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LARGE CONSTELLATION DE-ORBITING 
WITH LOW-THRUST PROPULSION 

S. Huang,* C. Colombo,† E. M. Alessi‡, and Z. Hou§ 

This paper deals with the propulsive phase of de-orbiting phase for coplanar sat-

ellites in large constellations. The design is conducted via two layers: the first 

layer is to design a time-optimal deorbiting trajectory for a single satellite; the 

second layer is to find the optimal de-orbit timing for each satellite to start the 

de-orbiting in order to minimize the total transfer time as well as the inner con-

stellation collision risk. For the first layer, two de-orbit strategies are considered: 

the first strategy aims at lowering the perigee; the second strategy aims at reach-

ing a natural de-orbiting corridor. For each strategy, the quasi time-optimal 

steering law is developed, and the secular variations of the orbital elements are 

derived by using the averaging technique. For the second layer, the inner con-

stellation collision risk is evaluated by miss distance; the optimal de-orbit tim-

ings are found for different de-orbit sequences by using a multi-objective opti-

mization technique. 

INTRODUCTION 

In the recent years, many large constellations (e.g. OneWeb and Starlink) have been an-

nounced to be deployed in the Low Earth Orbits (LEO)1,2. These large constellations are com-

posed of hundreds to thousands of satellites. The purpose is to provide high speed telecommuni-

cation services to the global Earth, even the most rural areas. However, with numerous satellites 

injected to the already congested LEO regime, a severe safety threat will be posed to the LEO 

environment. In order to keep the space clean and sustainably usable, large constellations must be 

properly removed after their end of life, and some questions are accordingly raised, such as the 

assessment for different end-of-life strategies and the analysis for the execution of collision 

avoidance maneuvers3. 

This study focuses on two technical problems to be coped. First, the requirement of re-entry 

within 25 years is not enough for large constellations considering the satellites will be decommis-

sioned frequently due to the satellite design lifetime; instead, the satellites must re-enter in less 

than five years4 with the active disposal less than 2 years5. Second, there should be zero tolerance 

for any collision, that is to say, the collision risk must be minimized. There are three types of col-

lision relating to satellite constellations: the collision between constellations and space debris, the 
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collision between constellations and other operating spacecraft, and the collision between satel-

lites within a constellation, referred to as inner-constellation collision. Up to now, most of the 

works (e.g. Ref. [5 – 7]) are focusing on the first two types, while the third type deserves equal 

attention given the sheer size of large constellations. 

According to the plan by the OneWeb Constellation, low-thrust propulsion will be used for 

de-orbiting1,4. De-orbiting with low-thrust can be divided into two phases – propulsive phase (or 

active disposal) and non-propulsive phase (or passive disposal)8; the scope of this study is the 

propulsive phase. 

This paper deals with the de-orbit problem for large constellations by using low-thrust propul-

sion, taking into consideration the J2 perturbations and the Earth’s shadow effect. The study will 

be conducted via two layers. The first layer is to design the minimum-time trajectories for a sin-

gle satellite. The second layer is to find the optimal timing for each satellite to start its de-orbiting 

to minimize the total transfer time as well as the inner-constellation collision risk. 

In the first layer, two de-orbit strategies are to be considered. The first strategy aims at lower-

ing the perigee to achieve the passive re-entry under the atmospheric drag9,10. The second strategy 

aims at reaching a de-orbit corridor, that are conditions of resonance due to the Earth’s oblateness 

and the solar radiation pressure; driven by these natural effects, the eccentricity can be passively 

increased by using a an augmentation device to enhance the effect of solar radiation pressure (for 

example the area-to-mass ratio tested in this work to achieve re-entry in less than 30 years is 1 

m2/kg) until the drag-dominated region is reached11. The propulsive phases of these two strategies 

are lowering the perigee in the first case and reaching the de-orbit corridor in the second case. 

The in-plane and out-of-plane quasi time-optimal steering laws will be developed for the two 

strategies, respectively. To reduce the high computation load caused by the long-duration low-

thrust trajectories and the need to propagate the trajectories for multiple satellites in constellation 

with different initial conditions, the secular variations of the orbital elements are obtained by us-

ing the orbital averaging technique, which has been used in the previous works such as Ref. [12 – 

14], under the assumption that all orbital elements except the true/eccentric/mean anomaly are 

constant over one orbital revolution. 

