adaptation to the change in stationarity should 
be anticipated and managed as early as possible in order to meet the expected 
quality of service. 
In the literature, the difficult problem of detecting time-variance is generally trans-
formed into the detection of changes in stationarity, through suitable transfor-
mations, with only few studies addressing time-variance directly at the acquired 
datastreams level. As such, in the sequel, we focus on the change in stationary 
problem.  
The current literature about learning in nonstationary environments either propos-
es passive strategies, with the application undergoing a continuous adaptation 
(passive adaptation modality or passive learning) e.g., see [11-12], or active ones, 
with adaptation activated only once a trigger detects a change (active adaptation 
modality or active learning) [11, 13].  
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Let’s assume that the embedded application can be controlled through a vector of 
parameters 𝜃𝜃 so that the application code is described by means of the differentia-
ble family function 𝑓𝑓(𝑥𝑥, 𝜃𝜃), x representing the input vector, e.g., containing sen-
sors data. At time t the vector of parameters 𝜃𝜃𝑡𝑡 , is associated with algorithm 
𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡) . The notation becomes easier to follow if we imagine that function 
𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡) is a linear filter or a neural function. Differentiability is a convenient as-
sumption to ease the presentation here but it is not strictly requested. In fact, we 
just require the application to be updated in response to a need.  
Every time we are provided with output 𝑦𝑦𝑡𝑡  (measurement)  in correspondence 
with input 𝑥𝑥, the discrepancy 𝐿𝐿(𝑦𝑦𝑡𝑡, 𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡)) can be used to update the application. 
𝐿𝐿(. ,.) is any appropriate figure of merit used to assess such discrepancy, e.g., a 
mean square, a Kullback-Leibler distance, etc. Passive and active approaches dif-
ferentiate on the way the application update is carried out. More in detail, 
 
4.1 Passive adaptation modality 
 
In passive solutions the parameters describing the application are always updated 
following a compulsive update modality. The classic example is that of linear fil-
ters which update online the filter parameters based on the value of the discrepan-
cy (𝑦𝑦𝑡𝑡, 𝑓𝑓(𝑥𝑥, 𝜃𝜃𝑡𝑡) , mostly based on a least square loss function. More in general, the 
updated parameters are    
 

θt+1 = θt − γ  ∂L(x,θ) 
∂θ

�
θt

    (2) 

 
where 𝛾𝛾 is a small and application dependent scalar value controlling the step tak-
en along the gradient descent direction. 
Passive solutions do not suffer from false positives and negatives in detecting a 
change in stationarity/time variance, since the learning-based system/application 
continuously updates parameters over time by integrating the available novelty 
content into the model. From this perspective the partial derivative in (2) can be 
intended as the operator extracting the novelty information content from current 
data: if there is novelty, the model needs to be updated. As a consequence, passive 
models are rather sensitive to noise in incoming data: after parameter convergence 
the application continues to update the parameters so as to track the particular 
noise realization. A vast literature on passive approaches exist (also called online 
learning in the neural networks field) and the interest reader can focus on and im-
plement those results in her/his CPS/IoT application [4, 11, 14]. However, the 
computational complexity of a passive approach might be inappropriate for em-
bedded applications given the continuous need to update the model, operations 
which might end up in a prohibitive energy consumption and processing time 
whenever the update phase is energy/computation eager. Ensemble solutions and 
complex neural networks are examples in this direction where the cost we have to 
pay for high accuracy and flexibility is computational. 
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4.2 Active adaptation modality 
 
In the active adaptation strategy, the presence of a change-detection trigger acti-
vates the due application reaction following the detected change in stationarity, 
e.g., by updating the learning-based system. This means that the application run-
ning on the embedded device undergoes an update/reconfiguration phase to track 
the change in stationarity only when triggered by the change detection module. 
The change detection module –or Oracle- operates by inspecting features 𝜑𝜑 ex-
tracted from the input data or preprocessed variables [4,13] to assess the presence 
of a change. In other terms the Oracle 𝜔𝜔 acts as the indicator function  
 

𝜔𝜔(𝜑𝜑) = �1, 𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 
 
and the update equation becomes  

 
 θt+1 = θt − γ ω(φ) ∂L(x,θ) 

∂θ
�
θt

   (3) 

 
In its basic form the Oracle is based on a threshold; in more sophisticated versions 
the Oracle also relies on a confidence level –e.g., as it happens in statistical tests-
or, even, takes control of the occurrence of false positives by setting its expecta-
tion to a predefined value. 
Adaptive strategies at cyber-physical systems following the active adaptation  mo-
dality are known as “detect & react” approaches; such solutions have much fo-
cused on classifiers in the related literature, though results are more general [4]. 
 
