
SpringerBriefs in Applied Sciences
and Technology

PoliMI SpringerBriefs

Editorial Board

Barbara Pernici, Politecnico di Milano, Milano, Italy
Stefano Della Torre, Politecnico di Milano, Milano, Italy
Bianca M. Colosimo, Politecnico di Milano, Milano, Italy
Tiziano Faravelli, Politecnico di Milano, Milano, Italy
Roberto Paolucci, Politecnico di Milano, Milano, Italy
Silvia Piardi, Politecnico di Milano, Milano, Italy

More information about this series at http://www.springer.com/series/11159
http://www.polimi.it

http://www.springer.com/series/11159

Amir H. Ashouri • Gianluca Palermo
John Cavazos • Cristina Silvano

Automatic Tuning
of Compilers Using Machine
Learning

123

Amir H. Ashouri
Edward S. Rogers Sr. Department
of Electrical and Computer
Engineering (ECE)

University of Toronto
Toronto, ON
Canada

Gianluca Palermo
Department of Electronics, Information
and Bioengineering (DEIB)

Politecnico di Milano
Milan
Italy

John Cavazos
Computer and Information Sciences (CIS)
University of Delaware
Newark, DE
USA

Cristina Silvano
Department of Electronics, Information
and Bioengineering (DEIB)

Politecnico di Milano
Milan
Italy

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISSN 2282-2577 ISSN 2282-2585 (electronic)
PoliMI SpringerBriefs
ISBN 978-3-319-71488-2 ISBN 978-3-319-71489-9 (eBook)
https://doi.org/10.1007/978-3-319-71489-9

Library of Congress Control Number: 2017959897

© The Author(s) 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Learning never exhausts the mind
Imparare non stanca mai la mente

—Leonardo da Vinci

Foreword

Compilers have two jobs: translating programs into a form understandable by
machines and making the translated code run efficiently. This second role, compiler
optimization is a long-standing research problem. It has led to a large number of
compiler heuristics or optimizations, each of which is designed to improve system
performance. While each of these optimizations may deliver good performance
individually, when combined they may degrade performance. Determining what
optimizations to use and in what order depends on the program and the target
platform. The different combinations and orderings quickly create a massive opti-
mization space greater than the number of atoms in the known universe. The
complexity of this problem prevents innovation in compiler research and leads to a
loss of performance. In recent years, researchers have looked to search and machine
learning-based approaches to navigate this complex space and select the best
combination and sequence of optimizations.

This book tackles the difficult problem of determining the best set of compiler
optimizations for a range of platforms. It addresses this problem using innovative
machine learning-based solutions that exploit prior knowledge. This knowledge is
used to build models that predict the right optimizations for unseen programs. It
succinctly describes the fundamental research problem and extensively surveys the
large body of prior work. This survey provides an excellent background to the
topic.

This book makes four specific technical contributions. The first considers how to
co-design VLIW micro-architecture and compiler optimizations using a
performance/area Pareto curve. The second contribution is the use of a novel
Bayesian network to predict the best optimizations using a method that explains
how program features correlate with output. The third contribution is the use of a
performance predictor to guide and select compiler optimizations without running
the code. The final contribution is the most ambitious chapter, tackling phase order
based on a unique optimization clustering approach.

vii

This book provides an excellent state-of-the-art survey of compiler optimization,
develops innovative solutions to long-standing problems, and most importantly of
all opens up new lines of research in compiler optimization.

October 2017
Michael O’Boyle

University of Edinburgh,
Edinburgh UK

viii Foreword

Preface

The diversity of today’s architectures has forced programmers to spend additional
efforts to port and tune their application source code across different platforms. In
this process, compilers need additional tuning to generate better code. Recent
compilers offer a vast number of multilayered optimizations, capable of targeting
different code segments of an application. Choosing the right set of optimizations
can significantly impact the performance of the code. This is a challenge made more
complicated by the need to find the best order in which they should be applied
given an application. Finding the best ordering is a long-standing problem in
compilation research called the phase-ordering problem. The traditional approach
for constructing compiler heuristics to solve it simply cannot cope with the enor-
mous complexity of choosing the right ordering of optimizations for each code
segment in an application. The current research focuses on exploring, studying, and
developing an innovative approach to the problem of identifying the compiler
optimizations that maximize the performance of a target application.