In the second layer, the inner-constellation collision risk will be quantitatively evaluated by 

the orbit miss distance15, the minimum relative distance between the satellites’ orbits throughout 

the propulsive phase. The larger the miss distance, the lower the inner-constellation collision risk 

it will be. A multi-objective optimization technique will be used to minimize the total transfer 

time and to maximize the miss distance for the propulsive phase. As a preliminary study, this pa-

per will deal with the de-orbit problem for coplanar satellites. 

This paper is organized as follows. The dynamical model due to the low-thrust, J2 perturba-

tions and Earth’s shadow will be given in the first section. The first layer, single satellite de-

orbiting, will be solved in the second and third sections. In the second section, the in-plane and 

out-of-plane quasi time-optimal steering laws will be developed for Strategy I and II, respectively. 

In the third section, the secular variations of the orbital elements for the two strategies will be 

derived. The second layer, coplanar satellites de-orbiting, will be solved in the fourth section, in 

which the de-orbit sequences will be proposed and the multi-objective optimization problem will 

be formulated. In the last section, the numerical simulations for single satellite and coplanar satel-

lites de-orbiting will be conducted and the results will be presented. 
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DYNAMICAL MODEL 

The scope of this paper is the propulsive phase of de-orbiting, during which the atmospheric 

drag can be neglected compared with the low-thrust and J2 perturbations, being at an orbit altitude 

above 1000 km, so the atmospheric drag will not be included in this paper. 

The rates of change of the orbital elements with respect to the eccentric anomaly due to the 

low-thrust are given by16 
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where, a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right ascension 

of ascending node, ω is the argument of perigee, E is the eccentric anomaly, μ = 3.986 × 105 

km3/s2 is the Earth’s gravitational constant, and ur, uθ, and uh are the components of the thrust ac-

celeration vector in the radial, transversal and out-of-plane reference frame. In the above model, 

the time rate of change of the eccentric anomaly, even if we are in a perturbed problem, is ap-

proximated as the two-body-problem expression: 
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since the thrust acceleration is much smaller (usually ≤ 10-6 km/s2) than the gravitational accelera-

tion (> 10-4 km/s2). 
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Figure 1 Thrust acceleration. 

The definition of ur, uθ, and uh is shown in Figure 1: ur is the radial component, along the or-

bital radius vector; uθ is the transversal component, normal to the orbital radius vector, in the or-

bital plane, and in the direction of the velocity; uh is the normal component, normal to the orbital 

plane and along the orbital angular momentum vector. ur, uθ, and uh are given by 
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where, α is the pitch angle, β is the yaw angle, uthrust is the thrust acceleration magnitude, given by 
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with m being the spacecraft mass, P being the engine power, η being the engine efficiency, Isp 

being the specific impulse and g0 being the Earth’s gravitational acceleration at sea-level. 

The loss of the spacecraft mass is governed by 
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The secular variations of the orbital elements due to the J2 perturbations are given by17 
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where, RE ≈ 6378.16 km is the Earth’s radius, p = a (1 – e2) is the semi-latus rectum, and 

3n a=  is the mean motion. 

The eclipses need to be considered as the low-thrust propulsion is assumed to be off in those 

phases. A cylindrical model for the Earth’s shadow is here considered. The entry and exit eccen-

tric anomaly of the Earth’s shadow Een and Eex can be obtained by solving a quartic equation18. 

STEERING LAWS 

The steering laws of two de-orbit strategies will be designed in this section. 

Perigee Lowering Strategy 

The first strategy aims at lowering the perigee. The terminal condition is given by 

 ( ) min1f f pa e r− =   (7) 

where, af and ef are the semi-major axis and the eccentricity at the end of the propulsive phase, 

rpmin is the minimum perigee radius smaller than which the spacecraft will naturally re-enter. 

 

Figure 2 Interpretation on Strategy I (rpmin = 200 km + RE). 

Figure 2 is the graphical interpretation on Strategy I, where the asterisk indicates the OneWeb 

Constellation1,4. As shown in the figure, the objective of Strategy I is to find the quickest paths for 

the semi-major axis and eccentricity to reach the minimum perigee radius, represented by the 

black line in Figure 2. Only the in-plane thrust is needed to change the semi-major axis and ec-

centricity, so the yaw angle is zero, and the thrust acceleration components are given by 

 thrust cosru u = , thrust sinu u = , 0hu =   (8) 

Noting that although only the orbital shape changes, the problem is still a three-dimensional 

problem. 

