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Abstract: This paper presents a vibration based procedure for locating reductions of stiffness in 

plate-like structures. This procedure is a generalization to the two-dimensional case of the 

Interpolation Method (IM) previously published by the author. The method is based on the 

definition of a damage sensitive feature in terms of the accuracy of a spline function in 

interpolating the operational displacement shapes of the structure. In the previous works the IM 

was applied as a method of level 2 for damage identification that is able to detect and localize 

damage. In this paper an analytical relationship between the damage feature and the curvature 

discontinuity is proved. For two-dimensional structures, a bi-cubic spline surface is defined herein 

to interpolate the operational shapes. In order to account for the uncertainties related to random 

variations of the damage feature, an approach based on the definition of an acceptable value of the 

probability of false alarm was formerly proposed by the author. A simplified version of the 

algorithm is presented herein for the case that whereby the statistical distribution of the damage 

feature in the original (undamaged) state is not available, and the damage diagnosis has to be 

carried out basing based on just two sets of responses recorded on the original and on the (possibly) 

damaged structure. The proposed two-dimensional Surface Interpolation Method (SIM) is checked 

herein through via numerical simulations using the FE model of a plate and modeling local 

reductions of stiffness through a reduction of the elastic modulus of the material. Validation 

rResults demonstrate that the algorithm provides a reliable tool for damage identification of plate-

like structures. The performance of the method can be affected by noise in recorded data, but 

however a careful choice of the accepted probability of false alarm can reduce this drawback. 
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1. INTRODUCTION 

Plates are important structural elements, widely used in several engineering applications and the 

monitoring of their condition is an important aspect for the assessment of the global structural 

condition. Non-destructive damage detection techniques traditionally consist ofin visual inspections 

and/or non-destructive testing (acoustic, ultrasonic, magnetic field, thermal field methods) that may 

effectively detect damage but only if its location is already known and limited to a portion of the 

structure.  

A different approach, that which overcomes these difficulties, consists of usingin vibration based 

damage identification methods based on the idea that damage in a structure causes a change inof its 

dynamic response characteristics that is reflected by a change of thein the vibration response to 

vibrations. The application of such methods requires the acquisition of structural responses over 

time and the extraction from these responses of damage-sensitive properties (features) from these 

responses allowing the detecting detection of the difference between the undamaged and the 

damaged structure. 

In the last twenty years several vibration-based damage localization methods, based on different 

features, have been proposed in literature. A number of these use modal parameters as damage 

sensitive features such as:: modal shapes or their derivatives (modal rotation [1], modal curvature 

[2]-[4]), modal strain energy [5] and, modal flexibility [6], among others. In reference [7] a 

comprehensive state of the art of modal methods is reported.  

One drawback of modal methods is relatedrelates to the need of to estimating estimate modal 

parameters, i.e.: the results are dependent on the quality of modal parameters. This, especially in 

the case of mild damage, introduces errors related to experimental noise that sometime hampers 

athe correct identification of damage. The influence of noise is particularly important if modal 

shapes are used for localization of damage. This makes more feasible, for damage localization, 

approaches based on the use of operational deformed shapes calculated from frequency response 

functions such as the Gapped Smoothing Method, the Frequency Response Curvature Method and 

the Interpolation method respectively proposed in references [8], [9] and [10] for beam- like 

structures. More recently the Frequency Shift Curve Method has been proposed in reference [11] 

based on the derivative of the equivalence between the ‘frequency shift curve’ due to an auxiliary 

mass and the mode shape square. 
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A large part of both modal and non-modal damage identification methods has been initially 

proposed and applied for beam-like structures and later extended to bi-dimensional structures. In 

reference [12] and [13] respectively the strain energy method and the gapped smoothing method 

are extended to plates. and mMore recently the Frequency Shift Surface, based on the Frequency 

Shift Curve Method was extended to plates-like structures [14]. Wu and Law in reference [15] 

proposed for damage localization in plates the uniform load surface defined as the vertical 

displacement of athe plate under uniform load for damage localization in plate-like structures.  

The author of this paper recently proposed the Interpolation Method (IM) for damage localization 

in beam-like structures. In references [17], [18] and [19] the IM was applied respectively to the 

case of a real instrumented bridge, to a multistory frame and to a real instrumented buildings 

subjected to seismic excitation. The focus of this paper is on the extension of the IM to bi-

dimensional structure such as plates.  

This method uses accelerations recorded in a number of locations on the structure to detect local 

variations of stiffness with respect to a reference configuration. Such variations are pointed out by 

local changes of the operational deflection shapes (ODS) recovered from experimental frequency 

response functions (FRFs). An ODS is the deformed shape of a structure subjected to a harmonic 

excitation. If the frequency of the excitation is close to a modal frequency of the structure, the ODS 

is dominated by the relevant mode shape, otherwise the ODS derives from the superposition of 

several mode shapes. A localized reduction of stiffness induces a local reduction of smoothness of 

the ODS’s at the damaged section. In a previous paper, it was shown by the author that an effective 

technique to identify local reductions of smoothness in beam-like structures is based on the 

interpolation of their response to vibrations through a cubic spline function [18].  

In reference [10] it was shown that the capability of the IM to localize damage is due to the so-

called ‘Gibbs phenomenon for splines’. This phenomenon numerically enhances local reductions 

of smoothness thus causing a sharp increase of the interpolation error at locations of curvature 

discontinuity.. In reference [20] the modal SIM, two-dimensional extension of the previously 

published modal IM, was proposed and applied to the example of a plate already used by other 

researchers (see reference [14]). In all the previous applications of the IM and of the SIM the 

method was used as a level 2 damage identification algorithm meaning a method able to detect and 

locate damage. In those studies the Gibbs phenomenon was explained through examples from a 

numerical point of view and no attempt was done to relate the curvature discontinuity to the jump 

of the interpolating function. In the present work, we provide an extensive description of the 

theoretical background of the method together with a rigorous proof of the analytical relationship 
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between the damage feature and the amplitude of damage is provided. The proof of this is one of 

the main novelties novel contributions of this paper. The investigation of the effect of noise on the 

accuracy of damage localization is another novel aspect that was not acknowledged in the previous 

studies and that so is considered herein. 