Overview of this Book

This book addresses two fundamental problems involved in compilation research:
the problem of selecting the best compiler optimizations and the phase-ordering
problem. Statistical analyses were extensively used to relate the performance of an
application to the applied optimizations. More precisely, machine learning models
were adapted to predict an outcome. Here, an outcome is described either in terms
of performance metrics, or the use of a certain compiler optimization. Similar to
other machine learning approaches, we use a set of training applications to learn the
statistical relationships between application features and compiler optimizations.
For instance, Bayesian networks are used to learn the statistical model to which an

ix

application can be represented with. We call these representations an application
feature. Thus, given a new application not included in the training set, its features
are fed to the Bayesian network as evidence. This evidence generates a bias on the
distribution, as compiler optimizations are correlated with software features. The
obtained probability distribution is application-specific and effectively focuses on
the prediction of the most promising compiler optimizations. This will be discussed
in detail in Chap. 3.

Who is this Book for?

This is a textbook that aims to showcase the very recent developments of research
approaches in the compilation research, specifically autotuning. Therefore, all
researchers in the compiler community, computer architecture, parallel computing,
and machine learning can benefit from reading it. Additionally, given the potential
industrial impact of the provided approaches, it is recommended to read to other
technical professionals as well.

Summary and Organization

This book tackles the major problems of compiler autotuning. We use machine
learning, DSE, and meta-heuristic techniques to construct efficient and accurate
models to induce prediction models.

It is organized as follows: First, we provide an extensive review of the state
of the art in Chap. 1. We survey more than hundred recent papers of the past
twenty-five years since when the applications of machine learning have been
introduced to compiler optimization field. Following the literature review, in Chap.
2, we provide a co-exploration approach using design space exploration technique
for an embedded domain, namely VLIW. We show that this technique can speed up
the performance of an application by using certain optimizations pass over our
proposed VLIW micro-architecture. In Chap. 3, we present a novel machine
learning approach to selecting the most promising compiler optimizations using
Bayesian networks. This technique significantly improves application’s perfor-
mance against using fixed optimization available at GCC where our Bayesian
network selects the most promising compiler passes. Chapters 4 and 5 are pre-
senting our novel machine learning predictive models on how to tackle the
phase-ordering problem. The former presents an intermediate approach, and the
latter showcases a complete sequence speedup predictor on the very problem.

x Preface

Finally, we present some concluding remarks and future works. Note that in this
book, the bibliography is chapter-wise.

We hope this book brings the latest research done to a wide range of readers and
promotes the use of machine learning on the field of compilation.

Toronto, ON, Canada Amir H. Ashouri
Milan, Italy Gianluca Palermo
Newark, DE, USA John Cavazos
Milan, Italy Cristina Silvano

Preface xi

Acknowledgements

The majority of the research related to this book has been carried out in the
Department of Electronics, Information and Bioengineering (DEIB) at Politecnico
di Milano. Additionally, I had the chance to be a Visiting Scholar in the Department
of Electrical Engineering and Computer Science at the University of Delaware,
USA. The collaboration allowed me to carry out further elaborations and analyses.
The work described in this book was partially supported by the European
Commission Call H2020-FET-HPC program under the grant ANTAREX-671623.

I would like to thank all my colleagues and advisers including postdoctoral and
Ph.D. fellows with whom I had the opportunity to collaborate, specially Cristina
Silvano, Gianluca Palermo, John Cavazos, Giovanni Mariani, Sotiris Xydis, Marco
Alvarez, Eunjung Park, Sameer Kulkarni, William Kilian, Andrea Bignoli, and
Robert Searles. The teamwork was truly fun and challenging at the same time, and I
was grateful to participate in numerous constructive discussions. Many thanks to
Michael O’Boyle and Erven Rohou for their valuable comments and provided
reviews. Their insight on the compiler optimization field is truly inspiring.