Taking the time derivative of the perigee radius gives 
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Under the assumption that all orbital elements except the eccentric anomaly are constant over 

one revolution, substituting Eqs. (1) and (2) into Eq. (9), replacing with Eq. (8), and solving for 

∂(drp/dt)/ ∂α = 0 and ∂2(drp/dt)/ ∂α2 ≥ 0 yields the local minima solution: 
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Eq. (10) is the local optimal in-plane steering law, but it is impossible to be integrated analyti-

cally even when using the orbital averaging technique. Thanks to the small eccentricity of the low 

Earth orbits (e < 0.2), it is acceptable to neglect the eccentricity while keeping the quasi optimali-

ty, and the quasi optimal in-plane steering law is given by 
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Strategy II 

The second strategy aims at reaching a de-orbit corridor. De-orbiting orbiting corridors are or-

bit conditions for which the eccentricity will naturally re-enter under the influence of the Earth’s 

oblateness and solar radiation pressure enhanced by an area-augmentation device (the area-to-

mass ratio tested in this work is 1 m2/kg needed to achieve re-entry within 30 years). The terminal 

condition is given by 

 ( ) ( )
2 2

d d
, , , , 0

d d
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J J
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t t
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where, af, ef, and if are the semi-major axis, eccentricity and inclination at the end of the propul-

sive phase, and nS ≈ 2π/365.25 rad/day is the motion of the longitude of the Sun measured on the 

ecliptic plane. Noting that this terminal condition only applies to the prograde LEO orbits of high 

inclination (i ≥ 77.5 deg). For the other orbital types, one can refer to Ref. 11. 
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Figure 3 Interpretation on Strategy II. 

Figure 3 is a graphical interpretation on Strategy II, where the asterisk indicates the OneWeb 

Constellation1,4. As shown in the figure, the objective of Strategy II is to find the quickest paths 

for the semi-major axis, eccentricity and inclination to reach a de-orbit corridor. For the prograde 

LEO orbits of high inclination (i > 77.5 deg), the semi-major axis needs to increase while the in-

clination needs to decrease. 

The most efficient way to change the semi-major axis is via tangential thrust19, whereas for 

small-eccentricity orbits, the transversal thrust is almost as efficient as the tangential thrust. The 

ratio of the rate of change of the semi-major axis by transversal and tangential thrust is shown in 

Figure 4.  

 

Figure 4 Ratio of da/dE by transversal and tangential thrust. 

In addition, compared with tangential thrust, the dynamical model by transversal thrust is in a 

simpler fashion, making the integration easier when using the orbital averaging technique. From 

the above, this study will use the transversal thrust as the in-plane steering law, and the thrust ac-

celeration components are given by 

 0ru = , thrust cosu u = , thrust sinhu u =   (13) 
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Let us define J as. 
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Substituting Eq. (6), after some manipulations, J can be written as 

 ( ) ( )
7

2
2 2 22

2

3
1 5cos 2cos 1

4
E SJ J R a e i i n

− −
= − − + − −   (15) 

Taking the time derivative of J gives 
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Similar with Strategy I, under the assumption that all orbital elements except the eccentric 

anomaly are constant over one revolution, substituting Eqs. (1) and (2) into Eq.(16), replacing 

with Eq. (13), and solving for ∂(dJ/dt)/∂β = 0 and ∂2(dJ/dt)/∂β2 ≥ 0 yields the local minima solu-

tion: 
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where, Ca, Ce, and Ci are given by 
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Eq. (17) is the local optimal out-of-plane steering law, but it is impossible to be integrated 

analytically when using the orbital averaging technique. Same as Strategy I, neglecting the eccen-

tricity and the quasi optimal steering law is given by 
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SECULAR VARIATIONS OF ORBITAL ELEMENTS 

The orbital averaging technique is used to evaluate the variations in the orbital elements per 

orbital revolution by integrating in the eccentric anomaly, under the assumption that all orbital 

elements except the eccentric anomaly are constant over one orbital revolution. The indefinite 

integral of the orbital element x (x can be a, e, i, Ω, or ω) can be written in the form of 

 strd
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where, fun is the primitive function, const is the integration constant, and the superscript str* in-

dicates Strategy I or II.  

For Strategy I, substituting Eq. (8) into Eq. (1), replacing with the steering law given by Eq. 