The outline of the paper is as follows. In section 2, a detailed description of bi-cubic spline 

interpolation is reported, together with a description of the Gibbs phenomenon for splines which is 

presented and discussed with reference to a simple case. In section 3 the extension of the Surface 

Interpolation Method is outlined and in sections 4 to 6 the result of its applications to both 

numerical and experimental examples are reported. In the appendix of the paper the proof of the 

Gibbs phenomenon is given and the computation of the maximum overshoot between a function 

with a discontinuity and its interpolation is reported. 

2. SPLINE INTERPOLATION 

The Surface Interpolation Method proposed herein for damage localization in plates, is based on the 

interpolation of the operational displacement shapes of the plate via a bi-cubic spline function. 

In this section are recalled some properties of this family of functions that make them useful for 

damage localization are described. Furthermore, in order to make the paper self-contained, the 

mathematical details of cubic and bi-cubic spline interpolations are also reported. 

2.1.  Properties of spline interpolation 

The process of interpolation consists in recovering continuous data from a discrete set of data, 

basing based of on a given model; this is a fundamental operation in several fields where 

resampling of a limited set of data is needed. One of these fields is image processing where there is 

often the need to reconstruct the data lost in a previous image sampling process in order to change 

the size of images  and/or to correct spatial distortions.  

The use of cubic spline functions in image resampling is widespread for two main reasons that 

make the cubic spline functions a good compromise between computational burden and 

interpolation accuracy [21]. 

a)  they are the smoothest among all the functions of class C2 that interpolate a given set of 

data: a cubic spline minimizes the least square errors of the function values and of its 

derivatives at the interpolation points [22] 

b) they are piecewise low order polynomial functions thus they are stable (small variations of 

the data at one interpolation point does not produce sensible variations of the interpolating 

function as occurs on the contrary for higher order polynomial functions) and with a local 
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character (a steep variation of the data in a small interval, affectings only locally the 

interpolating function) 

On the other side, the high smoothness of the spline function may be a drawback for a reliable 

interpolation in case of non- smooth regions of curves or surfaces. This is due to a phenomenon 

known as ‘Gibbs’ phenomenon of splines’ occurring when the spline interpolates functions with 

discontinuities: the spline interpolation oscillates near a discontinuous point and has an overshoot 

(values higher than those of the function to be interpolated [23]). In other words, in a region close to 

a discontinuity the requirement to have ofa smooth curve leads the interpolating cubic spline to 

oscillate between data constraints hence to an increase of the interpolation error occurs.  

This phenomenon is the main reason why in some applications the condition about the continuity of 

the second derivative is relaxed and only conditions about the continuity of the function and of its 

first derivative are imposed [24].  

Herein this ‘drawback’ related to the Gibbs’ phenomenon is turned into a ‘useful feature’ and used 

as a sort of ‘curvature discontinuity detector’. At locations where a discontinuity of the second 

derivative (proportional to the curvature) occurs, the Gibbs phenomenon causes an overshoot (high 

value of the interpolation error). The amplitude of the overshoot is proportional to the discontinuity. 

A proof and the expression of the overshoot between the second derivative of the function and of its 

spline interpolation is reported in the appendix of the paper. If the interpolation is repeated in two 

configurations corresponding to different amplitudes of the discontinuity – there is a variation of 

overshoot that is of the interpolation error. Namely if the discontinuity of curvature (damage) 

increases at a given location, the interpolation error at that location increases proportionally. This is 

the reason why the variation of the interpolation error is assumed herein as the damage feature.  

The advantage of the Interpolation Method with respect to other methods based on the use of 

variations of curvature as damage detecting features is that the IM localizes variations of curvature 

without actually computing curvature. The discontinuities of curvature are localized as locations 

where the interpolation of the operational shape exhibits the Gibbs phenomenon.  This allows to 

overcome all the drawbacks related to the computation of curvature for noisy (real world) signals. 

Regarding the choice of the cubic spline as the interpolant, it depends on the circumstance that this 

function is the one that allows maximizing the value of the overshoot due to the Gibbs phenomenon 

thus enhancing the effectiveness of the damage localization method.  

From this point of view the use of the cubic spline is more effective with respect to other 

interpolating functions, for example polynomials, even if with respect to the latter, the 

computational cost of interpolation might be increasedmay increase. 
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In the following of thissub- section, for the sake of clarity and to make the paper self- contained, 

more details about the bi-cubic spline interpolation and about the Gibbs phenomenon for splines are 

reported. 

2.2. Bi-cubic spline interpolation 

A bi-cubic spline interpolation can be used to interpolate a functionn F(x, y) with a smooth surface, 

that is a function thatwhich guarantees continuity of of the first and second derivatives.  

A bi-cubic spline can be thought as a surface constructed from families of cubic spline functions. 

Given the values of a function F(x, y) defined on a rectangular grid of nl+2 x np+2 nodes, consider 

the following equation: 
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For each value of x, equation (11) gives a spline function along y (see black curves in Figure 

1Figure 1). When x varies, the coefficients cjp(x) also vary and a family of cubic spline functions 

 yxs ,  is obtained. 

If also the coefficients cjp(x) are defined by cubic spline functions (see red line in Figure 1Figure 1) 

in each sub-area defined by  1,  ll xxx ;  1,  pp yyy  they can be written as: 

     i

l

i

iljpljpjp
xxaxcxc 



3

0

,,
:   1,  ll xxx ;  1,  pp yyy ;  (2) 

p=0, 2..., np; l=0, 2..., nl 

In this case, the following function S(x,y) is a bi-cubic spline function defined through its 

restrictions to sub-areas as: 
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In order to calculate the coefficients ajp,il of the bi-cubic spline function, a two steps process can be 

applied. 

First, on the basis of the known values of the function F(x,l) at the nodes, a sequence of one-

dimensional cubic splines, for example along y, is constructed for all the x values on the grid. 