It should be commented that if the computational load of passive solutions is neg-
ligible they should be preferred than active ones unless the application is interest-
ed in knowing that a change in stationarity occurred (the change in stationarity 
might be associated with a faulty sensor for instance, as investigated in the next 
section). If the computational complexity of the update phase is not negligible, al-
so in relationship with the dynamics of the change, we might prefer active solu-
tions. However, active approaches suffer from false alarms (false positives) intro-
duced by the change-detection triggering mechanism hence inducing the 
application to update even though not strictly needed. Fortunately, in CPS applica-
tions false positives do not negatively affect performance but only introduce an 
extra, not requested, computation.  
One should expect that if the physical environment is changing with a low fre-
quency then an active approach might be more appropriate than a passive one. 
However, again, one should balance the application update phase with its compu-
tational complexity and the level of time-variance exposed by the environment the 
system interacts with. This problem becomes even more relevant and up-to-date in 
CPSs, IoT, and Smart-X technologies, producing high-dimensional datastreams 
where it is expected the computational load to be high. Since active and passive 
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solutions represent extreme strategies, current solutions are investigating hybrid 
approaches aiming at taking major advantages from them. 
 
4.3 Research challenges 
 
Several research challenges should be addressed in order to support a quick and 
effective design of cyber-physical and IoT technologies   
 
• Design methodologies. Neither investigations nor methodologies are available 

to shed light on the relationships among the effectiveness of active/passive 
approaches w.r.t. the speed/nature of the change and the computational 
complexity of involved methods. Such investigations are fundamental to 
permit embedded applications to detect possible changes in the environment 
and react accordingly to keep the quality of service at the appropriate level.   

• Design of distributed decision making applications. There are no 
computationally-light change detection mechanisms for distributed embedded 
systems able to control the false positive rates. The challenge here is to 
provide distributed –possibly autonomous- decision making strategies, 
reasonably based on machine learning methods.  

• Approximate computing. What is largely needed are strategies permitting the 
harmonization of the learning in nonstationarity environment functionality for 
distributed embedded systems, possibly within an approximate computing 
framework. In this case, the approximation level introduced by the hardware 
as well as that introduced by the adoption of incremental software should be 
traded-off with accuracy performance as coming from active or passive 
learning strategies. It is expected that the optimization problem identifying the 
most suitable level of approximation over time can be carried out with 
evolutionary computation algorithms. 

• Addressing subtle changes. Design of learning-based methodologies to detect 
and anticipate subtle drift changes are needed, e.g., to deal with aging at the 
sensor and actuators level. In fact, slowly developing changes are hard to 
detect in the sense their magnitude is small and can be detected by current 
change detection tests only in the long time period. However, it is expected 
that availability of datastreams should permit to run machine learning tools to 
estimate the current behavior of the features and build predictive models to 
assess the level of time variance.  