(11), after some manipulations, the primitive functions can be derived: 
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where, tan-1 returns the four-quadrant inverse tangent, and tanh-1 returns the inverse hyperbolic 

tangent. 

For Strategy II, due to the fact that there exists the term cos2(ω + E) in the square root of the 

denominator of the steering law given by Eq. (19), it is impossible to be integrated analytically. 

Observing that the term cos2(ω + E) is periodical, let us expand in two-term Fourier series before 

carrying out the integration: 
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where, c0, c1, and c2 are the coefficients associated with Ca and Ci, given by 
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with ellipticF[k] and ellipticE[k] being the complete elliptic integrals of the first and second 

kind17: 
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and 1
Fc , 1

Ec , 2
Fc , and 2

Ec  being the coefficients associated with Ca and Ci:  
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Noting that the smaller the value of Ca, the more terms will be needed when carrying out the 

Fourier expansion. But in the present work, i.e. prograde low Earth quasi-circular orbits of high 

inclination (i > 77.5 deg), the two-term Fourier expansion is enough. A comparison is conducted 

between the left side and right side of Eq. (22) for the inclination among 77.5 deg and 90 deg in 

Figure 5, and it can be seen that the accuracy of the two-term Fourier expansion is acceptable. 
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Figure 5 Accuracy of the two-term Fourier expansion. 

Then substituting Eq. (13) into Eq. (1), replacing with the steering law given by Eq. (19) and 

the Fourier expansion given by Eq. (22), after some manipulations, the primitive functions of 

Strategy II can be derived: 
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where, x
EV  is the column vector associated with E for the orbital element x, composed of sine and 

cosine terms, 0
x

V , 1
x

V , and 2
x

V  are the coefficient column vectors for the orbital element x, the 

superscript T indicates the transpose symbol. In this paper, x
EV , 0

x
V , 1

x
V , and 2

x
V  are not present-

ed due to the limit of the paper length.. Note that the column vectors in str2fun  and the second part 

of str2fun  are the same. 

The variation in the orbital elements per orbital revolution should be evaluated over the orbital 

arcs where the spacecraft is out of the Earth’s shadow. Noting that Een and Eex (the entry and exit 

eccentric anomaly of the Earth’s shadow) are between 0 and 2π, so the burn arc should be [0, Een] 

and [Eex, 2π] if Een < Eex, and [Eex, Een] if Een > Eex. Thus, the variation in the orbital element x (a, 

e, i, Ω, or ω) per orbital revolution due to the low-thrust propulsion is given by 
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Dividing by the Keplerian period T = 2π/n, the secular variation of the orbital element x (a, e, i, 

Ω, or ω) due to the low-thrust propulsion can be obtained: 
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where n is the unperturbed mean motion. The total secular variation including the J2 perturbations 

is given by 
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The secular variation of the spacecraft mass is given by 
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where Δm is the mass loss per orbital revolution, given by 
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with the mean anomalies Mex and Men being 
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For Strategy II, although there is a lot of trigonometric computation in the secular variations, 

the computation load can still be reduced a lot compared with the full dynamical integration. The 

comparison of the computation load will be presented in the last section of this paper. 

COPLANAR SATELLITES DE-ORBITING 

By implementing the quasi time-optimal steering laws and carrying out the secular variation 

integration, the de-orbit trajectories of a single satellite can be obtained. When extending the de-

orbit problem to multiple satellites, the collision problem arises. Therefore, the objective of de-

orbiting multiple satellites is not only to minimize the total transfer time but also to minimize the 

inner-constellation collision risk. As a preliminary study, this paper will deal with the de-orbit 

problem for coplanar satellites. 

The total transfer time is the time from the first satellite starting de-orbiting until the last satel-

lite meeting the terminal condition (Eq. (7) or Eq. (12)), formulated as 
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 total 0fT T T= −   (33) 

where, 

 
0 0
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=

=
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  (34) 

with 0
j

t  being the time of the jth satellite starting de-orbiting, j
ft  being the time of the kth satellite 

meeting the terminal condition, and N being the total number of satellites. 

The inner-constellation collision risk is quantitatively evaluated by the orbit miss distance15, 

the minimum relative distance between the satellites’ orbits throughout the propulsive phase, 

formulated as 
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j N T t t t
k N

D r t
=  
=

 
=   

 
 

, j k   (35) 

where, T0  is given by Eq. (34), Δrjk is the relative distance between the jth and kth satellites, which 

can be computed by propagating the trajectories of the jth and kth satellites. 