Last but not least, I would like to appreciate the lifetime support of my lovely
family: mother, father, and the younger brother who always have been my back-
bone during the hard times and the good times. Thank you for giving me the
positive energy to carry on and for urging me to choose this path for my life.

Amir H. Ashouri
University of Toronto

October 2017 Toronto, Canada

xiii

Contents

1 Background . 1
1.1 Introduction . 1
1.2 Compiler Optimizations . 4

1.2.1 A Note on Terminology and Metrics 4
1.2.2 Compiler Optimization Benefits and Challenges 5
1.2.3 Compiler Optimization Problems 5

1.3 Machine Learning Models . 8
1.3.1 Supervised Learning . 8
1.3.2 Unsupervised Learning . 13
1.3.3 Other Machine Learning Methods 14

1.4 Conclusions . 16
References . 16

2 Design Space Exploration of Compiler Passes: A Co-Exploration
Approach for the Embedded Domain . 23
2.1 VLIW . 23
2.2 Background . 25
2.3 Methodology for Compiler Analysis of Customized VLIW

Architectures . 26
2.3.1 Custom VLIW Architecture Selection 28
2.3.2 Compiler Transformation Statistical Effect Analysis 30

2.4 Conclusions and Future Work . 38
References . 38

3 Selecting the Best Compiler Optimizations: A Bayesian
Network Approach . 41
3.1 Introduction . 41
3.2 Previous Work . 43
3.3 Proposed Methodology . 44

xv

3.3.1 Applying Program Characterization 46
3.3.2 Dimension-Reduction Techniques 47
3.3.3 Bayesian Networks . 49

3.4 Experimental Evaluation . 52
3.4.1 Benchmark Suites . 52
3.4.2 Compiler Transformations . 54
3.4.3 Bayesian Network Results . 55
3.4.4 Comparison Results . 58
3.4.5 A Practical Usage Assessment . 63
3.4.6 Comparison with State-of-the-Art Techniques 65

3.5 Conclusions . 68
References . 68

4 The Phase-Ordering Problem: An Intermediate Speedup
Prediction Approach . 71
4.1 Introduction . 71
4.2 Related Work . 73
4.3 The Proposed Methodology . 74

4.3.1 Compiler Phase-Ordering Problem 76
4.3.2 Application Characterization . 76
4.3.3 Intermediate Speedup Prediction . 77

4.4 Experimental Evaluation . 79
4.5 Conclusions . 82
References . 82

5 The Phase-Ordering Problem: A Complete Sequence Prediction
Approach . 85
5.1 Intermediate Versus Full-Sequence Speedup Prediction 85
5.2 Related Work . 87
5.3 The Proposed Methodology . 88

5.3.1 Application Characterization . 90
5.3.2 Constructing Compiler Sub-sequences 90
5.3.3 The Proposed Mapper . 93
5.3.4 Predictive Modeling . 94
5.3.5 Recommender Systems Heuristic 97

5.4 Experimental Results . 98
5.4.1 Analysis of Longer Sequence Length 101
5.4.2 MiCOMP Prediction Accuracy . 102
5.4.3 MiCOMP Versus the Ranking Approach 104

5.5 Comparative Results . 105
5.5.1 Comparison with Standard Optimization Levels 105
5.5.2 Comparisons with State-of-the-Art Models 107
5.5.3 Comparison with Random Iterative Compilation 109

xvi Contents

5.6 Conclusion . 111
References . 112

6 Concluding Remarks . 115
6.1 Main Contributions . 115
6.2 Open Issues and Future Directions . 116

Index . 117

Contents xvii

	Foreword
	Preface
	Overview of this Book
	Who is this Book for?
	Summary and Organization

	Acknowledgements
	Contents

