
 

FCNN-based segmentation of kidney vessels - Towards constraints definition for 
safe robot-assisted nephrectomy 

S. Moccia​1,2​, S. Foti​3​, S.M. Rossi​3​, I. Rota​3​, M. Scotti​3​, S. Toffoli​3​, L.S. Mattos​3​,  
E. De Momi​3​, E. Frontoni​2 

1​Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa (Italy) 
2​Department of Information Engineering, Università Politecnica delle Marche, Ancona (Italy) 

3​Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan (Italy) 
 sara.moccia@iit.it 

 
 
INTRODUCTION 

Nephrectomy requires careful surgical actions in      
order to remove tumoral tissue while avoiding the        
damaging of major vessels such as the renal artery [​1​].          
Robotic nephrectomy is emerging as a powerful       
solution to avoid vessel damaging through      
active-constraints (AC) control [​1​]. To provide AC       
control, sensitive vascular structures have to be detected        
in real-time in intra-operative images. 

A well established literature on vessel segmentation       
exists. Vessel-segmentation approaches can be divided      
in: (i) vessel enhancement, (ii) model-based methods,       
(iii) tracking, and (iv) machine-learning (ML)      
approaches [2]. Recently, successful segmentation     
approaches are mainly based on ML strategies based on         
fully-convolutional neural networks (FCNNs). FCNNs     
allows to tackle inter- and intra-patient variability, as        
well as noise and illumination variation in the images. 

The goal of this paper is to investigate the use of           
FCNN for vessel segmentation in laparoscopic images       
acquired during nephrectomy procedures. 

MATERIALS AND METHODS 
The FCNN investigated in this work is the U-Net         

[​3​]. U-Net is made of 9 processing steps, which form a           
contractive and an expansive path. The paths are        
symmetric to each other. The contractive path acts as         
feature extractor, while the expansive one performs       
up-convolution and segmentation. The U-Net used in       
this paper has only 5 of the original 9 processing steps           
to lower the segmentation computational cost while       
preserving segmentation performance [4]. The steps in       
the contractive path are made of 3x3 convolutional and         
2x2 max pooling kernels. The expansive path has 3x3         
convolutional and 2x2 up-sampling kernels. The      
peculiarity of U-Net is the presence of copy layers. The          
copy layers were introduced in [​3​] ​to link the         
contracting and the expansive path, as to retrieve the         
information lost in the contracting path and take it into          
account while performing object localization. 

The segmentation of the renal artery – which is         
recognized as one of the most critical structures in the 

 
Figure 1​: Sample images. Arrows indicate the renal artery.  
 
clinical literature [​1​] – was studied deploying a deep         
neural network. However, to the best of authors        
knowledge, no renal arteries dataset was available to        
train the FCNN. For this reason, a new dataset was          
created. It consisted of laparoscopic images manually       
extracted and labeled from 4 videos of robot-assisted        
partial nephrectomy, relative to 4 different patients. The        
images were extracted in such a way that the renal          
artery was clearly visible in the camera field of view.          
The number of extracted frame was 65 for the first          
patient (Pat. 1), 100 for the second one (Pat. 2), 30 for            
the third one (Pat. 3) and 123 for the last one (Pat. 4).             
Images size was 640x480 pixels for Pat. 1, 1280x720         
for Pat. 2, and 854x480 for Pat. 3 and Pat. 4. Black            
borders were removed from the images, that were then         
resized to 296x220 pixels to smooth noise and reduce         
both processing time and memory usage. The image        
labeling process involved 4 expert subjects, that       
manually drew vessel contours using MATLAB 2018A.       
Challenges in the dataset included: different      
illumination levels, noise in the images, varying       
laparoscope pose with respect to the renal artery and         
high variability in both inter-patient artery architecture       
and location. Sample images acquired from different       
patients are shown in Fig. 1. 



 

 PPV TPR DSC LR 

P1​-Pat. 1 0.8021 0.8564 0.8284 0.001 

P1​-Pat. 2 0.8555 0.4693 0.6061 0.001 

P1​-Pat. 3 0.8195 0.4208 0.5561 0.001 

P1​-Pat. 4 0.3626 0.7448 0.4878 0.0025 

P2 0.7543 0.3814 0.5066 0.003 

Table 1​: Performance of the two protocols (​P1 and ​P2​). For           
P1​, results are shown for each of the four patients. 

 
Two segmentation protocols were investigated. The first       
protocol (​P1​) aimed at evaluating the U-Net       
performance when training and testing were performed       
on different images from the same subject. Despite ​P1         
is not applicable in the actual clinical practice, it         
allowed investigating the segmentation performance in      
a trivial scenario. The images from each patient were         
randomly shuffled and divided in training (90%) and        
testing (10%).  

The second segmentation protocol (​P2​) aimed at       
investigating the generalization power of U-Net when       
segmenting images from different patients. Thus, the       
images from the four patients were merged and        
randomly shuffled. Also in this case, the 90% of the          
images were used for training and 10% for testing. Prior          
to training, data augmentation was performed (9 linear        
and non-linear transformations were applied). 

To train U-Net for the two protocols, the        
cross-entropy was used as loss function. Adam [​5​], a         
method for efficient stochastic optimization, ​was used       
as optimization algorithm. The initial learning rate (LR)        
was set to 0.001, after a trial-and-error procedure.        
Mini-batch gradient descent technique was used as a        
trade off between training convergence time and       
memory usage. Batch size was set equal to 5.         
TensorFlow (https://www.tensorflow.org/) was used for     
training and testing purposes.  

The U-Net segmentation performance was     
quantitatively evaluated with respect to manual vessel       
tracing in terms of positive predictive value (PPV), true         
positive rate (TPR) and dice similarity coefficient       
(DSC).  

RESULTS 
The results relative to P1 and P2 are shown in Table           

1. The best segmentation performance was achieved by        
P1 for the first patient (Pat. 1). Sample segmentation         
images are shown in Fig. 2. 

CONCLUSION AND DISCUSSION 
As can be observed in Table 1, the best result was           

achieved for ​P1​-Pat. 1 with a DSC equal to 82.84%.          

Figure 2​: Sample images of U-Net segmentation outcomes.        
(a) original images, (b) ground-truth manual segmentations ,        
(c) U-Net segmentation outcomes, (d) comparison between       
ground-truth and segmentation outcomes: false positives and       
false negatives are represented in magenta and green        
respectively. 
 
In fact, Pat. 1 images were less challenging with respect          
to the remaining three patients (Pat. 2, Pat. 3 and Pat. 4),            
where the presence of cauterization smoke and the        
movement of the renal artery, caused by the interaction         
with surgical tools, increased the segmentation      
challenges. The resulting DSC of 50.66% obtained in        
P2, reflected the variability between different patients.  

Improving the segmentation performance and     
tackling inter-patient variability by building a larger       
dataset, could be the natural continuation of the project         
in view of translation into clinical practice. Finally,        
instead of performing single-frame segmentation,     
temporal information could be exploited to track the        
vascular structures in time and improve segmentation       
performance [6]. 
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