 
5. Model-free fault diagnosis systems 

 
Cyber-physical applications are mostly data-eager, in the sense that applica-

tion decisions and behaviors are strongly driven by the information content ex-
tracted from a generally large platform of sensors. This dependency on sensor data 
can be however very critical, since sensors and real apparatus are prone to faults 
and malfunctioning that, in turn, negatively affect the information content carried 
by data and used by the application to make decisions [15, 16]. The problem am-
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plifies when low cost sensors are considered and/or sensors are deployed in harsh 
and challenging environments (e.g., think of a body network where sensors, exter-
nal buses and connectors are subject to mechanical stress and environmental chal-
lenges). As such, faulty sensors detection (also including sensors working in sub-
optimal conditions) and mitigation are intelligent functionalities that must be in-
cluded in the design of any CPS to prevent propagation of erroneous information 
to the decisional level [17]. At the same time, we comment that a generic method 
designed to detect a fault occurrence will also detect any deviation in the infor-
mation carried by data, e.g., caused by changes in the environment the sensor is 
deployed in (time variance), and react erroneously: a novel family of methods are 
hence requested to detect changes in the information content carried by data, dis-
ambiguate between faults and violation of the time invariant hypothesis as well as 
identify, isolate and possibly mitigate the occurrence of faults. These tasks are car-
ried out by Fault Diagnosis Systems (FDSs).  

 

 
Figure 2: A full fault diagnosis system is characterized by four phases: fault de-
tection aiming at identifying the presence of a fault; fault identification character-
izing the type and nature of the fault; fault isolation, localizing the fault and fault 
mitigation, whose goal is to reduce the impact of the fault on the system 

 
5.1 Model-free fault diagnosis systems 
 
Since CPSs rely on a rich and diversified set of sensors produced by a pletho-

ra of companies, it is not possible to request an accurate physical model describing 
their modus operandi. In this direction, model-free Fault Diagnosis Systems are 
requested to detect, identify and isolate the occurrence of faults without assuming 
that their signatures, the nature of uncertainty and their ruling equations are avail-
able.  
Research on standard (not model-free) FDSs has provided major breakthroughs in 
past decades by yielding several methodologies for detecting and diagnosing faults 
in several real world applications e.g., see [17, 18]. However, the effectiveness of 
a traditional FDS is directly proportional to the available information and priors 
about the given system, in the sense that availability of 1) the equations ruling the 
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interaction between the cyber system and the physical phenomenon, 2) infor-
mation about the inputs and the system noise and 3) availability of the “fault dic-
tionary” containing the characterizations of feasible faults, permits the FDS to op-
erate in optimal conditions. Even though some information might become 
available in some very specific applications, in general it is hardly usable in cyber-
physical applications since the characterization of the CPS interaction, the nature 
of existing noise and uncertainty, and the signature of expected faults are missing. 
Moreover, we cannot spend huge efforts in designing a FDS for any CPS-based 
application if the requested procedure is too complex and articulated since costs 
and time-to-market are fundamental requirements in designing successful applica-
tions. Instead, we would appreciate a methodology able to automatically learn the 
FDS directly from the data the application receives (computational intelligence-
based model-free approach: no available model for the system under investigation, 
no fault dictionary or fault signatures, no information about the nature of uncer-
tainty). In other terms, all unknown needed entities are learned from available data 
through computational intelligence and machine learning techniques.  
The particular computational intelligence technique depends on the information 
available to solve a specific sub-problem. For instance, we can use machine learn-
ing and fuzzy systems to detect faults; the same technologies can be used to design 
a fault dictionary, identify the type of fault through a classifier or its magnitude 
through inference. Fault localization can take advantage of a statisti-
cal/probabilistic or fuzzy logic framework whereas mitigation can be based on 
machine learning and fuzzy systems.   
Existing model-free FDSs automatically learn the nominal and the faulty states 
from sensor data-streams and take advantage of existing temporal and spatial rela-
tionships among sensors to detect a possible occurrence of faults. The learned re-
lationships are then used to characterize the system nominal state as well as detect 
any deviation from such a nominal behavior, diagnose the causes of the deviation, 
identify the nature of the faults, isolate faulty sensors and –possibly- mitigate their 
effects. It must be pointed out that most of existing solutions either apply the 
learning mechanism only to a particular aspect of the FDSs (e.g., the fault diction-
ary), or solve specific applications: very few –preliminary- model-free methodol-
ogies have been proposed in the literature, e.g., see [19]. Such solutions aim at 
characterizing the relationships present in the acquired data-streams to autono-
mously learn the nominal state and construct, whenever possible, the fault diction-
ary during the operational life of the system for fault detection, isolation and iden-
tification purposes.  
However, despite of these encouraging results major investigations must be ac-
complished to reach the maturity level needed to support an automatic design of a 
model-free FDS for networked cyber-physical applications that is automatic, ef-
fective, controls false positives/negatives and is computationally light. 
 