If we neglect the Earth’s shadow effect, for not doubts it will be a good solution to let all satel-

lites start de-orbiting at the same time. In this way the total transfer time will be the shortest and 

collision will not happen because the relative positions (i.e. relative phase) between the satellites 

are time-invariant. However, due to the introduction of the Earth’s shadow effect, which can be 

regarded as perturbations, the relative positions will not be time-invariant and therefore collision 

may happen. 

Take as example the OneWeb Constellation, in which there are 40 satellites per orbital plane1,4. 

If the propulsive phase for 40 satellites are to be completed in 2 years5, then there will be on aver-

age 20 satellites to be de-orbited in each year. In order to keep the coverage performance as much 

as possible, it is better to keep the configuration symmetrical, as shown in Figure 6, where the red 

and blue points indicate the satellites to be de-orbited in the first and second year, respectively. 

 

Figure 6 De-orbit sequence for 40 coplanar satellites. 

In order to complete the propulsive phase for 20 satellites in one year, there are six kinds of 

sequence: (1) de-orbiting the satellites one by one, and finding the optimal timing for each satel-
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lite; (2) de-orbiting the satellites in groups of 2, and finding the optimal timing for 10 groups; (3) 

de-orbiting the satellites in groups of 4, and finding the optimal timings for 5 groups; (4) de-

orbiting the satellites in groups of 5, and finding the optimal timings for 4 groups; (5) de-orbiting 

the satellites in groups of 10, and finding the optimal timings for 2 groups; (6) de-orbiting all sat-

ellites at the same time, and no need to find the optimal timing.  

Sequence (1) and (2) are safer than the others but computationally expensive when using the 

multi-objective optimization technique because there are 20 and 10 design variables, respectively. 

Sequence (5) and (6) are computationally cheaper but they are at the price of higher risk of inner-

constellation collision risk because there are 10 and 20 satellites starting de-orbiting at the same 

time, respectively, reminding that de-orbiting multiple satellites at the same time may result in 

collision due to the Earth’s shadow effect. 

From the above, Sequence (3) and (4) are better in terms of both safety and computation load. 

The interpretation is shown in Figure 7, where, the points with different colors indicate the satel-

lites from different groups, and t01 – t05 are the de-orbit timings for Group 1– 5. 

   

a) Sequence (3). b) Sequence (4). 

Figure 7 De-orbit sequences for 20 coplanar satellites. 

A multi-objective global optimizer is used to search for the Pareto front solutions through a 

multi-agent-based search approach hybridized with a domain decomposition technique developed 

by Vasile20. The cost functions of the multi-objective optimization problem are given by 

 1 total

2 miss

min

min

f T

f D

=

= −
  (36) 

The results will be presented in the last section. 

NUMERICAL SIMULATION 

Two test cases are solved. In each case, the spacecraft parameters are P = 150 W, Isp = 1500 s, 

η = 39.23%, and m0 = 120 kg, resulting in a very small initial thrust acceleration magnitude of 

6.67 × 10-8 km/s-2. The initial conditions are given in Table 1. The terminal conditions for Strate-

gy I and II are given by Eq. (7) and Eq. (12) respectively, and rpmin is (200 + RE) km.  

Table 1 Initial conditions. 

Case t0 a0 (km) e0 i0 (deg) Ω0 (deg) ω0 (deg) 
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1 1 Sep. 2021 1200 + RE 1 × 10-3 87.9 100 200 

2 1 Sep. 2022 1200 + RE 1 × 10-3 80.0 250 150 

Single Satellite De-Orbiting 

In the simulation for a single satellite de-orbiting, the initial true anomalies considered for 

Case 1 and 2 reported below are 300 deg and 50 deg, respectively. Figure 8 to Figure 10 and Fig-

ure 11 to Figure 15 present the time histories of the orbital elements for Strategy I and II, respec-

tively. In each plot, a comparison is conducted between the full dynamical integration by local 

optimal steering law (black line), the full dynamical integration of the quasi optimal steering law 

(blue line), and the secular variation integration of the quasi optimal steering law (blue line). Here, 

for Strategy I and II, the local optimal steering laws are given by Eqs. (10) and (17) respectively; 

the quasi optimal steering laws are given by Eqs. (11) and (19) respectively, in which the eccen-

tricity are removed from the local optimal steering laws. 