For the l-th line of the grid along y (x=xl) the cubic spline function is defined as:  
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The coefficients cjp(xl) at the l-th grid line are calculated basing on the interpolation and continuity 

conditions at nodes      
pl nnl1 y,xy,xy,x ......, 21  as described previously for the cubic spline 

interpolation.  

The second step of the procedure is the cubic spline interpolation, for every y=yp, p=0, 1, 2…, np+1 

of the values  xc jp
 along x. For the p-th gridline (y=yp)  along x: 
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i

iljpljpjp
xxaxcxc 
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where the coefficients 
iljpa ,

 are determined baseding on and on boundary conditions at nodes x=0 

and x=xnl and on continuity and interpolation conditions imposed on function  xc
jp  at the internal 

nodes      pnp2p1 y,xy,xy,x
l

......,   

   

   

   

  





































pllpl

lpllpl

lpllpl

lpllpl

Fxc

xcxc

xcxc

xcxc

,,

,1,

,1,

,1,

''''

''
 l=1, 2, nl  p = 1, 2 …np (6) 

These conditions give the following system in the unknown coefficients iljp
a

, .(i=0,1,..3) 
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where 
1


lll

xxk . 

Once the coefficients oljp
a

,  are known, the values of the bi-cubic interpolation can be finally be 

calculated using equation (33). 

2.3. The Gibbs phenomenon for cubic splines and the variation of the interpolation error 

A complete analytic discussion of the Gibbs phenomenon for splines and of its mathematical 

properties is reported in several papers [23]-[25]. In the Appendix of thise paper the proof that the 

maximum overshoot due to the Gibbs phenomenon is proportional to the magnitude of the 

discontinuity is reported. This section contains a qualitative description of this phenomenon, aimed 

to explain the choice of the cubic splines as interpolating functions for damage detection purposes. 

In Figure 2Figure 2 two piecewise functions composed by line segments and arcs of a circle are 

reported. In these functions, that which can be considered as two deformed configurations, there are 

some nodes where a jump of in the curvature occurs, as reported in the figure. 
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In configuration 1 there are discontinuities of curvature at locations: 

at x=1   from 0 to +1/R; 

at x=2   from +1/R to -1/R; 

at x=3   from -1/R to 0; 

In configuration 2 there are also discontinuities at locations: 

at x=4   from 0 to -0.1/R; 

at x=6   from  -0.1/R to 0.1/R; 

at x=8   from  0.1/R to 0; 

Configuration 1 will be used to illustrate the Gibbs phenomenon for splines and the comparison 

between configurations 1 and 2 to illustrate the properties of the variation of the interpolation error. 

Let’s consider configuration 1 and assume that the function is sampled at a constant rate and the 

values of the functions are known at abscissas corresponding to the black dots in Figure 3Figure 3. 

Figure 3Figure 3a, c, e report the comparison between the function f(x) and its cubic spline 

interpolation s(x) in the region around some of the sections where the curvature discontinuity occurs 

(x=2, x=3). This comparison clearly shows the oscillation of the spline interpolation around the 

actual value of the function. The values of the interpolation error, calculated as the absolute value of 

the difference between the function and its spline interpolation: 

     xsxfxE   (8) 

are reported in Figure 3Figure 3b, d, and f for the three sections where there is a discontinuity of the 

curvature. Due to the oscillations of the interpolating spline function around a discontinuity, the 

interpolation error reaches the highest values in the two intervals at the sides of the discontinuity 

and gradually decreases with distance.  

Furthermore, the higher the discontinuity of the curvature (for example from -0.1/R to 0.1/R at x=6; 

that is a discontinuity of the curvature equal to 0.2/R), the higher the absolute value of the 

interpolation error. This is shown by the comparison between Figure 3Figure 3d (variation of 

curvature between configuration 1 and configuration 2 equal to 2/R), and Figure 3Figures 3b, f 

(variation of curvature between configuration 1 and configuration 2 equal to ±1/R). The 

interpolation error can thus be assumed as a ‘measure’ of the curvature discontinuity since a 

monotonic relationship holds between the value of the interpolation error E(x) and the discontinuity 

of curvature. Due to the local character of the spline interpolation, the discontinuity of curvature 

affects the values of the interpolation only in the region of the curve close to the discontinuity. 

Therefore, the interpolation error exhibits higher values in a limited region close to the locations 

where there is a discontinuity inof the curvature. 
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Now consider configuration 2. At the locations where the discontinuity of curvature is equal to the 

one in configuration 1 (abscissas x=1, x=2 and x=3) the interpolation error does not show any 

change, as reported in Figure 4Figure 4a where the values of the interpolation errors relevant to 

configurations 1 and 2 are compared at location x=2. On the contrary, at the locations where a new 

discontinuity appears (for example at x=4), the interpolation error increases, as shown by the 

comparison reported in Figure 4Figure 4b, between the interpolation errors in the two 

configurations. Vice versa, if configuration 1 is considered as a modification of configuration 2, a 

reduction of curvature discontinuity causes a reduction of the interpolation error in the same section 

(see Figure 4Figure 4b). 

This shows that there is proportionality between the interpolation error and the curvature 

discontinuity: the increase of the first corresponds to an increase of the second and also a decrease 

of the interpolation error corresponds to a reduction of the curvature discontinuity.  

It is important to underline that herein the assumption of small rotations has been implicitly 

considered. The relationship between the curvature 1/r and the second derivative of a function is the 

following: 

 

 
3

2 2

''1

1 '

f x

r
f x





 (9) 

If the function  f x  represents a deformed shape (as is the case herein),  'f x  is the rotation. 

For small values of the rotations, the square of the rotation can be neglected with respect to unity 

and it can be assumed that the curvature 1/r is equal to the modulus of the second derivative of the 

function  ''f x . A discontinuity in the curvature (1/r) in this case has a direct effect on the second 

derivative of the function. In the example reported in Figure 2Figure 2 the assumption of small 

rotations is well verified at location 1 where the slope of the function  'f x  is zero. At location 2 

the function has a vertical tangent so the slope tends to infinity. Therefore the value of curvature at 

location 2 is still related to the value of the second derivative but the slope effect has a is not 

negligible effect, therefore they are not equal. As a consequence the values of the interpolation error 

at location 1 (small rotations) and at location 2 (large rotations) are not comparable.  