5.2 Research challenges 
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In order to support the next generation of any cyber-physical application we need 
to address some open research issues 
• Multiple faults. The “single fault” assumption has to be relaxed to host 

multiple “concurrent” faults, possibly also of transient type, as it is the case in 
cyber-physical/human applications. In fact, once a fault occurs it is likely that 
a domino effect will arise and a subset of sensors affected. Graph-based 
machine learning techniques are expected to be the right tools to address this 
research topic.   

• Disambiguation module. Once a change in stationarity is detected we need to 
run powerful methods able to disambiguate among changes in the 
environment, faults and false positives introduced by the change detection 
method. Given the nature of the problem and the type of information 
available, it is expected that machine learning and fuzzy tools should be the 
appropriate techniques to be applied here.  

• Unbalanced data. Faults are rare events; as such it is hard to have many data 
coming from the “faulty class”. This implies that we need to provide machine 
learning methodologies to design effective FDSs starting from few and 
unbalanced data.   

• Modeling aspect. We need to provide novel design methodologies for model-
free FDSs. Such methodologies should be able to automatically configure the 
FDS for the given application after having profiled sensor data. It is expected 
that machine learning techniques should be the right tools to be used here to 
design such of a system.   

 
6. Cyber-security 

 
As mentioned in the previous sections, CPS and IoT technologies will make 

our life easier and richer in opportunities. However, at the same time, such tech-
nologies are prone to cyber-attacks designed to steal precious information and 
harm people, companies, and governments. In late September 2016 bot nets in-
fected by the infamous IoT malware Mirai [5] caused a severe Distributed Denial 
of Service Attack (DDoS) that prevented major sites to correctly provide services 
to clients.  
Cyber-attacks using IoT devices are expected to steadily increase by taking ad-
vantage of network scalability and vulnerability of IoT devices, an aspect that is 
far from being fixed. Moreover, malware Mirai that was originally designed to in-
fect Linux-based IoT devices is still evolving, with its offspring targeting Win-
dows computers and possibly, in the future, also Android smartphones.  

Cyber-attacks to CPS are of deeper concern once applications target our daily 
life. Consider, for instance, an elderly-care smart home with a solo senior person 
whose behavior is continuously monitored for safety purposes. The monitoring 
system consists of some surveillance cameras and various IoT sensors such as 
door lock and proximity sensors deployed in rooms and corridors. Once the moni-
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toring system detects an emergency situation an alert is issued and sent to caregiv-
ers and doctors. Following a malware infection, the system control is completely 
taken by the attacker who might decide to activate e.g., a DDoS attack, hence 
leaving the person safety issue unattended. Needless to say, CPS designed to pro-
tect the person will, in the best case, not work properly. It comes per se that smart 
cyber-security systems need to be considered in order to prevent such situations.  

 
6.1 How can CPS and IoT be protected from cyber-attacks?  

 
In order to effectively protect a given CPS or IoT device from cyber-attacks we 

need to consider several cyber-security levels. The first security level should be 
designed to protect IoT sensor units, the second one has to shield the server where 
sensor data are processed and control signals issued to be delivered to actuators. 
Finally, the third level is designed to protect the whole CPS application by moni-
toring trends of cyber-attack activities on the Internet.  

When thinking about the first level of security we should keep in mind that the 
number of IoT units could be very large and heterogeneous in hardware and soft-
ware. Here, given the constrained hardware resources, it is mostly unrealistic to 
implement a complex form of security such as installing anti-virus software or 
embedding a network intrusion detection mechanism in hardware. The protection 
measures depend then on the computational resources of the end device. One solu-
tion here would be to utilize an anomaly (fault) detection mechanism as those used 
in fault diagnosis systems or an Oracle, as discussed in the learning in nonstation-
ary environment sections.  

Various software products are available to implement the second level of secu-
rity. However, there is still plenty of room to design machine learning-based algo-
rithms to identify malwares and detect unknown cyber-attacks using zero-day vul-
nerability. Many approaches have been proposed so far in this direction, e.g., see 
[20][21] for details.  