   

a) Case 1. b) Case 2. 

Figure 8 Time history of the semi-major axis of Strategy I. 

   

a) Case 1. b) Case 2. 

Figure 9 Time history of the eccentricity of Strategy I. 
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a) Case 1. b) Case 2. 

Figure 10 Time history of the argument of perigee of Strategy I. 

   

a) Case 1. b) Case 2. 

Figure 11 Time history of the semi-major axis of Strategy II. 

   

a) Case 1. b) Case 2. 
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Figure 12 Time history of the eccentricity of Strategy II. 

   

a) Case 1. b) Case 2. 

Figure 13 Time history of the inclination of Strategy II. 

   

a) Case 1. b) Case 2. 

Figure 14 Time history of the right ascension of ascending node of Strategy II. 
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a) Case 1. b) Case 2. 

Figure 15 Time history of the argument of perigee of Strategy II. 

Table 2 and Table 3 presents the final value of the orbital elements obtained by the integration 

of the averaged equations using the quasi optimal steering laws for Strategy I and II, respectively. 

Table 2 Final value of the orbital elements of Strategy I 

Case 
Strategy I 

tf (days)  af (km) ef if (deg) rpf (km) raf (km) 

1 194.03 6867.66 4.21 × 10-2 87.9 200 + RE 778.99 + RE 

2 150.14 6917.86 4.91 × 10-2 87.9 200 + RE 879.40 + RE 

 

Table 3 Final value of the orbital elements of Strategy II 

Case 
Strategy II 

tf (days)  af (km) ef if (deg) rpf (km) raf (km) 

1 284.07 9682.15 1.42 × 10-2 86.35 3166.38 + RE 3441.60 + RE 

2 77.89 8019.89 1.07 × 10-2 79.07 1556.07 + RE 1727.38 + RE 

 

Table 4 presents the computational time for the full dynamical and secular variation integra-

tion. 

Table 4 Computational time (s) 

Case 
Strategy I Strategy II 

Full Secular Full Secular 

1 131.22 25.12 132.94 54.81 

2 96.88 21.63 45.62 18.98 

 

From Figure 8 to Figure 15, it can be seen that the quasi optimal steering laws for the two 

strategies are almost of the same efficiency as the local optimal steering laws, and the secular var-

iation integration shows good agreement with the full dynamical integration. Besides, it can be 

seen from Table 4 that the computational time of the secular variation integration has been re-

duced compared with the full dynamical integration. 

From Table 2 and Table 3, it can be seen that the de-orbiting time of Strategy I is faster than 

Strategy II in Case 1, whereas the de-orbiting time of Strategy II is faster than Strategy I in Case 2 

(only propulsive phase). This is because the initial position of the spacecraft in Case 2 is closer to 

the de-orbit corridor. Therefore, a preliminary conclusion can be drawn: it is preferable to use 

Strategy I if the satellite initial position is far from the de-orbit corridor, and it is preferable to use 

Strategy II if the satellite initial position is close to the de-orbit corridor. When using Strategy II, 

although the total de-orbit time (i.e. including the non-propulsive phase) might be longer than by 

using Strategy I, Strategy II still has advantage over Strategy I in fuel consumption because the 

propulsive phase is shorter. 

Coplanar Satellites De-Orbiting 

Two sets of simulation are conducted by using Sequence (3) and Sequence (4) introduced in 

Figure 7. In the simulation of Sequence (3), the first de-orbit strategy is used, and the initial con-

ditions are given by Case 1. In the simulation of Sequence (4), the second de-orbit strategy is 
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used, and the initial conditions are given by Case 2. In each simulation, t01, the de-orbit timing of 

the first group of satellites, is fixed as the initial time given in Table 1. Table 5 and Table 6 give 

the lower and upper bounds for the de-orbit timings, in the form of the difference with respect to 

t01. The optimization results are presented in Figure 16 to Figure 17 and Table 7 to Table 8. These 

results can be a reference for the management of large constellation end-of-life disposal. 