The assumption of small rotations is commonly valid and adopted to describe the behavior of civil 

structures therefore the conditions in which the SIM will be applied correspond to those at location 

1. In order to clearly show the linear relationship between the values of the interpolation error and 

of the curvature, in the assumption of small rotation, in Figure 5Figure 5 are reportedreports the 
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values of the interpolation error corresponding to different curvature discontinuities at location 1 

(i.e. slope equal to zero).  

A slight deviation from this behavior may be observed if a new discontinuity of the curvature 

appears ‘close’ to another one. The overlapping of the oscillations of the spline interpolation due to 

the Gibbs phenomenon may lead, in the region between the two discontinuities, to anomalous 

variations inof the interpolation error. In Figure 6Figure 6a the variation of the interpolation error 

E2-E1 between configurations 1 and 2 is reported and in Figure 6Figure 6b a zoom of Figure 

6Figure 6a, limited to the region x=3.4- 4 is reported. Figure 6Figure 6b shows a decrease of the 

interpolation error in the region close to the location (x=4) where an increase inof the curvature 

discontinuity occurs. This effect decreases with the spatial resolution (that is the distance between 

two consecutive knots) of the available data (cfr Figure 7Figure 7a, b) and also at the increase of the 

distance between the two sections where the discontinuity of curvature occurs. In any case it causes 

quite small variations of in the interpolation error with respect to those induced by the curvature 

discontinuity. 

Basing Based on all these observations the increase of in the interpolation error can be reasonably 

used to detect a localized increase of in curvature. A decrease of the interpolation error may be due 

to a decrease of in the discontinuity of curvature or to the overlap of the Gibbs oscillations (of 

opposite sign) in the region between two very close discontinuities. In both cases the decrease of in 

the interpolation error does not denote a reduction of stiffness.  

3. THE SURFACE INTERPOLATION DAMAGE DETECTION METHOD  

The basic idea of the Surface Interpolation Method can be described with reference to Figure 

8Figure 8. Let ( 00 , yx ),…, ( pl yx , ),…, ( 11,  pl nn yx ), be the instrumented locations of the plate 

where responses in terms of acceleration have been recorded. At each frequency value, the set of 

Frequency Response Functions (FRFs) HR, calculated from measured responses, give the 

operational deformed shape (ODS) at that frequency.  

A localized reduction of stiffness, causes a change of the operational shapes in the region close to 

that location hence this variation can be used to detect the location of damage. The change of the 

ODS between the undamaged and the damaged configurations can be highlighted by the 

interpolation of the ODSs through a smooth shape function and by the comparison between the 

interpolation errors relevant to the (possibly) damaged and the undamaged configurations. In the 

case of plate-like (that is bi-dimensional) structures, the interpolation of the operating deflection 

shapes can be carried out using bi-cubic spline functions. 
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3.1. Estimation of the Interpolation error 

Assuming that sensors liye on a rectangular grid nl+1 x np+1, for each value of frequency fi, the 

actual value  
plR yxH ,  of the FRF at a given location  

pl yx , , and its spline interpolation 

 
plS

yxH ,  must be known in order to calculate the value of the interpolation error at that location: 

 
pl

yxE , , as shown in Figure 8Figure 8. To this aim the spline interpolation  
plS

yxH ,  is 

calculated baseding on the FRFs at all the instrumented locations except  
plR

yxH , . 

Actually if only one response is neglected in the interpolation, a non-regular grid is obtained as 

shown in Figure 9Figure 9. In order to overcome this problem, two regular grids have been 

defined, as shown in Figure 10Figure 10, by neglecting all the responses recorded on one row or on 

one column of the grid.  

 

Following the two-steps procedure outlined in section 2.2, at each instrumented location the two 

values of the bi-cubic spline interpolation (one for each of the two grids obtained by removing one 

row or one column) can be calculated as: 
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For each frequency value fi, the coefficients,  1, lijpX  and   ilpjY ,1  are calculated as functions of the 

R
H  measured at all the nodes of the grid except those with x=xl (for  1, lijpX ) and except those with 

y=yp (for   ilpj
Y

,1 ). 

Baseding on the two values of the interpolated FRF, at each instrumented location (xl, yp) and for 

each frequency value fi, two values of the interpolation error Ex and Ey can be calculated: 

     ,, , , , , ,x l p k R l p k S x l p kE x y f H x y f H x y f    (12) 

     ,, , , , , ,y l p k R l p k S y l p kE x y f H x y f H x y f    (13) 

The two values of the error xE  and 
yE  are the values of the interpolation error computed 

respectively in x and y directions. Each of these two features exhibits the properties of the 

interpolation error in one dimension proved shown in the Appendix of the paper. In other words 

each of the two values of the interpolation error increases, at the location where it is computed, 
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proportionally with the curvature discontinuity. The value of the total interpolation error at a given 

location is given by the sum of the two values in the two directions. 

The total interpolation error at the given location can be calculated as the sum of the two latter 

values:  

     
iplyiplxipl f,y,xEf,y,xEf,y,xE    (14) 

In order to characterize each location P(x, y) (in the following the suffix p and l will be dropped for 

clarity of notation) with a single error parameter, the norm of the error on the significant frequency 

range (that is the frequency range with a signal to noise ratio sufficiently high to allow a correct 

definition of the FRF) is calculated: 

   





Nn

ni

i

o

o

fyxEyx,E
2

,,   (15) 

The significant frequency range is selected limiting the summation in equation (1515) to the 

frequency range of the fundamental modes of the structure that can be tuned baseding on vibration 

tests carried out on the undamaged structure. In equation (1515) N is the number of frequency lines in 

the Fourier transform correspondent to the frequency range starting at line no, where the signal to noise ratio 

is high enough to allow a correct definition of the FRFs.  

The values of the transfer functions HR depend on the state of the structure. Hence, if the 

estimation of the error function through equation (1515) is repeated in the baseline (undamaged) 

and in the inspection (possibly damaged) configuration, then the difference between the two 

values, denoted respectively by E0(x,y) and Ed(x,y), can provide an indication about the existence 

of degradation at location (x,y): 

     yxEyxEyxE d ,,, 0  (16) 

Due to the Gibbs phenomenon described in section 2.4, an increase in the interpolation error 

between the reference configuration and the current configuration at a station  yxP , , i.e. 

