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Learning never exhausts the mind
Imparare non stanca mai la mente

—Leonardo da Vinci



Foreword

Compilers have two jobs: translating programs into a form understandable by
machines and making the translated code run efficiently. This second role, compiler
optimization is a long-standing research problem. It has led to a large number of
compiler heuristics or optimizations, each of which is designed to improve system
performance. While each of these optimizations may deliver good performance
individually, when combined they may degrade performance. Determining what
optimizations to use and in what order depends on the program and the target
platform. The different combinations and orderings quickly create a massive opti-
mization space greater than the number of atoms in the known universe. The
complexity of this problem prevents innovation in compiler research and leads to a
loss of performance. In recent years, researchers have looked to search and machine
learning-based approaches to navigate this complex space and select the best
combination and sequence of optimizations.

This book tackles the difficult problem of determining the best set of compiler
optimizations for a range of platforms. It addresses this problem using innovative
machine learning-based solutions that exploit prior knowledge. This knowledge is
used to build models that predict the right optimizations for unseen programs. It
succinctly describes the fundamental research problem and extensively surveys the
large body of prior work. This survey provides an excellent background to the
topic.

This book makes four specific technical contributions. The first considers how to
co-design VLIW micro-architecture and compiler optimizations using a
performance/area Pareto curve. The second contribution is the use of a novel
Bayesian network to predict the best optimizations using a method that explains
how program features correlate with output. The third contribution is the use of a
performance predictor to guide and select compiler optimizations without running
the code. The final contribution is the most ambitious chapter, tackling phase order
based on a unique optimization clustering approach.
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This book provides an excellent state-of-the-art survey of compiler optimization,
develops innovative solutions to long-standing problems, and most importantly of
all opens up new lines of research in compiler optimization.

October 2017
Michael O’Boyle

University of Edinburgh,
Edinburgh UK

viii Foreword



Preface

The diversity of today’s architectures has forced programmers to spend additional
efforts to port and tune their application source code across different platforms. In
this process, compilers need additional tuning to generate better code. Recent
compilers offer a vast number of multilayered optimizations, capable of targeting
different code segments of an application. Choosing the right set of optimizations
can significantly impact the performance of the code. This is a challenge made more
complicated by the need to find the best order in which they should be applied
given an application. Finding the best ordering is a long-standing problem in
compilation research called the phase-ordering problem. The traditional approach
for constructing compiler heuristics to solve it simply cannot cope with the enor-
mous complexity of choosing the right ordering of optimizations for each code
segment in an application. The current research focuses on exploring, studying, and
developing an innovative approach to the problem of identifying the compiler
optimizations that maximize the performance of a target application.

Overview of this Book

This book addresses two fundamental problems involved in compilation research:
the problem of selecting the best compiler optimizations and the phase-ordering
problem. Statistical analyses were extensively used to relate the performance of an
application to the applied optimizations. More precisely, machine learning models
were adapted to predict an outcome. Here, an outcome is described either in terms
of performance metrics, or the use of a certain compiler optimization. Similar to
other machine learning approaches, we use a set of training applications to learn the
statistical relationships between application features and compiler optimizations.
For instance, Bayesian networks are used to learn the statistical model to which an
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application can be represented with. We call these representations an application
feature. Thus, given a new application not included in the training set, its features
are fed to the Bayesian network as evidence. This evidence generates a bias on the
distribution, as compiler optimizations are correlated with software features. The
obtained probability distribution is application-specific and effectively focuses on
the prediction of the most promising compiler optimizations. This will be discussed
in detail in Chap. 3.

Who is this Book for?

This is a textbook that aims to showcase the very recent developments of research
approaches in the compilation research, specifically autotuning. Therefore, all
researchers in the compiler community, computer architecture, parallel computing,
and machine learning can benefit from reading it. Additionally, given the potential
industrial impact of the provided approaches, it is recommended to read to other
technical professionals as well.

Summary and Organization

This book tackles the major problems of compiler autotuning. We use machine
learning, DSE, and meta-heuristic techniques to construct efficient and accurate
models to induce prediction models.

It is organized as follows: First, we provide an extensive review of the state
of the art in Chap. 1. We survey more than hundred recent papers of the past
twenty-five years since when the applications of machine learning have been
introduced to compiler optimization field. Following the literature review, in Chap.
2, we provide a co-exploration approach using design space exploration technique
for an embedded domain, namely VLIW. We show that this technique can speed up
the performance of an application by using certain optimizations pass over our
proposed VLIW micro-architecture. In Chap. 3, we present a novel machine
learning approach to selecting the most promising compiler optimizations using
Bayesian networks. This technique significantly improves application’s perfor-
mance against using fixed optimization available at GCC where our Bayesian
network selects the most promising compiler passes. Chapters 4 and 5 are pre-
senting our novel machine learning predictive models on how to tackle the
phase-ordering problem. The former presents an intermediate approach, and the
latter showcases a complete sequence speedup predictor on the very problem.

x Preface



Finally, we present some concluding remarks and future works. Note that in this
book, the bibliography is chapter-wise.

We hope this book brings the latest research done to a wide range of readers and
promotes the use of machine learning on the field of compilation.

Toronto, ON, Canada Amir H. Ashouri
Milan, Italy Gianluca Palermo
Newark, DE, USA John Cavazos
Milan, Italy Cristina Silvano
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