The third security layer is also very important and can be seen at the applica-
tion level. Usually, the number of new malware victims gradually increase, infec-
tion then rapidly spreads following some triggering events associated with mal-
ware evolution (the open source code of the malware is made available) and, 
finally, we end up in a pandemic situation. Early detection of malware can then 
mitigate the infection as presented in the next subsection case study.  

 
6.2 Case study: Darknet analysis to capture malicious cyber-attack behaviors  
 

In order to protect users form cyber threats it is important to characterize mal-
ware behavior, with malware instances caught both within one’s local network 
domain and the Internet as a whole. A classification system can then be designed 
to monitor the current system behavior in order to detect cyber-attacks. One way 
to observe large-scale events taking place on the Internet is to design a network 
probe inspecting activity in the darknet. The darknet is defined as the set of un-
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used address-space of a computer network which should not be used and, as such, 
not have any normal communication with other computers. Following the defini-
tion, it comes out that almost all communication traffic along the darknet is there-
fore suspicious; by inspecting such of a traffic we can grasp information related to 
cyber-attacks. Observable cyber-attacks are mainly activities of random scanning 
worms and DDoS backscatter messages. However, since the darknet can receive 
packets from the whole Internet space, by operating in the darknet we can monitor 
the large-scale malicious activities on the whole Internet.  
 

 
(a) DDoS attacks                                                     (b) Scanning 

Figure 3: Examples of tiles to represent two typical darknet traffic patterns 
 

Figure 3 shows the darknet traffic patterns representing 2 cases of typical mali-
cious behaviors: (a) DDoS attacks and (b) scanning. The vertical axes of the plots 
represent the port number of a source host and a destination IP (darknet side). The 
horizontal axis is divided into two parts: the left one refers to the time needed to 
send a packet from a source host while the right half refers to the destination IP. 
Therefore, the plot shows that a packet is delivered from a point in the left side to 
a point in the right one. According to the nature of cyber-attacks, traffic patterns 
differentiate. For instance, figures 3 shows a typical DDoS attack and a typical 
scanning activity.  
We discovered that a darknet traffic pattern can be successfully described by the 
following 17 features related to the statistics of darknet packets [22]: 

(1) #Total Packets                 (2, 3) Avg and Std of Time Spans of Packets  
(4) #Source Ports                  (5, 6) Avg and Std of #Packets from Source Ports   
(7) #Destination IPs              (8, 9) Avg and Std of #Packets from Dest. IPs   
(10) #Destination Ports         (11, 12) Avg and Std of #Packets from Dest. Ports  
(13) #Protocol Types            (14, 15) Avg and Std of Payload Sizes 
(16, 17) Avg and Std of Spans of Dest. IP Numbers.  

Once a darknet traffic pattern for a specific source host is transformed into the 
17-dimentional feature vector, machine learning techniques can be applied to clus-
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ter data based on the similarity of traffic patterns. Figure 4 illustrates results of 
darknet traffic patterns inspected in March 2014.  

 
Figure 4: A distribution of darknet traffic patterns. A red point corresponds to a 
source host whose packet traffic is classified as a DDoS. A blue point refers to a 
non-DDoS backscatter activity, mostly associated with scanning.  

 
As seen from figure 4 darknet traffic patterns are clearly separated into some clus-
ters of DDoS and non-DDoS (mainly scanning) attacks by t-Stochastic Neighbor 
Embedding (t-SNE) [23].  

In order to identify a particular type of cyber-attack classifiers must be de-
signed, e.g., SVM and random forests.  

The abovementioned 17 features intentionally eliminate detailed information 
such as port numbers and header information of a TCP packet. This type of ab-
straction is important to define a broad feature space covering unknown malicious 
activities. Once unknown darknet traffic patterns are identified using an anomaly 
detection method, a more precise analysis such as identifying a specific malware 
type is conducted. In a way what done within the cyber-attack protection intelli-
gent functionality is similar to some steps introduced by fault diagnosis systems 
where, at first malware is detected, secondly, identified and, third, mitigation 
strategies taken into account.   
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