  0,  yxE , highlights a localized reduction of smoothness in the vibration amplitude profile. 

A positive value of E is thus assumed to be a symptom of a local decrease of stiffness at location 

 yxP ,  associated with the occurrence of damage. Baseding on this assumption the following 

conditions will be assumed to define the damage index IDI(x, y):  

  0),(0

0),(),(





yxEifyx,IDI

yxEifEyxIDI
 (17) 

The first condition (E>0) corresponds to an increase of the interpolation error, that is to a 

decrease of the smoothness of the amplitude profile. On the contrary, a decrease of the 
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interpolation error, as shown in section 2.4, may be associated to with an increase of in smoothness 

or may occur in the region between two damaged sections due to an insufficient spatial sampling. 

In both cases it is not associated to a local reduction of stiffness hence a negative variation of the 

interpolation error will be assumed to correspond to a null value of the damage index. 

Due to several sources, positive variations of the interpolation error E occur even if no damage is 

present. In order to remove the effect of these random variations, the statistical variation of this 

parameter can be studied and a threshold can be defined baseding on the tolerable value of the 

probability of false alarm Pf (see reference [18]). The threshold of E can be estimated in terms of 

the average E and the variance E of the values of E at all the instrumented locations. 

Assuming a Normal distribution, the threshold Et can be defined as: 

  EEt yx,E     (18) 

The threshold can be fixed baseding on a given value of the accepted probability of false alarm 

assuming the parameter  as the quantile 1-Pf of the standard normal distribution. 

The interpolation damage index (IDI) is then calculated as:  

 

  )()(0

)()()(

zEzEifzIDI

zEzEifzEzIDI

t

t




 (19) 

A localized decrease of stiffness causes a localized increase of curvature that, basing based on the 

discussion reported in section 2.32.3, corresponds to an increase of in the interpolation error. 

A decrease of the interpolation error can be related to (i) a localized decrease of curvature (that is 

to an increase inof stiffness or to a limited number of sensors in the region between two 

discontinuities), or to (ii) to numerical (related to simplifying assumptions in signal processing for 

example), or to (iii) to experimental errors (related to noise). For these reasons only positive values 

of E are considered in the evaluation of the damage index IDI. 

The probability of false alarm Pf is the value accepted for the probability of assuming that the 

structure is damaged while it is not or, in other words, is the probability that the variation of the 

interpolation error exceeds the threshold when the structure is still undamaged. In this case the 

location (x, y) will be wrongly assumed as damaged and a ‘false alarm’ will be given. The 

probability Pf is represented by the pointed area under fEo at the right of the threshold in Figure 

11Figure 11. It must be noted that a second type of error can arise in the case the threshold is not 

exceeded but the structure is damaged. In this case the alarm will not be given even if the structure 

is damaged, that is a ‘missing alarm’ will occur. The ‘probability of missing alarm’ is represented 

by the hatched area under fEd at the left of the threshold in Figure 11Figure 11. 
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Baseding on the dispersion of the distributions, different results will correspond to a given choice 

of Pf . For example, for very noisy signals (hence an high variance of the distribution), a given 

value of Pf will lead to a higher value of the threshold, with respect to the case of high quality, low 

noise sensors). hence This leads to a higher value of the probability of missing alarms Pm. 

Similarly, an increase in Pf will reduce the value of the threshold together with the probability of 

missing alarms Pm.. 

The choice of the threshold is thus a tradeoff between the probability of false and missing alarm 

and its choice must be the object of preliminary analysis based on both the condition of testing 

(quality sensors of the sensors for example, or possible variations of in ambient parameters) and on 

the consequences of the two types of error. If a false alarm is considered too expensive, from any 

point of view, then a high value of the threshold is appropriate. On the contrary, if the 

consequences of a false alarm are not really a problem while the consequences of a missing alarm 

can be very serious, in this case a low value of the threshold should be chosen.  

The choice of the threshold is baseding on a cost-benefit analysis and is beyond the scope of this 

paper, and therefore will not be performed for the application reported in the following section.  

4. NUMERICAL EXAMPLES 

In order to compare the results given by the SIM with results obtained using another data-driven 

damage localization methods proposed in literature, the proposed method has been applied to the 

case of concrete plates proposed in references [15] and [16]. In these papers damage identification 

was carried out via the uniform load surface method, that uses as a damage feature the modal 

deflection under a uniform unit load pattern as a damage feature. The SIM has been applied to the 

same examples in order to show its capability of obtaining the same results without the need of for 

a previous modal analysis. that is withThis means is has a lower computational effort. The Uniform 

load surface method requires the knowledge of modal parameters therefore a modal analyses has to 

be performed in order to retrieve them from the e.g.using, for example, the Frequency Response 

Functions. On the contrary the SIM uses the operational shapes as input data that can be retrieved 

froorm the Frequency Response Functions without any further computation. 

The size of the plates is 420mm x 320mm with a thickness of 20mm. A finite element model of 

7x10 plate elements has been built in SAP2000 [26] and reported in Figure 12Figure 12. The two 

plates differ for the boundary conditions: the first one is clamped along the edge AB; the second 

one is supported on the four corners A, B, C, D and with free boundary conditions at all the other 

boundary joints. A total of 88 four nodesd “area” elements 1m x 0.40mm x 0.20cm are used to 
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model the plate. The material has a Young’s modulus in the undamaged configuration equal to 

25000MPa, a Poisson’s ratio =0.3 and a mass density =2800kg/m3. 

Damage has been modeled by reducing the Young’s modulus in the elements located where the 

development of damage is more likely to occur. Namely fFor the clamped plate damage has been 

assumed to be located along the clamped edge in Damage scenario 1 and at one corner in Damage 

scenario 3. and fFor the supported plate damage has been considered located around the middle 

span.  