Table 5 Lower and upper bounds for de-orbit timings of Sequence (3), Strategy I, Case 1 

 t02 – t01 (days) t03 – t01 (days) t04 – t01 (days) t05 – t01 (days) 

Upper bound 30 60 90 120 

Lower bound 150 150 150 150 

 

Table 6 Lower and upper bounds for de-orbit timings of Sequence (4), Strategy II, Case 2 

 t02 – t01 (days) t03 – t01 (days) t04 – t01 (days) 

Upper bound 15 30 45 

Lower bound 75 75 75 

 

 

Figure 16 Optimization results of Sequence (3), Strategy I, Case 1. 
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Figure 17 Optimization results of Sequence (4), Strategy II, Case2. 

 

Table 7 Optimization results of Sequence (3), Strategy I, Case 1 

t02 – t01 (days) t03 – t01 (days) t04 – t01 (days) t05 – t01 (days) Ttotal (days) Dmiss (km) 

55.40 61.35 103.27 120 273.42 7.74 

59.57 61.49 100.44 120 274.88 8.33 

54.35 62.55 99.17 120.02 275.97 27.45 

54.41 62.48 99.18 120 276.69 34.67 

45.03 60 106.41 120.01 277.11 45.16 

47.92 60 101.10 120.06 277.29 47.19 

30.53 60 105.16 124.90 284.78 50.08 

 

Table 8 Optimization results of Sequence (4), Strategy II, Case 2 

t02 – t01 (days) t03 – t01 (days) t04 – t01 (days) Ttotal (days) Dmiss (km) 

37.82 36.70 45 129.61 19.67 

36.71 37.70 45 129.70 29.69 

37.13 43.48 46.23 130.12 35.61 

19.10 40.90 45 130.45 49.03 

 

CONCLUSION 

This paper deals with the propulsive phase of de-orbiting for coplanar satellites in large con-

stellations. The objectives of this study is to minimize the total transfer time as well as the inner-

constellation collision risk. The study is conducted via two layers: the first layer designs the tra-

jectories for a single satellite; the second layer finds the optimal de-orbit timing for each satellite. 
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In the first layer, two de-orbit strategies are considered: the first strategy aims at lowering the 

perigee; the second strategy aims at reaching the de-orbit corridor where natural re-entry is 

achieved through enhancement of natural perturbations. The in-plane and out-of-plane quasi time-

optimal steering laws are developed for Strategy I and II, respectively. The secular variations of 

the orbital elements are derived by using the orbital averaging technique. In the second layer, the 

inner-constellation collision risk is evaluated by the miss distance, and the multi-objective prob-

lem is formulated as minimizing the total transfer time and maximizing the miss distance. 

Taking as example the OneWeb Constellation, the de-orbit sequences for coplanar satellites is 

proposed. The numerical simulation is conducted for both layers. For the first layer, i.e., single 

satellite de-orbiting, the quasi optimal steering laws are verified to have almost of the same effi-

ciency as the local optimal steering laws, and the secular variation integration shows good agree-

ment with the full dynamical integration, while the computation load by secular integration is no-

ticeably reduced. Besides, a preliminary conclusion is drawn that Strategy I would be preferable 

if the satellite initial position is far from the de-orbit corridor, otherwise Strategy II would be 

preferable. For the second layer, i.e. coplanar satellites de-orbiting, the optimization results (de-

orbit timings, total transfer time, and miss distance) of two different de-orbit sequences are ob-

tained, which could be used as a reference for the management of large constellation end-of-life 

disposal. 

In the future research, we will furtherly study the inner-constellation collision risk, trying to 

provide a mathematical formulization for the collision problem and to give the physical explana-

tion for the relationship between the de-orbit timing and the orbit miss distance. In addition, this 

paper solves the minimum-time transfer problem by designing the time histories of pitch angle 

and yaw angle; for the future research, we will take into consideration the fuel consumption by 

designing the efficient burning arcs. 

It should be noted however that Strategy II would require equipping the satellites with an area-

augmentation device which might introduce higher collision hazard with the space debris. But 

from the constellation design point of view, since it is impossible to deploy several large constel-

lations at the same inclination, Strategy II does has advantage over Strategy I in terms of the fuel 

consumption (shorter propulsive phase) at lower inclination. Besides, the augmentation device 

(for example in this paper the area to mass ratio is 1 m2/kg) will not make the risk of inner-

constellation collision higher compared with the orbit miss distance which will be designed larger 

than 5 km. In the future study, we will include the non-propulsive phase into the collision analysis 

and conduct a global design for large constellations, including the geometry design and the de-

orbiting phase design, to minimize the inner-constellation collision risk. 
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