The labels of the damaged elements and the relevant reductions of in Young’s modulus moduli are 

reported in Table 1. Figure 12Figure 12 and Figure 7 report their positions. 

The time history response of the two plates to a random acceleration applied at supports, have been 

calculated both in the undamaged and in the damaged configurations, assuming a linearly elastic 

behavior.  

The responses in terms of absolute accelerations have been used, together with the random 

excitation at supports, to calculate the frequency response functions (FRFs) at all the nodes of the 

plates and, following the procedure described in section 2, the interpolation error E in the 

undamaged and in the damaged configurations has been calculated at each node. The interpolation 

error has been calculated extending the summation of equation (1515) to the range of frequencies 

0-5000Hz where the fundamental modes of the plate liye as shown in Figure 14Figure 14. 

5. RESULTS 

Results for scenarios 1 to 4 are reported in Figure 15Figure 15 to Figure 19Figure 19. These results 

have been obtained assuming that responses are not affected by noise: the noise to signal ratio is 

nsr=0.1%. In the application of equation (1818) the parameter  has been assumed equal to 1 

(corresponding to a tolerable probability of false alarms Pf=15%) for damage scenarios 1 and 2 

where damage of low intensity (15%) is present. Lower values of this parameter, corresponding to 

higher values of the threshold  zEt , lead to missing alarms at the locations of lower damage.  

For the other damage scenarios (3 and 4), where the minimum stiffness reduction is 25%, the value 

=2 (Pf=3%) allows the correct detection of damage at all locations and no missing alarms occurs. 

The peaks of function IDI are correctly located at the nodes of the damaged elements clearly 

indicating the correct location of damage. The relative height of the peaks corresponds to the 

reduction of stiffness: a higher peak corresponds to more severe damage. This suggests the 

possibility to upgrade the SIM to a damage identification method of level 3 able to detect, localize 
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and also quantify damage. At the moment the relationship between the amount of damage and the 

value of the damage feature has not yet been established yet. 

For damage scenarios that are usually difficult to detect, such as damage concentrated at one corner 

(scenario 3) or at two very close locations (scenario 4), the method allows the correct location of 

damage be established. For the case wherer (=2 and, Pf=3%) no false alarm occurs but there is a 

missing alarm at location 7 (25% reduction of stiffness) for scenario 3; if the probability of false 

alarm is raised to 15% (=1) all damaged locations are correctly detected but a number of false 

alarms occurs (Figure 18Figure 18).  

A last comment regardings the identification of extension of the damaged area is discussed herein. 

Basing Based on the available sensors layout the method allows locating the nodes of the grid that 

are closer to the damaged portion of the structure. A finer grid with a greater number of nodes - 

hence of recording sensors - allows a more precise definition of the damaged area. When designing 

the monitoring system a reasonable balance between the requirements of precisely detecting the 

damaged portion of the structure and the need to reduce the cost of the monitoring system should 

be sought. In order to show the effect of a coarser mesh on the capabilities of the SIM, Figure 

28Figure 27 reports the results relevant to damage scenarios 3 and 4. These scenarios were 

obtained using a grid of 30 sensors instead of 99 as in the previous figures. The method is still able 

to localize the region of the plate where damage is but with a much lower resolution. 

6. EFFECT OF MEASUREMENT NOISE 

Noise in experimental data is one of the major problems for almost all damage detection algorithms 

since it is one of the principal sources of false or missing detections of damage thus reducing the 

reliability of results. In order to check the influence of noise on the SIM, artificial noise has been 

added to responses calculated by the numerical model.  

As explained in detail in section 2.32.3 the SIM does not need the estimation of curvatures through 

differentiation because the losses of stiffness are identified as discontinuities of a smooth cubic 

spline function. This reduces the sensitivity of the algorithm to noise that, on the contrary, limits 

the reliability of other damage identification methods proposed in literature (see references [9], 

[11] [12], [14]-[15]). In order to check the sensitivity to noise of the surface interpolation method 

to noise, responses of the numerical model of the plate have been corrupted with a Gaussian zero 

mean white noise assuming a noise to signal ratio of 10%. Figure 20Figure 20 and Figure 21Figure 

21 report the results for the clamped plate: damage scenarios 1 and 3. In both cases all damage 

locations are correctly detected without any false or missing alarm. The only difference with 

respect to the case of very low noise is the slightly lower value of the IDI at the damaged locations. 
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On the contrary, for the supported plate (scenarios 2 and 4) as shown in Figure 22Figure 22, a 

value =1 leads to a great number of false alarm. Increasing the threshold to (=2, (Pf=3%) all the 

false alarms, except one at location 6, disappear (see Figure 23Figure 23). but However, there is 

remains a missing alarm at location 28, the location less damaged among the three in scenario 2. 

The same occurs for damage scenario 4. In this latter case, in order to remove the false alarm at 

location 6 a value Pf=1% has been assumed. As explained in 3.13.1 the choice of the value of Pf is 

beyond the scope of this paper; herein the values chosen for the numerical examples are aimed to 

show the consequences of the different choices of this probability. 

Another remark should be done to explain the missing alarms occurring in the case of multiple 

damages at different locations and with multiple severities: they depend on the averaging related to 

the estimation of the threshold through equation (1818). This effect can be removed if, as for the 

case reported in reference [16] the distribution of the interpolation error at each location is known 

in the original configuration and a different value of the threshold is defined for each location. As a 

matter of fact, in the case of a single damaged element with a small (15%) reduction of stiffness, 

(scenario 5: only one damaged element at one location) the method is able to detect the correct 

location of damage also for high level of noise (see Figure 26Figure 26). In this case the detection 

is not hampered by the averaging related to equation (1818), being in that the damaged location 

location is the only one with a high value of the damage index. As shown by the previous results, 

the most sensitive issue in the application of the method appears to be the definition of the 

threshold that selects the locations that are ‘truly’ damaged from the ones where the variation of 

the interpolation error is due to other random sources. 

The higher the level of noise, the higher should be the threshold in order to avoid false alarms. Of 

course this limits the ability to detect small amounts of damage hence, in any case, the acquisition 

of high quality signals with a low noise to signal ratio plays a key role in the increase ofin the 

reliability of results and must be a central issue for this, as well as for many others, damage 

identification methods. 

7. EXPERIMENTAL VERIFICATION 

The accuracy of the proposed surface interpolation method was experimentally assessed by impact 

hammer tests on a glass fiber/vinylester composite plate of dimensions 500cm x 500cm with 

thickness 1cm. For the measurement of the responses the plate was divided by a grid of 

0.5cmx0.5cm corresponding to 10x10 nodes (see Figure 26). It is noted that the experimental tests 

were carried out on specimens that differ from the plate considered for the numerical verification of 

the SIM that, as already remarked in section 4, was chosen in order to compare the results of the 
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SIM with those given by another method of damage identification, namely the uniform load surface 

method.  

The plate was suspended with a bungee cord to approximate free-free boundary conditions and 

subjected to a pulse load applied at each point on the grid by an Impulse hammer. Responses in 

terms of acceleration wasere recorded in all the nodes of the grid and the Operational Deformed 

Shapes were determined as Frequency Response Functions between each grid point and the 

reference one. These were determined by averaging those obtained from three impacts at each point. 

The plate was tested before and after a damage was simulated by manufacturing a flaw at the 

location shown in Figure 29Figure 27 with an area of about 1.5 x 1.5 cm and a depth of 0.6cm. For 

the application of the SIM the probability of false alarm has been assumed equal to 2% (=2 in 

equation (1818)) and the frequency range for the application of the SIM, basing based on the FRF 

measured in the undamaged configuration was chosen  to include the frequency range of the 

fundamental modes of the plate (see Figure 30Figure 28). More details can be found in reference 

[20]. 

In Figure 31Figure 29 the results of the application of the SIM are reported showing that the 

damaged location is correctly detected by the damage index that exhibits the highest values at the 

four nodes of the damaged elements. Due to the interpolation process [17] some false alarms are 

found at locations close to the damaged ones. Even if this it can reduce the precision in the 

identification of the contour of the damaged area, it does not hamper its correct localization since it 

affects only locations adjacent to the damaged one.  

In some cases damage can be manifest itself as a crack or as a delamination and this leads to a 

jump of the first derivative of the function (see for example references [28] and [29]). In this paper, 

it was proved that a discontinuity of in stiffness (proportional to the second derivative) induces a 

jump in the interpolation through a spline function. This type of interpolation imposes the 

continuity of the first derivative as well as of the second. Therefore an increase of the interpolation 

error is expected also at locations where a discontinuity of the first derivative occurs due to, for 

example, a crack. This means that in principle the method can detect discontituities of the first 

derivative as well as of the second derivative. However this requires future further research efforts 

in order to assess the potentiality of the method for practical applications. 

 

8. CONCLUSIONS 

In this paper has been proposed, extension of the Surface Interpolation Method (SIM) to plate-like 

structures has been proposed, as the Surface Interpolation Method (SIM), the extension to plate 
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like structures of the Interpolation Method previously proposed by the author. In order to compare 

the performance of the SIM to another damage localization methods, it has been applied herein to 

the case of the concrete plates proposed in references [15] and [16]. Experimental tests have also 

been also carried out on a composite plate to verify the practical application of the proposed 

algorithm. Results indicate that the method is a viable method for damage localization with the 

advantage, providing with respect to other methods proposed in literature, that the same accuracy 

in damage localization is desired with a lower computational effort. Advances in sensors 

technology and miniaturized signal processing platforms allow exploring exploration of the 

possibility of realizing an autonomous monitoring system based on responses recorded by a large 

number of sensors widely distributed over athe structure. From this point of view the minimum 

interaction with a human operator required by the SIM makes it appealing for automatic damage 

detection through a permanent monitoring system integrated with a data processing software.  
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APPENDIX 

In this Appendix it is proved that when a function having a jump discontinuity in its second 

derivative is approximated by a cubic spline function, an ‘overshoot’ effect occurs on each side of 

the discontinuity. The overshoot is proportional to the size of the jump. 

 

The proof is based on the Corollary 2 of Theorem V.1 [1] and on the demonstration given in 

reference [2] of the existence of the Gibbs phenomenon for piecewise linear functions that are 

briefly recalled for the sake of completeness. 

According to the Corollary 2 of Theorem V.1  [1] the second derivative s’’ of the complete spline s 

interpolant to the function g, is the least square approximation from the space of piecewise linear 

interpolants to the second derivative of g.  

This means that when a function g is interpolated with a cubic spline s, the second derivative s’’ 

(which is a piecewise linear function) approximates the function g’’(x) in the least square sense that 

is, it satisfies the following relationship: 

   
2

'' '' min

b

a

s x g x dx     (A1) 
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In reference [2] is proved that an analog of the Gibbs phenomenon (overshoot that occurs when a 

jump-discontinuous function is approximated in the least square sense) holds for piecewise linear 

approximations and the maximum overshoot is equal to 0.26794919 multiplied by one-half the 

magnitude of the jump. 

 

Proof 

Assume we have a function g(x) with a jump c in its second derivative g’’(x) and we want to 

approximate g(x) with a cubic spline s(x),. See see Figure 32Figure 30. 

For simplicity of notation let’s put: 

   ''y x s x  (A2) 

Without loss of generality, following the procedure proposed in reference [2] let’s assume a simple 

step function for  ''g x : 

   1 0
''

0 1
c x

g x
c x

   


  
 (A3) 

Given interpolating points 1 1 0 1 11 ... ... 1n n n nx x x x x x x              we want to construct a 

piecewise linear function  y x  that best approximates  ''g x  in the least squares sense that is: 

   
0 1

2 2

1 0

miny x c dx y x c dx


            (A4) 

and with boundary conditions   0ny x  ,   0ny x  .  

Our unknowns are the values of function y  in the nodes kx , 1,..., 1k n n    .  

Taking into account the symmetry of the function  ''g x , that requires the symmetry of the 

interpolant on the two sides of the jump    k ky x y x  , the solution of equation (A4) can be 

found by solving the following: 

 
1

2

0

miny x c dx     (A5) 

Symmetry also requires that  0 0y x   so our unknowns reduce to the 1n  values 
1, 1..., ny y 

 that 

minimize equation (A5). 

Let’s assume that the knots are equally spaced and indicate with 1/x n   the distance between 

two successive knots.  Commentato [LP-C1]: Nodes? 
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Being  y x  a linear function, in the generic interval 1k kx x x   , ( kx k x   k=0, 1, 2,…, n), the 

following relation holds: 

 

1 1

k k

k k k k

y x y x x

y y x x 

 


 
 (A6) 

where  k ky y x  is the value of the interpolant at knot kx . 

Rearranging, substituting /kx k x k n    and subtracting 1 on both sides we obtain: 

    1k k ky x c nx k y y y c       (A7) 

Let’s indicate with: 

k kw y c    (A8) 

the overshoot at knot k that is the difference between the value of the function c and the value of 

the interpolating function ky . 

Substituting kw  in the previous expression: 

    1k k ky x c nx k w w w      (A9) 
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       (A10) 

Equation (A7) can thus be written as: 
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   (A11) 

In our case: 

0nw c c    , 0 0w c c    ,  (A12) 

thus: 
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   (A13) 

Imposing that the partial first derivative with respect to all kw  (k=1,…n-1) vanish, we obtain a 

system of equation in the unknowns 1 1,... nw w  : 

1 2

1 1

2 1

4
4 0 2 2
4

k k k

n n

w w c
w w w k n
w w c

 

 

 
     
 

 (A14) 

The general solution is:  

1 1 2 2

k k

kw c c    (A15) 
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with 1  and 2  solutions of the characteristic equation: 

2 4 1 0     1/2 2 3      (A16) 

and the constants 1c  and 2c  determined from equation (A15) by the initial conditions (

o nw w c   ): 
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  (A17) 

The general solution is: 

 
 
1 1
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 with  

1 2 3 0.268      ; (A18) 

Let’s investigate how the overshoot kw  varies at the increase of the distance from the jump (k=0) 

that is at the increase of k.  

The difference between the (positive) values of the overshoot at two consecutive knots k and k+1 is 

the following: 
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This difference is positive for 1 / 2k n   therefore the maximum value of the overshoot 
kw

occurs at k=1 that is at the location of the jump and its value is: 
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 (A20) 

This proves that when a cubic function is utilized to interpolate a function with a jump c, the value 

of the overshoot is proportional to the magnitude of the jump c. 

At the increase of the number of knots n the value of the overshoot decreases but does not vanish 

and its limit value is: 

1lim 0.268
n

w c


     (A20) 

This overshoot (see equations A8 and A2) is the difference between the second derivatives of the 

interpolant function  s x  and of the function  g x . 

      1 1 1 1lim lim lim '' '' 0.268
n n n

w y c s x g x c
  

       (A21) 
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This value corresponds to the second derivative of the interpolation error      E x s x g x  , at 

the location 1x x of the discontinuity c of the second derivative. 
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Figure 1. Bi-cubic spline interpolation  
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Figure 2. Two different configurations of a curve with localized discontinuities of curvature 

  

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure 3. Gibbs phenomenon of splines 

 

 

(a) 

 

(b) 

Figure 4. Comparison of interpolation error in two configurations a) equal discontinuity of 

curvature in configurations 1 and 2 at location x=2; b) increase of discontinuity of curvature in 

configuration 2 with respect to configuration 1 at location x=4.  
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Figure 5. Variation of the interpolation error with the curvature for location 1 in Figure 2Figure 2.  

 

(a) 

 

 

(b) 

Figure 6. Decrease of the interpolation error in the region between two discontinuities of curvature 

(3<x<4). 
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(a) 

 

(b) 

Figure 7. Variation of the interpolation error with spatial resolution of sensors.  

 

Figure 8. The interpolation error E(x,y) 

 

Figure 9. Grid of knots for the interpolation at location P(xl, yp)  
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Figure 10. Regular grids for the evaluation of the interpolation error 

 

Figure 11. Probability of false and missing alarm 

 

Figure 12. Numerical model of the plate and damage scenarios 1 and 2. Grid of 99 sensors 
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Figure 13. Damage scenarios 3 and 4 

 

Figure 14. Magnitude of FRFs at the nodes of the plate  
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Figure 15. Results for scenario 1: nsr =0.1% 

 

Figure 16. Results for scenario 2: nsr=0.1% 
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Figure 17. Results for scenario 3: nsr =0.1%, Pf=3% 

 

Figure 18. Results for scenario 3: nsr =0.1%, Pf =15% 
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Figure 19. Results for scenario 4: nsr =0.1%, Pf=3% 

 

Figure 20. Results for scenario 1. nsr 10%, Pf =15% 



 

35 

 

 

Figure 21. Results for scenario 3. nsr =10%, Pf =3% 

 

 

Figure 22. Results for scenario 2. nsr =10%, Pf =15% 
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Figure 23. Results for scenario 2. nsr =10%, Pf =3% 

 

Figure 24. Results for scenario 4. nsr =10%, Pf =15% 
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Figure 25. Results for scenario 2. nsr =10%, Pf =1% 

 

 

Figure 26. Results for scenario 5. Reduction of stiffness of 15%. Pf =0.3% 
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Figure 27. Grid of 30 sensors (red dots) 

 

 

 

Figure 2827. Results for scenario 3(left) and 4 (right) using the grid of 30 sensors in Figure 

27Figure 27 
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Figure 2927. Composite plate and flaw induced. 

 

Figure 3028. Composite plate. Magnitude of FRFs at the nodes of the plate  
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Figure 3129. Results for the damage induced in the composite plate 

 

 

 

Figure 3230. Gibbs phenomenon for cubic splines 
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Table 1 

Damage scenarios 

Scenario  Element 

n. 

Damage 

1 Clamped plate 3 and 7 15% 

  4 and 6 25% 

  5 50% 

2 Supported plate 28 15% 

  58 25% 

  53 50% 

3 Clamped plate 7 25% 

  8 and 9  50% 

  10 75% 

4 Supported plate 36 and 44 50% 

5 Clamped plate 7 15% 

 

 


